1 Last time: inverses

The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^{T} whose rows are the columns of A.
For example, $\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]^{T}=\left[\begin{array}{ll}a & d \\ b & e \\ c & f\end{array}\right]$.
If A is $m \times n$ and B is $n \times k$, then $A B$ is defined and $(A B)^{T}=B^{T} A^{T}$.

The following all mean the same thing for a function $f: X \rightarrow Y$:

1. f is invertible.
2. f is one-to-one and onto.
3. For each $b \in Y$ there is exactly one $a \in X$ with $f(a)=b$.
4. There is a unique function $f^{-1}: Y \rightarrow X$, called the inverse of f, such that

$$
f^{-1}(f(a))=a \quad \text { and } \quad f\left(f^{-1}(b)\right)=b \quad \text { for all } a \in X \text { and } b \in Y
$$

Proposition. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear and invertible then $m=n$ and T^{-1} is invertible.
The following all mean the same thing for an $n \times n$ matrix A :

1. A is invertible.
2. A is the standard matrix of an invertible linear function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
3. There is a unique $n \times n$ matrix A^{-1}, called the inverse of A, such that

$$
A^{-1} A=A A^{-1}=I_{n}=\left[\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

4. For each $b \in \mathbb{R}^{n}$ the equation $A x=b$ has a unique solution.
5. $\operatorname{RREF}(A)=I_{n}$
6. The columns of A span \mathbb{R}^{n} and are linearly independent.

Proposition. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be an arbitrary 2×2 matrix.
(1) A is invertible if and only if $a d-b c \neq 0$.
(2) If $a d-b c \neq 0$ then $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$.

For example, $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{-1}=\left[\begin{array}{rr}-2 & 1 \\ 3 / 2 & -1 / 2\end{array}\right]=\frac{1}{-2}\left[\begin{array}{rr}4 & -2 \\ -3 & 1\end{array}\right]$.
Proposition. Let A and B be $n \times n$ matrices.

1. If A is invertible then $\left(A^{-1}\right)^{-1}=A$.
2. If A and B are both invertible then $A B$ is invertible with $(A B)^{-1}=B^{-1} A^{-1}$.
3. If A is invertible then A^{T} is invertible with $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
$\underline{\text { Process to compute } A^{-1}}$
Let A be an $n \times n$ matrix. Consider the $n \times 2 n$ matrix $\left[\begin{array}{ll}A & I_{n}\end{array}\right]$.
If A is invertible then $\operatorname{RREF}\left(\left[\begin{array}{ll}A & I_{n}\end{array}\right]\right)=\left[\begin{array}{ll}I_{n} & A^{-1}\end{array}\right]$.
So to compute A^{-1}, row reduce $\left[\begin{array}{ll}A & I_{n}\end{array}\right]$ to reduced echelon form, and then take the last n columns.

Example. $\left[\begin{array}{rrrr}1 & 3 & 1 & 0 \\ 5 & 8 & 0 & 1\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 3 & 1 & 0 \\ 0 & -7 & -5 & 1\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 3 & 1 & 0 \\ 0 & 1 & 5 / 7 & -1 / 7\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 0 & -8 / 7 & 3 / 7 \\ 0 & 1 & 5 / 7 & -1 / 7\end{array}\right]$.

Therefore $\left[\begin{array}{ll}1 & 3 \\ 5 & 8\end{array}\right]^{-1}=\frac{1}{-7}\left[\begin{array}{rr}8 & -3 \\ -5 & 1\end{array}\right]$, which agrees with our formula in the 2×2 case.

2 Stronger characterization of invertible matrices

Remember that a matrix can only be invertible if it has the same number of rows and columns.
Theorem. When A is a square matrix, the following are equivalent:
(a) A is invertible.
(b) The columns of A are linearly independent.
(c) The columns of $A \operatorname{span} \mathbb{R}^{n}$

We said earlier that a matrix is invertible if and only if its columns both are linearly independent and $\operatorname{span} \mathbb{R}^{n}$. This is still true, but it turns out that if we know ahead of time that A is a square matrix, then either condition (b) or (c) implies the other.

Proof. We already know that (a) implies both (b) and (c).
Assume just (b) holds. Then A has a pivot position in every column, so $\operatorname{RREF}(A)=I_{n}$ since A has the same number of rows and columns. But this implies that A is invertible.
Similarly, if (c) holds then A has a pivot position in every row, so $\operatorname{RREF}(A)=I_{n}$ and A is invertible.

