1 Last time: multiplying vectors matrices

Given a matrix $A=\left[\begin{array}{rrrr}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]$ and a vector $v=\left[\begin{array}{r}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right] \in \mathbb{R}^{n}$ we define

$$
A v=v_{1}\left[\begin{array}{r}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right]+v_{2}\left[\begin{array}{r}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right]+\cdots+v_{n}\left[\begin{array}{r}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right] .
$$

We refer to $A v$ as the product of A and v, or the vector given by multiplying v by A.
Example. We have $\left[\begin{array}{lll}1 & 2 & 3 \\ 5 & 6 & 7\end{array}\right]\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}-1+0+3 \\ -5+0+7\end{array}\right]=\left[\begin{array}{l}2 \\ 2\end{array}\right]$.
Multiplying $v \in \mathbb{R}^{n}$ by an $m \times n$ matrix A transforms v to a new vector $A v \in \mathbb{R}^{m}$.
This transformation is linear in the sense that:

1. $A(u+v)=A u+A v$ if $u, v \in \mathbb{R}^{n}$.
2. $A(c v)=c(A v)$ if $v \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$.

If A is an $m \times n$ matrix and $x=\left[\begin{array}{r}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ and $b \in \mathbb{R}^{m}$, then we call $A x=b$ a matrix equation.
A matrix equation $A x=b$ has the same solutions as the linear system with augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$.
Theorem. Let A be an $m \times n$ matrix. The following are equivalent:

1. $A x=b$ has a solution for any $b \in \mathbb{R}^{m}$.
2. The span of the columns of A is all of \mathbb{R}^{m}.
3. A has a pivot position in every row.

Example. The matrix equation

$$
\left[\begin{array}{rrr}
1 & 3 & 4 \\
-4 & 2 & -6 \\
-3 & -2 & -7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

may fail to have a solution since

$$
\operatorname{RREF}\left(\left[\begin{array}{rrr}
1 & 3 & 4 \\
-4 & 2 & -6 \\
-3 & -2 & -7
\end{array}\right]\right)=\left[\begin{array}{lll}
1 & 0 & * \\
0 & 1 & * \\
0 & 0 & 0
\end{array}\right]
$$

has pivot positions only in rows 2 and 3 .
A homogeneous linear system is one that can be written $A x=0$.
Such a system has one trivial solution given by $x=0$.
A homogeneous linear system has a nontrivial solution if and only if it has at least one free variable.

A homogeneous linear system has a free variable if not every column is a pivot column in its coefficient matrix (remember that this is the augmented matrix without the last column).

2 Linear independence

We briefly introduced the notion of linear independence last time.
Vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$ are linearly independent if the homogeneous matrix equation

$$
\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{p}
\end{array}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]=0
$$

has no nontrivial solution.
If $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}=0$ where $c_{1}, c_{2}, \ldots, c_{p} \in \mathbb{R}$ and some $c_{i} \neq 0$, then we refer to " $c_{1} v_{1}+c_{2} v_{2}+$ $\cdots+c_{p} v_{p}=0$ " as a linear dependence among the vectors $v_{1}, v_{2}, \ldots, v_{p}$.
Vectors are linearly independent if there is no linear dependence among them.
Vectors which are not linearly independent are linearly dependent.
Example. The vectors $\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]$, and $\left[\begin{array}{r}5 \\ 9 \\ 16\end{array}\right]$ are linear dependent since

$$
-\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]+3\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right]-\left[\begin{array}{r}
5 \\
9 \\
16
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=0
$$

But $\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]$, and $\left[\begin{array}{r}5 \\ 9 \\ 15\end{array}\right]$ are linearly independent, since

$$
A=\left[\begin{array}{rrr}
1 & 2 & 5 \\
0 & 3 & 9 \\
-1 & 5 & 15
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 2 & 5 \\
0 & 3 & 9 \\
0 & 7 & 20
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 2 & 5 \\
0 & 1 & 3 \\
0 & 0 & -1
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\operatorname{RREF}(\mathrm{A})
$$

where \sim denotes row equivalence. Every column of A contains a pivot position, so the linear system with coefficient matrix A has no free variables, so $A x=0$ have no nontrivial solutions, meaning the columns of A are linearly independent.

