
MATH 2121 — Linear algebra (Fall 2017) Lecture 6

1 Last time: linear transformations

Notation. Writing
f : X → Y

means that f is a function which takes inputs from the set X and produces outputs in the set Y .

X is the domain of the function f .

Y is the codomain of f .

The image of an input x in X under f is the ouput f(x).

The image or range of the function f is the set of possible outputs:

range(f) = {f(x) : x ∈ X}.

The range is contained in the codomain, but might be smaller than it.

Important definition. A function f : Rn → Rm, with domain and codomain given by sets of vectors,
is a linear transformation if

(i) f(u + v) = f(u) + f(v) for all vectors u, v ∈ Rn.

(ii) f(cv) = cf(v) for all vectors v ∈ Rn and scalars c ∈ R.

If f : Rn → Rm is a linear transformation then some other properties also hold:

f(0) = 0.

f(u− v) = f(u)− f(v) for u, v ∈ Rn.

f(au + bv) = af(u) + bf(v) for all a, b ∈ R and u, v ∈ Rn.

f(a1v1 + a2v2 + · · ·+ amvm) = a1f(v1) + a2f(v2) + · · ·+ amf(vm) for all ai ∈ R and vi ∈ Rn.

Linear transformations are closely related to matrices, by the following statement:

Theorem. Suppose T : Rn → Rm is a linear transformation. Then there is a unique m × n matrix A
such that T (v) = Av for all v ∈ Rn.

The matrix A is called the standard matrix of T , and is computed as

A =
[
T (e1) T (e2) . . . T (en)

]
where e1, e2, . . . , en ∈ Rn are the vectors

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en−1 =


0
...
0
1
0

 , and en =


0
...
0
0
1

 .

Example. Suppose T : R3 → R3 is the function T (v) = 4v.

This is a linear transformation because

T (u + v) = 4(u + v) = 4u + 4v = T (u) + T (v) and T (cv) = 4(cv) = c(4v) = cT (v).

What is the standard matrix of T?

We have T (e1) = 4e1, T (e2) = 4e2, and T (e3) = 4e3. Therefore T (v) = Av where

A =
[
T (e1) T (e2) T (e3)

]
=

 4 0 0
0 4 0
0 0 4

 .
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Write Aij for the entry in the ith row and jth column of A. Then Aij = 0 whenever i 6= j. We call a
matrix with this property diagonal.

Example. Suppose T : Rn → Rn is the function

T




v1
v2
...

vn


 =

[
v1 v2 . . . vn

]


v1
v2
...

vn

 = v21 + v22 + · · ·+ v2n.

This function is not linear: we have T (2v) = 4T (v) 6= 2T (v) for any nonzero vector v ∈ Rn.

Example. Suppose T : Rn → Rn is the function

T




v1
v2
...

vn


 =


vn
...

v2
v1

 .

This function is a linear transformation. (Why?) Its standard matrix is

A =
[
T (e1) T (e2) . . . T (en−1) T (en)

]
=
[
en en−1 . . . e2 e1

]
=


1

1

. .
.

1
1

 .

In the matrix on the right, we adopt the convention of only writing the nonzero entries: all positions in
the matrix which are blank contain zeros.

2 One-to-one and onto functions

This section talks about two important classes of linear transformations, which can be characterized in
terms of whether the columns of the standard matrix are linearly independent or span the codomain.

Definition. A function f : X → Y is one-to-one or injective if f(a) = f(b) implies a = b. In words: f
does not send two different inputs to the same output. If a 6= b and f(a) = f(b) then f is not one-to-one.

Example. Suppose T : R3 → R2 is the linear transformation T (v) = Av where

A =

[
1 2 5
0 5 3

]
.

Is T one-to-one? No: since A has more columns than rows, its columns are linearly dependent. Therefore
there is a vector 0 6= v ∈ R3 such that T (v) = Av = 0. But we also have T (0) = 0

Theorem. If T : Rn → Rm is a linear transformation then T is one-to-one if and only if the only solution
to T (x) = 0 is x = 0 ∈ Rn, i.e., the columns of the standard matrix A of T are linearly independent.

Proof. Suppose the only solution to T (x) = 0 is x = 0 ∈ Rn. Then whenever u, v ∈ Rn are vectors with
u 6= v, we have T (u)− T (v) = T (u− v) 6= 0 since u− v 6= 0, so T (u) 6= T (v). Therefore T is one-to-one.

If T is one-to-one, then T (x) = T (0) = 0 implies x = 0, so T (x) = 0 has only trivial solutions.
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Definition. A function f : X → Y is onto or surjective if range(f) = {f(x) : x ∈ X} = Y . In words:
the range of f is equal to its codomain. If there is a value y ∈ Y such that f(x) 6= y for all x ∈ X, then
f is not onto.

Example. Suppose again that T : R3 → R2 is the linear transformation T (v) = Av where

A =

[
1 2 5
0 5 3

]
.

Is T onto? Yes: the columns of A span R2 if and only if A has a pivot position in every row, and we have

A =

[
1 2 5
0 5 3

]
∼
[

1 2 5
0 1 3/5

]
∼
[

1 0 19/5
0 1 3/5

]
= RREF(A).

Theorem. If T : Rn → Rm is a linear transformation then T is onto if and only if the columns of the
standard matrix A of T span Rm.

Proof. The vectors in the range of T are precisely the linear combinations of the columns of A.

The range is Rm precisely when the span of the columns of A is Rm.

