Check the course website

http://www.math.ust.hk/~emarberg/Math2121/

for the syllabus and other course details.

1 Notation

Today's lecture corresponds to Section 1.1 in the textbook. See the book for a more detailed discussion!

Throughout, we'll using the following notation:

- \mathbb{C} denotes the complex numbers $a + b\sqrt{-1}$.
- \mathbb{R} denotes the real numbers.
- \mathbb{Q} denotes the rational numbers p/q.
- \mathbb{Z} denotes the integers {..., -2, -1, 0, 1, 2, ...}.
- \mathbb{N} denotes the nonnegative integers $\{0, 1, 2, \dots\}$.

Ellipsis ("...") notation: we write a_1, a_2, \ldots, a_7 instead of the full list $a_1, a_2, a_3, a_4, a_5, a_6, a_7$.

We use the same convention to write a_1, a_2, \ldots, a_n even when n is a variable integer.

2 Systems of linear equations

Let x_1, x_2, \ldots, x_n be variables, where $n \ge 1$ is some integer.

Let a_1, a_2, \ldots, a_n, b be numbers in \mathbb{R} (or \mathbb{C}).

(We'll usually work with real numbers, but nothing is any harder with complex numbers.)

Unlike in calculus, where our favorite variables are x, y, z, in linear algebra we prefer x_1, x_2, x_3, \ldots . Reason: we want to go beyond 3 dimensions.

Definition. We refer to

 $a_1x_1 + a_2x_2 + \dots + a_nx_n = b$

as a *linear equation* in the variables x_1, x_2, \ldots, x_n .

Notation. Another way of writing this equation is $\sum_{i=1}^{n} a_i x_i = b$.

The symbol " \sum " is the Greek letter sigma, for "sum."

There are many other equivalent ways of writing the same equation. For example:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n - b = 0$$

$$b = a_1x_1 + a_2x_2 + \dots + a_nx_n$$

$$a_1x_1 + a_3x_3 + a_5x_5 + \dots = b - a_2x_2 - a_4x_4 - \dots$$

We treat all of these equations as the same object.

A system of linear equations or linear system is a list of linear equations.

$$2x_1 - x_2 + \sqrt{3}x_3 = 8$$
$$x_1 - 4x_4 = 8$$
$$x_2 = 0$$

is a linear system in the variables x_1, x_2, x_3 .

Definition. A solution of a linear system in variables x_1, x_2, \ldots, x_n is a list of n numbers (s_1, s_2, \ldots, s_n) , with the property that if we plug in $x_1 = s_1, x_2 = s_2, \ldots, x_n = s_n$ in our equations, we get all true statements.

Note: if our system contains any false equations like "0 = 1", then it cannot have any solutions.

Two linear systems are *equivalent* if they have the same set of solutions.

Example. How many solutions can a linear system have?

1. The system

$$x_1 - 2x_2 = -1 -x_1 + 3x_2 = 3$$

has one solution $(s_1, s_2) = (3, 2)$.

2. But the system

$$x_1 - 2x_2 = -1 3x_1 - 6x_2 = -3$$

has many solutions: $(s_1, s_2) = (1, 1)$ or (3, 2) or (5, 3) or

3. Whereas the system

$$x_1 - 2x_2 = -1 x_1 - 2x_2 = 0$$

has no solutions.

Theorem. A linear system in two variables x_1 and x_2 has either 0, 1, or ∞ solutions.

Remark. The symbol " ∞ " is pronounced "infinity." Saying a linear system has ∞ solutions is bad style, since ∞ isn't a number. When we say this, we really mean: "does not have finitely many solutions."

Proof by geometry. A solution to one equation $ax_1 + bx_2 = c$ represents a point on a line after we identify the pair of numbers (x_1, x_2) with a point in the Cartesian plane.

A solution to a system of 2-variable linear equations represents a point where the lines corresponding to the equations all intersect.

But a collection of lines all intersect either at 0 points (they don't have a common intersection), 1 point (the unique point of intersection) or at infinitely many points (in the case when the lines are all *the same line*, though they might come from different equations). \Box

Proof by algebra. Suppose the linear system has two different solutions (s_1, s_2) and (r_1, r_2) .

Define $\lambda_1 = s_1 - r_1$ and $\lambda_2 = s_2 - r_2$.

The symbol " λ " is the Greek letter lambda.

If $ax_1 + bx_2 = c$ was one of the equations in our system, then by definition $as_1 + bs_2 = c$ and $ar_1 + br_2 = c$. Taking the difference of these equations gives $a(s_1 - r_1) + b(s_2 - r_2) = 0$. In other words, $a\lambda_1 + b\lambda_2 = 0$. It follows that $a(s_1 + z\lambda_1) + b(s_2 + z\lambda_2) = as_1 + bs_2 = c$ for all z.

This works for all the equations in our system.

Therefore $(s_1 + z\lambda_1, s_2 + z\lambda_2)$ is a new solution to our system, for any choice of z.

So the system has infinitely many solutions.

A linear system is *consistent* if it has one or infinitely many solutions, and *inconsistent* if it has zero solutions. Both the algebraic and geometric proofs generalize to any number of variables. (Think about how to do this!) Therefore:

Theorem. A linear system in n variables is either consistent or inconsistent, i.e., has 0, 1, or infinitely many solutions.

3 Matrices

A *matrix* is just a rectangular array of numbers, like these ones:

$$\begin{bmatrix} 1 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 5 & 3 \\ 2 & \pi \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 7 & 6 & 4 & 3 \\ 2 & 1 & 1 & 0 \end{bmatrix}.$$

We denote a general matrix by

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \end{bmatrix}$$

Here " A_{23} " is pronounced "A, two, three". This matrix is 3-by-4: it has 3 rows and 4 columns.