Some useful facts about linear independence.

1. A single v is linearly independent if and only if $v \neq 0$.

A list of vectors is linearly dependent if it includes the 0 vector.
2. Vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$ are linearly dependent if and only if some vector v_{i} is a linear combination of the other vectors $v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{p}$.
We saw this in the previous example: $\left[\begin{array}{r}5 \\ 9 \\ 16\end{array}\right]=3\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]-\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$.
The last thing we'll note about linear independence (for now) is this useful, non-obvious fact:
Theorem. Assume $p>n$ and $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$. Then these vectors are linearly dependent.

Proof. Let $A=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{p}\end{array}\right]$.
This matrix has more columns than rows.
Each row contains at most one pivot position, so there are fewer pivot positions than columns.
Therefore some column is not a pivot column.
This means the linear system $A x=0$ has a free variable, so has a nontrivial solution.
This implies that $v_{1}, v_{2}, \ldots, v_{p}$, the columns of A, are linearly dependent.
Example. Suppose $v_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $v_{3}=\left[\begin{array}{r}5 \\ 60\end{array}\right]$. Then

$$
A=\left[\begin{array}{rrrr}
1 & 1 & 5 & 0 \\
2 & 3 & 60 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 1 & 5 & 0 \\
0 & 1 & 50 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & -45 & 0 \\
0 & 1 & 50 & 0
\end{array}\right]=\operatorname{RREF}(\mathrm{A})
$$

Column 3 of A contains no pivot position, so x_{3} is a free variable in the vector equation $x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}$.
Therefore v_{1}, v_{2}, v_{3} are linearly dependent.
In fact we have $x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=0$ if and only if $x_{1}-45 x_{3}=x_{2}+50 x_{3}=0$.
Take $x_{3}=1$. Then $x_{1}=45$ and $x_{2}=-50$, so $45 v_{1}-50 v_{2}+v_{3}=0$.

3 Linear transformations

A function f (like the ones we see in calculus) takes an input x from some set X (for example, \mathbb{R}) and produces an output $f(x)$ in another set Y
We write $f: X \rightarrow Y$ to mean that f is a function that takes inputs from X and gives outputs in Y.
X is called the domain of the function f.
Y is sometimes called the codomain of f.
Remark. For every x in the domain X of f, we get an output $f(x)$.
It possible that some values y in the codomain Y may never occur as outputs of f, however.
The image of an input x in X under f is the ouput $f(x)$.
Define the image or range of the function f to be the subset $\{f(x): x \in X\}$ of the codomain Y. This is the set of all possible outputs of f. We denote the range of f by range (f).

Example. An $m \times n$ matrix A is a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Given an input vector $v \in \mathbb{R}^{n}$, the corresponding output is $A v \in \mathbb{R}^{m}$.
Consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ whose domain and codomain are the sets of all vectors in dimensions m and n. The function f is a linear transformation or linear function if both of these properties hold:
(i) $f(u+v)=f(u)+f(v)$ for all vectors $u, v \in \mathbb{R}^{n}$.
(ii) $f(c v)=c f(v)$ for all vectors $v \in \mathbb{R}^{n}$ and scalars $c \in \mathbb{R}$.

Linear transformations have the following additional properties:
Proposition. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation then
(iii) $f(0)=0$.
(iv) $f(u-v)=f(u)-f(v)$ for $u, v \in \mathbb{R}^{n}$.
(v) $f(a u+b v)=a f(u)+b f(v)$ for all $a, b \in \mathbb{R}$ and $u, v \in \mathbb{R}^{n}$.

Proof. (iii) We have $f(0)=f(0+0)=2 f(0)$ so $f(0)=0$.
(iv) We have $f(u-v)=f(u)+f(-v)=f(u)+(-1) f(v)=f(u)-f(v)$.
(v) We have $f(a u+b v)=f(a u)+f(b v)=a f(u)+b f(v)$.

Example. We have already seen that an $m \times n$ matrix A defines a linear transformation $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
Suppose $A=\left[\begin{array}{rr}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right]$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is the function defined by $T(v)=A v$.
(a) The image of a vector $v \in \mathbb{R}^{2}$ under T is by definition $T(v)=A v$.

