1 Last time: inverses and subspaces

To show that an $n \times n$ matrix A is invertible, all we have to do is check that (1) its columns are linearly independent or (2) its columns span \mathbb{R}^{n}. If either (1) or (2) holds, then the other property is also true.

If A is invertible then it has an inverse which is an $n \times n$ matrix A^{-1} with

$$
A A^{-1}=A^{-1} A=I_{n}=\left[\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

A subset H of \mathbb{R}^{n} is a subspace if $0 \in H$ and $u+v \in H$ and $c v \in H$ for all $u, v \in H$ and $c \in \mathbb{R}$.
A subspace is a set which contains all linear combinations of vectors which are already in the set.
Example. Examples of subspaces of \mathbb{R}^{n} :

- The set $\{0\}$ containing just the zero vector.
- The set of all scalar multiples of a single vector.
- \mathbb{R}^{n} itself.
- The span of any set of vectors in \mathbb{R}^{n}.
- The range of a linear function $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$.
- The set of vectors v with $T(v)=0$ for a linear function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$.

The union of two subspaces is not necessarily a subspace. (Why?)
The intersection of two subspaces is a subspace, however. (Why?)

Definition. To any $m \times n$ matrix A there are two corresponding subspaces of interest:

1. The column space of A is the subspace $\operatorname{Col} A \subset \mathbb{R}^{m}$ given by the span of the columns of A.
2. The null space of A is the subspace $\operatorname{Nul} A \subset \mathbb{R}^{n}$ given by the set of vectors $v \in \mathbb{R}^{n}$ with $A v=0$.

It is not obvious from these definitions, but it will turn out that each subspace of \mathbb{R}^{m} occurs as the column space of some matrix. Likewise, each subspace of \mathbb{R}^{n} occurs as the null space of some matrix.

Exercise you might want to at least think about: how would you come up with a matrix whose column space or null space is a given subspace H ? To answer this, you'll probably need the notion of a basis.

Definition. A basis of a subspace H of \mathbb{R}^{n} is a set of linearly independent vectors whose span in H.

The most important basis in linear algebra (and the only one that has a standard notation) is the standard basis of \mathbb{R}^{n} : this is the basis consisting of the vectors $e_{1}, e_{2}, \ldots, e_{n}$ where e_{i} is the vector in \mathbb{R}^{n} with 1 in row i and 0 is all other rows.

The fundamental property of subspaces and bases:
Theorem. Every subspace H of \mathbb{R}^{n} has a basis of size at most n.

Let A be an $m \times n$ matrix.

How to find a basis of $\operatorname{Nul} A$.

1. Find all solutions to $A x=0$ by row reducing A to echelon form. Recall that x_{i} is a basic variable if column i of $\operatorname{RREF}(A)$ contains a pivot position, and that otherwise x_{i} is a free variable.
2. Rewrite each basic variable in terms of the free variables, and then write

$$
x=\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{i_{1}}\left[b_{1}\right]+x_{i_{2}}\left[b_{2}\right]+\cdots+x_{i_{k}}\left[b_{k}\right]
$$

where $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}$ are the free variables and $b_{1}, b_{2}, \ldots, b_{k} \in \mathbb{R}^{n}$ are vectors whose entries do not involve any variables.
3. The vectors $b_{1}, b_{2}, \ldots, b_{k}$ then form a basis for $\operatorname{Nul} A$.

Example. Suppose $A=\left[\begin{array}{llll}1 & 2 & 5 & 8 \\ 2 & 3 & 7 & 0\end{array}\right]$.

1. Then $A \sim\left[\begin{array}{rrrr}1 & 2 & 5 & 8 \\ 0 & -1 & -3 & -16\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 0 & -1 & -24 \\ 0 & 1 & 3 & 16\end{array}\right]$ so $A x=0$ iff $\left\{\begin{array}{l}x_{1}-x_{3}-24 x_{4}=0 \\ x_{2}+3 x_{3}+16 x_{4}=0 .\end{array}\right.$
2. This means x_{1}, x_{2} are basic variables and x_{3}, x_{4} are free variables. We have $A x=0$ if and only if $x_{1}=x_{3}+24 x_{4}$ and $x_{2}-3 x_{3}-16 x_{4}$, which means

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
x_{3}+24 x_{4} \\
-3 x_{3}-16 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{r}
1 \\
-3 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
24 \\
-16 \\
0 \\
1
\end{array}\right]
$$

3. Thus $\left\{\left[\begin{array}{r}1 \\ -3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}24 \\ -16 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for $\operatorname{Nul} A$.