Corollary. Suppose A and B are $n \times n$ matrices. If $A B=I_{n}$ then $B A=I_{n}$.
This means that if we want to show that $B=A^{-1}$ then it is enough to just check that $A B=I_{n}$.
Proof. Assume $A B=I_{n}$. Then the columns of A span \mathbb{R}^{n} since if $v \in \mathbb{R}^{n}$ then $A u=v$ for $u=B v \in \mathbb{R}^{n}$, so A is invertible. Therefore $B=A^{-1} A B=A^{-1} I_{n}=A^{-1}$ so $B A=A^{-1} A=I_{n}$.

Aside (optional reading). The corollary is equivalent to saying that if $T, U: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are linear and $T \circ U=\operatorname{id}_{\mathbb{R}^{n}}$ is the identity function, then $U \circ T=\mathrm{id}_{\mathbb{R}^{n}}$. Curiously, this fails in "infinite dimensions."
Define \mathbb{R}^{∞} as the set of "infinite" column vectors $v=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots\end{array}\right]$ where v_{1}, v_{2}, \ldots are real numbers but only finitely many are nonzero. Every element $v \in \mathbb{R}^{\infty}$ is formed by taking an ordinary vector in \mathbb{R}^{n} for some n and then adding on infinitely many extra rows of zeros. If an infinite column vector seems
strange, another way to view elements of \mathbb{R}^{n} is as functions $v:\{1,2,3, \ldots\} \rightarrow \mathbb{R}$ with the property that the number of positive integers i with $v(i) \neq 0$ is finite.

Sums and scalar multiples of vectors in \mathbb{R}^{∞} are defined as coordinate-wise operations exactly as for vectors in \mathbb{R}^{n}, and so we can define linear transformations $\mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$ by the same pair of conditions as we use to define linear transformations $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. (Can you write down the details?)
Now consider the functions $T, U: \mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$ given by the shift operators

$$
U\left(\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
v_{1} \\
v_{2} \\
\vdots
\end{array}\right] \quad \text { and } \quad T\left(\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots
\end{array}\right]\right)=\left[\begin{array}{c}
v_{2} \\
v_{3} \\
v_{4} \\
\vdots
\end{array}\right]
$$

In words, U shifts a vector down by adding a zero row at the top, while T shifts a vector up by forgetting the first row. Both of these functions are linear transformations. (Check this!)

We have $T \circ U=\operatorname{id}_{\mathbb{R}^{\infty}}$ since

$$
T\left(U\left(\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots
\end{array}\right]\right)\right)=T\left(\left[\begin{array}{c}
0 \\
v_{1} \\
v_{2} \\
\vdots
\end{array}\right]\right)=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots
\end{array}\right]
$$

However, $U \circ T \neq \mathrm{id}_{\mathbb{R}^{\infty}}$ since

$$
U\left(T\left(\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots
\end{array}\right]\right)\right)=U\left(\left[\begin{array}{c}
v_{2} \\
v_{3} \\
v_{4} \\
\vdots
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
v_{2} \\
v_{3} \\
\vdots
\end{array}\right]
$$

Linear algebra is the study of the linear transformations $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ where n and m are finite numbers. The study of linear transformations $\mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$ is functional analysis (MATH 4063).

3 Subspaces of \mathbb{R}^{n}

Returning to our usual convention, let n be a positive integer (not ∞).
Recall that $0 \in \mathbb{R}^{n}$ denotes the zero vector $0=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right]$.
Subsets of \mathbb{R}^{n} that are closed under scalar multiplication and addition are called subspaces. To be precise:
Definition. Let H be a subset of \mathbb{R}^{n}. The subset H is a subspace if these three conditions hold:

1. $0 \in H$.
2. $u+v \in H$ if $u, v \in H$.
3. $c v \in H$ if $c \in \mathbb{R}$ and $v \in H$.

Common examples
\mathbb{R}^{n} is a subspace of itself.

The set $\{0\}$ consisting of just the zero vector is a subspace of \mathbb{R}^{n}.
The empty set \varnothing is not a subspace since it does not contain 0 .
A subset $H \subset \mathbb{R}^{2}$ is a subspace if and only if $H=\{0\}$ or $H=\mathbb{R}^{2}$ or H is a line through 0 .
The span of any set of vectors in \mathbb{R}^{n} is a subspace.
(Later, we will see that every subspace is the span of some set of vectors.)
Example. The set X of vectors $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in \mathbb{R}^{3}$ with $v_{1}+v_{2}+v_{3}=1$ is not a subspace since $0 \notin X$.
The set H of vectors $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in \mathbb{R}^{3}$ with $v_{1}+v_{2}+v_{3}=0$ is a subspace since if $u, v \in H$ and $c \in \mathbb{R}$ then

$$
\left(u_{1}+v_{1}\right)+\left(u_{2}+v_{2}\right)+\left(u_{3}+v_{3}\right)=\left(u_{1}+u_{2}+u_{3}\right)+\left(v_{1}+v_{2}+v_{3}\right)=0+0=0
$$

and

$$
c v_{1}+c v_{2}+c v_{3}=c\left(v_{1}+v_{2}+v_{3}\right)=0
$$

so $u+v \in H$ and $c v \in H$.