The image of $v=\left[\begin{array}{r}2 \\ -1\end{array}\right]$ under T is $T\left(\left[\begin{array}{r}2 \\ -1\end{array}\right]\right)=\left[\begin{array}{rr}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right]\left[\begin{array}{r}2 \\ -1\end{array}\right]=\left[\begin{array}{r}5 \\ 1 \\ -9\end{array}\right]$.
(b) Is the range of T all of \mathbb{R}^{3} ? If it was, then (from results last time) A would have to have a pivot position in every row. This is impossible since each column can only contain one pivot position, but A has three rows and only two columns. Therefore range $(T) \neq \mathbb{R}^{3}$.

Example. Fix $\theta \in[0,2 \pi)$. The notation $[a, b)$ means "the set of numbers $x \in \mathbb{R}$ with $a \leq x<b$." Define

$$
A=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $T(v)=A v$.
How does $T(v)$ compare to v, in terms of geometric representations of vectors in \mathbb{R}^{2} ?

1. If $v=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is a vector parallel to the x-axis, then $T(v)=A v=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$. Draw a picture of this:

In words: $T(v)$ is the arrow from the origin to the point on the unit circle which is angle θ counterclockwise from $(x, y)=(1,0)$.
2. If $v=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is a vector parallel to the y-axis, then $T(v)=A v=\left[\begin{array}{r}-\sin \theta \\ \cos \theta\end{array}\right]=\left[\begin{array}{c}\cos \left(\theta+\frac{\pi}{2}\right) \\ \sin \left(\theta+\frac{\pi}{2}\right)\end{array}\right]$. Draw a picture of this:

In words: $T(v)$ is the arrow from 0 to the point on the unit circle which is angle $\theta+\frac{\pi}{2}$ counterclockwise from $(x, y)=(1,0)$, which is the point angle θ counterclockwise from $(x, y)=(0,1)$.

It appears from these examples that $T(v)$ is the vector given by rotating v counterclockwise by angle θ.
How do we know this is true for any $v \in \mathbb{R}^{2}$? Use linearity and the fact that the sum of two vectors u and v in \mathbb{R}^{2} corresponds to the arrow from the origin to the opposite vertex of the parallelogram with sides u and v.
Any vector $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ can be written $v=\left[\begin{array}{r}v_{1} \\ 0\end{array}\right]+\left[\begin{array}{r}0 \\ v_{2}\end{array}\right]$, so is the arrow to the opposite vertex in the parallelogram with sides $\left[\begin{array}{r}v_{1} \\ 0\end{array}\right]$ and $\left[\begin{array}{r}0 \\ v_{2}\end{array}\right]$. Since

$$
T(v)=T\left(\left[\begin{array}{c}
v_{1} \\
0
\end{array}\right]\right)+T\left(\left[\begin{array}{r}
0 \\
v_{2}
\end{array}\right]\right)
$$

and since T rotates by angle θ the two vectors on the right, it follows that $T(v)$ is the arrow from 0 to the opposite vertex in our previous parallelogram, now rotated counterclockwise by angle θ. Draw a picture to convince yourself:

Theorem. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation. Then there is a unique $m \times n$ matrix A such that $T(v)=A v$ for all $v \in \mathbb{R}^{n}$.

Moral: Matrices uniquely represent all linear transformations $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
Proof. Define $e_{1}, e_{2}, \ldots, e_{n} \in \mathbb{R}^{n}$ as the vectors

$$
e_{1}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \ldots, \quad e_{n-1}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad e_{n}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
1
\end{array}\right]
$$

so that e_{i} has a 1 in the i th row and 0 in all other rows.
Define $a_{i}=T\left(e_{i}\right) \in \mathbb{R}^{m}$ and $A=\left[\begin{array}{lllll}a_{1} & a_{2} & a_{3} & \ldots & a_{n}\end{array}\right]$.
If w is any vector $w=\left[\begin{array}{r}w_{1} \\ w_{2} \\ \vdots \\ w_{n}\end{array}\right] \in \mathbb{R}^{n}$ then

$$
\begin{aligned}
T(w) & =T\left(w_{1} e_{1}+w_{2} e_{2}+\cdots+w_{n} e_{n}\right) \\
& =w_{1} T\left(e_{1}\right)+w_{2} T\left(e_{2}\right)+\cdots+w_{n} T\left(e_{n}\right)=w_{1} a_{1}+w_{2} a_{2}+\cdots+w_{n} a_{n}=A w .
\end{aligned}
$$