Say that a matrix A is m-by-n or $m \times n$ if has m rows and n columns.

We usually write A_{ij} (pronounced "A, i, j") for the entry in the *i*th row and *j*th column of the matrix. Matrices are useful as a compact way of writing a linear system.

Consider the linear system

$$x_1 - 2x_2 + x_3 = 0$$

$$2x_2 - 8x_3 = 8$$

$$5x_1 - 5x_3 = 10$$

Define the *coefficient matrix* of this system to be

$$\left[\begin{array}{rrrr} 1 & -2 & 1 \\ 0 & 2 & -8 \\ 5 & 0 & -1 \end{array}\right]$$

In other words, the matrix A where A_{ij} is the coefficient of x_j in the *i*th equation. The *augmented matrix* of the system is

$$\left[\begin{array}{rrrrr} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 5 & 0 & -1 & 10 \end{array}\right].$$

Exercise: how would you generalize this definition to any linear system?

4 Solving linear systems

We solve linear systems by adding equations together to cancel variables.

Example. To solve

$x_1 - 2x_2 + x_3 = 0$ $2x_2 - 8x_3 = 8$ $5x_1 - 5x_3 = 10$ we first add -5 time eq. 1 to eq. 3 to get	$\left[\begin{array}{rrrrr}1 & -2 & 1 & 0\\0 & 2 & -8 & 8\\5 & 0 & -1 & 10\end{array}\right]$
$x_1 - 2x_2 + x_3 = 0$ $2x_2 - 8x_3 = 8$ $10x_2 - 10x_3 = 10$	$\left[\begin{array}{rrrrr} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & 10 & -10 & 10 \end{array}\right].$
We then multiply eq. 2 by $1/2$ to get	
$x_1 - 2x_2 + x_3 = 0$ $x_2 - 4x_3 = 4$ $10x_2 - 10x_3 = 10$	$\left[\begin{array}{rrrrr} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 10 & -10 & 10 \end{array}\right].$
We then add -10 times eq. 2 to eq. 3:	
$x_1 - 2x_2 + x_3 = 0$ $x_2 - 4x_3 = 4$ $30x_3 = -30$	$\left[\begin{array}{rrrrr} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 30 & -30 \end{array}\right].$

Multiple eq. 3 by 1/30:

$x_1 - 2x_2 + x_3 = 0$	[1]	-2	1	0 -	
$x_2 - 4x_3 = 4$	0	1	-4	4	.
$x_3 = -1$	0	0	1	$\begin{array}{c} 0 \\ 4 \\ -1 \end{array}$	

The argument matrix of the last system if *triangular*: all entries in positions (i, j) with i > j are zero. (Remember: i is the row, j is the column.)

We can easily solve for x_1, x_2, x_3 from a triangular system, working from the bottom up:

- The last equation $x_3 = -1$ is already as simple as possible.
- Substitute into second equation: $x_2 4x_3 = x_1 4(-1) = 4 \Rightarrow x_2 = 0$.
- Substitute into first equation: $x_1 2x_2 + x_1 = x_1 2(0) + (-1) = 0 \Rightarrow x_1 = 1$

Definition. In solving this system of equations, we performed the following *(elementary)* row operations on the augmented matrix of the system:

- 1. Replacement: replace one row by the sum of itself and a multiple of another row.
- 2. Scaling: multiple all entries in a row by a *nonzero* number.
- 3. Interchange: swap two rows.

Note: we "add" rows by add the corresponding entries:

 $\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix} + \sqrt{7} \begin{bmatrix} 0 & 8 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 + 8\sqrt{7} & 3 + 4\sqrt{7} & 4 + 6\sqrt{7} \end{bmatrix}.$

Two matrices are *row equivalent* if one can be transformed to the other by a sequence of row operations. Note that each row operation is reversible. **Theorem.** If the augmented matrices of two linear systems are row equivalent, then the systems are equivalent (i.e., have same solutions).

Proof. Here's the idea, minus the details: check that performing one row operation does not change whether a given (s_1, s_2, \ldots, s_n) is a solution to the linear system.

Given a linear system with augmented matrix A, suppose we perform row operations to A until we get a matrix T with the property that whenever $T_{ij} \neq 0$ but $T_{i1} = T_{i2} = \cdots = T_{i,j-1} = 0$, it holds that $T_{i+1,j} = T_{i+2,j} = \cdots = T_{m,j} = 0$.

This means: if T_{ij} is the first nonzero entry in the *i*th row of T going left to right, then T_{ij} is the last nonzero entry in the *j*th column of T going top to bottom. For example:

	1	6	8	9	0			1	6	8	9	0]	
T =	0	0	3	2	1	or	T =						
	0	0	0	4	2			0	0	0	0	2	

From T in this form, we can easily determine if the system we started out with is consistent or inconsistent.

If T is the left matrix, the system is consistent: we have

$$x_4 = 4$$
, $3x_3 + 2x_4 = 1$, and $x - 1 + 6x_2 + 8x_3 + 9x_4 = 0$.

Exercise: find a solution!

If T is the right matrix, the system is inconsistent: it includes the equation 0 = 2, from the last row.

In general, a linear system is inconsistent if and only if its augmented matrix can be transformed by row operations to a matrix with a row of the form

where $q \neq 0$. We'll prove this next time, after introducing the course's most important algorithm, row reduction to echelon form.