Example. Suppose T : R2 → R3 is the function

T

([
v1
v2

])
=

 3v1 + v2
5v1 + 7v2
v1 + 3v2

 .

This function is a linear transformation. Its standard matrix is

A =

 3 1
5 7
1 3

 .

To determine if T is one-to-one, we check if the columns of A linearly independent. To do this, we row
reduce to echelon form:

A =

 3 1
5 7
1 3

 ∼
 1 3

5 7
3 1

 ∼
 1 3

0 −8
0 −8

 ∼
 1 0

0 1
0 0

 = RREF(A).

This shows that A has a pivot position in every column, which means Ax = 0 has only trivial solutions,
which means the columns of A are linearly independent, which means T is one-to-one.

To determine if T is onto, we want to find out if the columns of A span R3. From last time, we know
that this happens if and only if A has a pivot position in every row. Since the third row of A has no
pivot position, T is not onto.

Corollary. A linear transformation T : Rn → Rm is one-to-one only if n ≤ m, and onto only if n ≥ m.

Proof. Results last time show that T is one-to-one iff its standard matrix has a pivot position in every
column, and onto iff its standard matrix has a pivot position in every row. The first case requires there
to be more columns n than rows m, and the second case requires there to be more rows m than columns
n (since each row and each column contains at most one pivot position).
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3 Geometric interpretations of linear transformations R2 → R2

Suppose T : R2 → R2 is a linear transformation with standard matrix A. We can illustrate T by drawing
the parallelogram with sides T (e1) and T (e2). (Fill in these pictures yourself.)

Standard matrix of T Picture Description of T[
1 0
0 −1

]
Reflect across the x-axis

[
−1 0

0 1

]
Reflect across y-axis

[
0 1
1 0

]
Reflect across y = x

[
k 0
0 1

]
(0 < k < 1) Horizontal contraction

[
1 0
0 k

]
(0 < k < 1) Vertical contraction

[
1 k
0 1

]
(k > 0) Horizontal sheering
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4 Application to electrical networks

An electrical circuit is represented by a diagram like this:

In this sort of picture, a symbol of the form

means a resistor with resistance 8 ohms, while a symbol of the form

means a voltage drop (in the direction going from the long edge to the short edge, in this case left to
right) of 20 volts. Going from right to left across this component, the voltage rises by 20 volts.

Electrical current is measured in amps and flows through the circuit.

The units of voltage, resistance, and current and defined so that 1 volt = 1 ohm × 1 amp.

Analogy. To understand what voltage, resistance, and current actually mean, it’s useful to have this
informal analogy in mind. Think of the circuit as a system of rivers and electricity as water flowing
through this system. Voltage drops correspond to waterfalls, places where gravity causes the water to
flow faster. A resistor corresponds to a patch of boulders or tree branches stuck in the river, which cause
the water to flow more slowly. Current corresponds to the volume of water that is flowing.

The amount of current flowing through any point of the circuit is determined by this law:

Ohm’s law. The voltage drop between two points in the circuit is equal to the current through those
two points times the effective resistance between the two points. If V is the voltage drop, I is the current,
and R is the resistance, then we have V = IR.

Our picture indicates 3 loops in the circuit.

The current through each loop obeys this law:

Kirchhoff’s voltage law. The sum of the voltage drops IR in one direction around a loop in the circuit
is equal to the sum of the voltage sources in the same direction around the loop.
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Let I1, I2, and I3 be the amount of current flowing in each loop the circuit. We can use Ohm’s and
Kirchhoff’s laws to derive a system of linear equations which these values must satisfy.

• Loop 1: By Ohm’s law, the voltage drops across the 3 resistors are

4I1, 3(I1 − I2), and 4I1.

To explain this, note that the the currents flowing in loops 1 and 2 between points A and B are in
opposite directions, so the net current (in the direction of loop 1) is I1 − I2, and the voltage drop
between A and B is 3(I1 − I2).

The sum of the voltage sources in loop 1 is +30 volts, so by Kirchhoff’s law

30 = 11I1 − 3I2.

• Loop 2: The voltage drops across the 4 resistors are

1I2, 1(I2 − I3), 1I2, and 3(I2 − I1).

The sum of the voltage sources around loop 2 is +5 volts, so by Kirchhoff’s law

5 = −3I1 + 6I2 − I3.

• Loop 3: The voltage drops across the 3 resistors are

1I3, 1I3, and 1(I3 − I2)

while the sum of the voltage sources around loop 3 is −20− 5 = −25 volts. Therefore

−25 = −I2 + 3I3.

This shows that the loop currents satisfy the matrix equation 11 −3 0
−3 6 −1

0 −1 3

 I1
I2
I3

 =

 30
5

−25

 . (*)

To solve for the values of the current, row reduce the augmented matrix corresponding to this system:

A =

 11 −3 0 30
−3 6 −1 5

0 −1 3 −25


∼

 1 −2 1/3 −5/3
0 1 −3 25

11 −3 0 30


∼

 1 0 −17/3 145/3
0 1 −3 25

11 0 −9 105


∼

 1 0 −17/3 145/3
0 1 −3 25
0 0 160/3 −1280/3


∼

 1 0 −17/3 145/3
0 1 −3 25
0 0 1 −8

 ∼
 1 0 0 3

0 1 0 1
0 0 1 −8

 = RREF(A).

Thus our system (*) has a unique solution, given by I1 = 3 amps, I2 = 1 amp, and I3 = −8 amps.
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