Any matrix A gives rise to two subspaces, called the column space and null space.
Definition. The column space of an $m \times n$ matrix A is the subspace

$$
\operatorname{Col} A \subset \mathbb{R}^{m}
$$

given by the span of the columns of A.
Remark. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the linear function $T(x)=A x$ then $\operatorname{Col} A=\operatorname{range}(T)$.
Note that $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if $A x=b$ has a solution for each $b \in \mathbb{R}^{m}$.
A vector $b \in \mathbb{R}^{m}$ belongs to $\operatorname{Col} A$ if and and only if $A x=b$ has a solution.

Definition. The null space of an $m \times n$ matrix A is the subspace

$$
\operatorname{Nul} A \subset \mathbb{R}^{n}
$$

given by the set of vectors $v \in \mathbb{R}^{n}$ with $A v=0$.
Proof that $\operatorname{Nul} A$ is a subspace. If $u, v \in \operatorname{Nul} A$ and $c \in \mathbb{R}$ then $A(u+v)=A u+A v=0+0=0$ and $A(c v)=c(A v)=0$, so $u+v \in \operatorname{Nul} A$ and $c v \in \operatorname{Nul} A$. Thus $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{n}.

Remark. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the linear function $T(x)=A x$ then $\operatorname{Nul} A=\left\{x \in \mathbb{R}^{n}: T(x)=0\right\}$. This is usually called the kernel of T.

Note: the column space is a subspace of \mathbb{R}^{m} where m is the number of rows of A, while the null space is a subspace of \mathbb{R}^{n} where n is the number of columns of A.

At first, subspaces seem like big, complicated objects. But it turns out that each subspace is completely determined by a finite amount of data. This data will be called a basis. Let H be a subspace of \mathbb{R}^{n}.

Definition. A basis for H is a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subset H$ which are linearly independent and have span equal to H.
The empty set \varnothing is considered to be a basis for the zero vector space $\{0\}$.
Example. The vectors $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \subset \mathbb{R}^{n}$ where $e_{1}=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right], e_{2}=\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right]$, etc., is a basis for \mathbb{R}^{n}.
We call this the standard basis of \mathbb{R}^{n}.
Theorem. Every subspace H of \mathbb{R}^{n} has a basis of size at most n.
Proof. If $H=\{0\}$ then \varnothing is a basis.
Assume $H \neq\{0\}$. Let \mathcal{B} be a set of linearly independent vectors in H that is as large as possible. The size of \mathcal{B} must be at most n since any $n+1$ vectors in \mathbb{R}^{n} are linearly dependent by a result proved in an earlier lecture.

Let $w_{1}, w_{2}, \ldots, w_{k}$ be the elements of \mathcal{B}. Since \mathcal{B} is as large as possible, if $v \in H$ is any vector then $w_{1}, w_{2}, \ldots, w_{k}, v$ are linearly dependent so we can write $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}+c v=0$ for some numbers $c_{1}, c_{2}, \ldots, c_{k}, c \in \mathbb{R}$ which are not all zero. Since the vectors in \mathcal{B} are linearly independent, we must have $c \neq 0$ (why?) so it follows that

$$
v=\frac{c_{1}}{c} w_{1}+\frac{c_{2}}{c} w_{2}+\cdots+\frac{c_{k}}{c} w_{k} .
$$

Thus, not only is \mathcal{B} a set of linearly independent vectors, but these vectors also span H, so \mathcal{B} is a basis.
Example. Let $A=\left[\begin{array}{rrrrr}-3 & 6 & -1 & 1 & -1 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4\end{array}\right]$.
How can we find a basis for $\operatorname{Nul} A$? Well, finding a basis for $\operatorname{Nul} A$ is more or less the same task as finding all solutions to the homogeneous equation $A x=0$. So let's first try to solve that equation.
If we row reduce the 3×6 matrix $\left[\begin{array}{ll}A & 0\end{array}\right]$, we get

$$
\left[\begin{array}{ll}
A & 0
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & -2 & 0 & -1 & 3 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=\operatorname{RREF}\left(\left[\begin{array}{ll}
A & 0
\end{array}\right]\right)
$$