How to find a basis of $\operatorname{Col} A$.

1. The pivot columns of A form a basis of $\operatorname{Col} A$.

This looks simpler than the previous algorithm, but to find out which columns of A are pivot columns, we have to row reduce A to echelon form, which takes just as much work as finding a basis of $\mathrm{Nul} A$.

Example. If $A=\left[\begin{array}{llll}1 & 2 & 5 & 8 \\ 2 & 3 & 7 & 0\end{array}\right]$ then columns 1, 2 have pivots so $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]\right\}$ is a basis for $\operatorname{Col} A$.

2 Coordinate systems

Suppose H is a subspace of \mathbb{R}^{n}.
Let $b_{1}, b_{2}, \ldots, b_{k}$ be a basis of H.
Theorem. Let $v \in H$. There are unique coefficients $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$ such that

$$
c_{1} b_{1}+c_{2} b_{2}+\cdots+c_{k} b_{k}=v
$$

In other words, there is a unique vector

$$
w=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{k}
\end{array}\right] \in \mathbb{R}^{k}
$$

such that $v=B w$ where $B=\left[\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{k}\end{array}\right]$.
Proof. Since our basis spans H, there must be some coefficients with $c_{1} b_{1}+c_{2} b_{2}+\cdots+c_{k} b_{k}=v$. If these coefficients were not unique, so that we could write $c_{1}^{\prime} b_{1}+c_{2}^{\prime} b_{2}+\cdots+c_{k}^{\prime} b_{k}=v$ for some different list of numbers $c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{k}^{\prime} \in \mathbb{R}$, then we would have

$$
\begin{aligned}
0=v-v & =\left(c_{1} b_{1}+c_{2} b_{2}+\cdots+c_{k} b_{k}\right)-\left(c_{1}^{\prime} b_{1}+c_{2}^{\prime} b_{2}+\cdots+c_{k}^{\prime} b_{k}\right) \\
& =\left(c_{1}-c_{1}^{\prime}\right) v_{1}+\left(c_{2}-c_{2}^{\prime}\right) v_{2}+\cdots+\left(c_{k}-c_{k}^{\prime}\right) v_{k}
\end{aligned}
$$

Since our numbers are different, at least one of the differences $c_{i}-c_{i}^{\prime}$ must be nonzero, so what we just wrote is a nontrivial linear dependence among the vectors $b_{1}, b_{2}, \ldots, b_{k}$. But this contradicts the condition that elements of a basis be linearly independent.

Let $\mathcal{B}=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ be the list of basis vectors in some fixed order.
Given $v \in H$, define $[v]_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{k}\end{array}\right] \in \mathbb{R}^{k}$ as the unique vector with $c_{1} b_{1}+c_{2} b_{2}+\cdots+c_{k} v_{k}=v$.
We call $[v]_{\mathcal{B}}$ the coordinate vector of v in the basis \mathcal{B} or just v in the basis \mathcal{B}.

Example. If $H=\mathbb{R}^{n}$ and $\mathcal{B}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is the standard basis then $[v]_{\mathcal{B}}=v$.

Example. If $H=\mathbb{R}^{n}$ and $\mathcal{B}=\left(e_{n}, \ldots, e_{2}, e_{1}\right)$ then $[v]_{\mathcal{B}}=\left[\begin{array}{r}v_{n} \\ \vdots \\ v_{2} \\ v_{1}\end{array}\right]$.
Example. Let $b_{1}=\left[\begin{array}{l}3 \\ 6 \\ 2\end{array}\right]$ and $b_{2}=\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$ and $v=\left[\begin{array}{r}3 \\ 12 \\ 7\end{array}\right]$.

Then $\mathcal{B}=\left(b_{1}, b_{2}\right)$ is a basis for $H=\mathbb{R}$-span $\left\{b_{1}, b_{2}\right\} \subset \mathbb{R}^{3}$.