Thus A is one matrix such that $T(v)=A v$ for all vectors $v \in \mathbb{R}^{n}$.
To show that A is the only such matrix, suppose B is a $m \times n$ matrix with $T(v)=B v$ for all $v \in \mathbb{R}^{n}$.
Then $T\left(e_{i}\right)=A e_{i}=B e_{i}$ for all $i=1,2, \ldots, n$.

But $A e_{i}$ and $B e_{i}$ are the i th columns of A and B. For example,

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right] e_{3}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
7
\end{array}\right]
$$

Therefore A and B have the same columns, so they are the same matrix: $A=B$.
We call the matrix A in this theorem the standard matrix of the linear transformation T.
Example. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the function $T(v)=3 v$.
This is a linear transformation. (Why?) What is the standard matrix A of T ?
As we saw in the proof of the theorem, the standard matrix of $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is

$$
A=\left[\begin{array}{llll}
T\left(e_{1}\right) & T\left(e_{2}\right) & \ldots & T\left(e_{n}\right)
\end{array}\right]=\left[\begin{array}{llll}
3 e_{1} & 3 e_{2} & \ldots & 3 e_{n}
\end{array}\right]=\left[\begin{array}{cccc}
3 & 0 & \ldots & 0 \\
0 & 3 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 3
\end{array}\right]
$$

In words, A is the matrix with 3 in each position $(1,1),(2,2), \ldots,(n, n)$ and 0 in all other positions.
One calls such a matrix diagonal.
Example. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the function

$$
T\left(\left[\begin{array}{r}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]\right)=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]\left[\begin{array}{r}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}
$$

This function is not linear: we have $T(2 v)=4 T(v) \neq 2 T(v)$ for any nonzero vector $v \in \mathbb{R}^{n}$.
Example. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the function

$$
T\left(\left[\begin{array}{r}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]\right)=\left[\begin{array}{r}
v_{n} \\
\vdots \\
v_{2} \\
v_{1}
\end{array}\right]
$$

This function is a linear transformation. (Why?) Its standard matrix is

$$
A=\left[\begin{array}{llllll}
T\left(e_{1}\right) & T\left(e_{2}\right) & \ldots & T\left(e_{n-1}\right) & T\left(e_{n}\right)
\end{array}\right]=\left[\begin{array}{lllll}
e_{n} & e_{n-1} & \ldots & e_{2} & e_{1}
\end{array}\right]=\left[\begin{array}{llll}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &
\end{array}\right]
$$

In the matrix on the right, we adopt the convention of only writing the nonzero entries: all positions in the matrix which are blank contain zero entries.

Definition. A function $f: X \rightarrow Y$ is one-to-one or injective if $f(a)=f(b)$ implies $a=b$. In words: f does not send two different inputs to the same output.

Theorem. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear then T is one-to-one if and only if the only solution to $T(x)=0$ is $x=0 \in \mathbb{R}^{n}$, i.e., the columns of the standard matrix A of T are linearly independent.

Proof. If T is not one-to-one, then there are vectors $u, v \in \mathbb{R}^{n}$ with $u \neq v$ and $T(u)=T(v)$.
In this case $u-v \neq 0$ and $T(u-v)=T(u)-T(v)=0$ so $T(x)=0$ has a nontrivial solution.
If T is one-to-one, then $T(x)=T(0)=0$ implies $x=0$, so $T(x)=0$ has only trivial solutions.

Definition. A function $f: X \rightarrow Y$ is onto or surjective if range $(f)=\{f(x): x \in X\}=Y$. In words: the range of f is equal to its codomain.

Theorem. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear then T is onto if and only if the columns of the standard matrix A of $T \operatorname{span} \mathbb{R}^{m}$.

Proof. The vectors in the range of T are precisely the linear combinations of the columns of A.
The range is \mathbb{R}^{m} precisely when the span of the columns of A is \mathbb{R}^{m}.