This tells us that $A x=0$ if and only if $\left\{\begin{array}{l}x_{1}-2 x_{2}-x_{4}+3 x_{5}=0 \\ x_{3}+2 x_{4}-2 x_{5}=0 .\end{array}\right.$
Therefore $x \in \operatorname{Nul} A$ if and only if

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{r}
2 x_{2}+x_{4}-3 x_{5} \\
x_{2} \\
-2 x_{4}+2 x_{5} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right] .
$$

The vectors

$$
\left\{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right]\right\}
$$

are a basis for $\operatorname{Nul} A$: we just computed that these vectors span the null space, and they are linearly independent since each has a nonzero entry in a row (namely, either row 2,4 , or 5) whether the others have zeros. (Why does this imply linear independence?)
This example is important: the procedure just described works to construct a basis of $\operatorname{Nul} A$ for any matrix A. The size of this basis will always be equal to the number of free variables in the linear system $A x=0$. How to find a basis for $\mathrm{Nul} A$ is something you should remember at the end of this course.

Example. Let $B=\left[\begin{array}{rrrrr}1 & 0 & -3 & 5 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
This matrix is in reduced echelon form.
Finding a basis for $\operatorname{Col} B$ is in some ways easier than finding a basis for Nul B.
The columns of B automatically span $\operatorname{Col} B$, but they might not be linearly independent.
The largest linearly independent subset of the columns of B will be a basis for $\operatorname{Col} B$, however.
In our example, the pivot columns 1,2 and 5 are linearly independent since each has a row with a 1 where the others have 0 s. These columns span columns 3 and 4 , so it follows that

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\right\}
$$

is a basis for $\operatorname{Col} B$.
This example was special since the matrix B was already in reduced echelon form. To find a basis of the column space of an arbitrary matrix, we rely on the following observation:

Proposition. Let A be any matrix. The pivot columns of A form a basis for $\operatorname{Col} A$.
Proof. This proof sketches the main ideas but doesn't spell out all the details.
Suppose A is $m \times n$. The reduced echelon form of A is obtained by multiplying A by an invertible matrix E on the left, so we can write $\operatorname{RREF}(A)=E A$.
If $a_{1}, a_{2}, \ldots, a_{k}$ are the pivot columns of A, then $E\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{k}\end{array}\right]$ is the $m \times k$ matrix $\left[\begin{array}{r}I_{k} \\ 0\end{array}\right]$ where the 0 means an $(m-k) \times n$ submatrix of zeros. These columns are linearly independent since if

$$
\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{k}
\end{array}\right] v=0
$$

for $v \in \mathbb{R}^{k}$ then

$$
0=E\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{k}
\end{array}\right] v=\left[\begin{array}{r}
I_{k} \\
0
\end{array}\right] v=\left[\begin{array}{l}
v \\
0
\end{array}\right]
$$

which implies that $v=0$.
Suppose w is a non-pivot column of A. The definition of reduced echelon form implies that the corresponding column $E w$ of $\operatorname{RREF}(A)=E A$ is in the span of $E a_{1}, E a_{2}, \ldots, E a_{k}$. (Why?) If we have
$E w=c_{1} E a_{1}+\cdots+c_{k} E a_{k}$ then multiplying both sides by E^{-1} gives $w=c_{1} a_{1}+\cdots+c_{k} a_{k}$ so w is in the span $a_{1}, a_{2}, \ldots, a_{k}$. Therefore the pivot columns of A span the other columns, and hence span Col A.

Since the pivot columns are linearly independent and have span equal to $\operatorname{Col} A$, they form a basis.

Example. The matrix

$$
A=\left[\begin{array}{rrrrr}
1 & 3 & 3 & 2 & -9 \\
-2 & -2 & 2 & -8 & 2 \\
2 & 3 & 0 & 7 & 1 \\
3 & 4 & -1 & 11 & -8
\end{array}\right]
$$

is row equivalent to the matrix B in the previous example. The pivot columns of A are therefore also columns 1,2 , and 5 , so

$$
\left\{\left[\begin{array}{r}
1 \\
-2 \\
2 \\
3
\end{array}\right],\left[\begin{array}{r}
3 \\
-2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{r}
-9 \\
2 \\
1 \\
-8
\end{array}\right]\right\}
$$

is a basis for $\operatorname{Col} A$.

Next time: we will show that if H is a subspace of \mathbb{R}^{n} then all of its bases have the same size. The common size of these basis is the dimension of H.