The unique $w=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] \in \mathbb{R}^{2}$ such that $\left[\begin{array}{rr}3 & -1 \\ 6 & 0 \\ 2 & 1\end{array}\right] w=\left[\begin{array}{r}3 \\ 12 \\ 7\end{array}\right]$ is found by row reduction:

$$
\left[\begin{array}{rrr}
3 & -1 & 3 \\
6 & 0 & 12 \\
2 & 1 & 7
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 0 & 2 \\
3 & -1 & 3 \\
2 & 1 & 7
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & -3 \\
0 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right] .
$$

The last matrix implies that $w_{1}=2$ and $w_{2}=3$ so $[v]_{\mathcal{B}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.

Example. If $b_{1}=e_{1}-e_{2}, b_{2}=e_{2}-e_{3}, b_{3}=e_{3}-e_{4}, \ldots, b_{n-1}=e_{n-1}-e_{n}$ and

$$
v=\left[\begin{array}{r}
v_{1} \\
v_{2} \\
\vdots \\
v_{n-1} \\
-v_{1}-v_{2}-\cdots-v_{n-1}
\end{array}\right]
$$

then $v \in H=\mathbb{R}-\operatorname{span}\left\{b_{1}, b_{2}, \ldots, b_{n-1}\right\}$ and

$$
[v]_{\mathcal{B}}=\left[\begin{array}{r}
v_{1} \\
v_{1}+v_{2} \\
v_{1}+v_{2}+v_{3} \\
v_{1}+v_{2}+v_{3}+v_{4} \\
\vdots \\
v_{1}+v_{2}+v_{3}+\cdots+v_{n-1}
\end{array}\right] \in \mathbb{R}^{n-1}
$$

The notation $[v]_{\mathcal{B}}$ gives us an easy way to check the following important property:
Theorem. Let H be a subspace of \mathbb{R}^{n}. Then all bases of H have the same number of elements.
Proof. Suppose $\mathcal{B}=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ and $\mathcal{B}^{\prime}=\left(b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{l}^{\prime}\right)$ are two ordered bases of H with $k<l$.
Then $\left[b_{1}^{\prime}\right]_{\mathcal{B}},\left[b_{2}^{\prime}\right]_{\mathcal{B}}, \ldots,\left[b_{l}^{\prime}\right]_{\mathcal{B}}$ are $l>k$ vectors in \mathbb{R}^{k}, so they must be linearly dependent.
This means there exist coefficients $c_{1}, c_{2}, \ldots, c_{l} \in \mathbb{R}$, not all zero, with

$$
c_{1}\left[b_{1}^{\prime}\right]_{\mathcal{B}}+c_{2}\left[b_{2}^{\prime}\right]_{\mathcal{B}}+\cdots+c_{l}\left[b_{l}^{\prime}\right]_{\mathcal{B}}=0
$$

But we have

$$
c_{1}\left[b_{1}^{\prime}\right]_{\mathcal{B}}+c_{2}\left[b_{2}^{\prime}\right]_{\mathcal{B}}+\cdots+c_{l}\left[b_{l}^{\prime}\right]_{\mathcal{B}}=\left[c_{1} b_{1}^{\prime}+c_{2} b_{2}^{\prime}+\cdots+c_{l} b_{l}^{\prime}\right]_{\mathcal{B}}
$$

(This is the key step; why is this true? Think about how $[v]_{\mathcal{B}}$ is defined.)
Thus $\left[c_{1} b_{1}^{\prime}+c_{2} b_{2}^{\prime}+\cdots+c_{l} b_{l}^{\prime}\right]_{\mathcal{B}}=0$, so

$$
c_{1} b_{1}^{\prime}+c_{2} b_{2}^{\prime}+\cdots+c_{l} b_{l}^{\prime}=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{k}
\end{array}\right]\left[c_{1} b_{1}^{\prime}+c_{2} b_{2}^{\prime}+\cdots+c_{l} b_{l}^{\prime}\right]_{\mathcal{B}}=0
$$

(The first equality holds since by definition $v=B[v]_{\mathcal{B}}$ for $B=\left[\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{k}\end{array}\right]$.)
Since the coefficients c_{i} are not all zero, this contradicts the fact that $b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{l}^{\prime}$ are linearly independent. This mean our original supposition that H has two bases of different sizes can't hold.

3 Dimension

Points in the subspace $H=\mathbb{R}$-span $\left\{b_{1}, b_{2}, \ldots, b_{k}\right\} \subset \mathbb{R}^{n}$, while contained in the set of vectors \mathbb{R}^{n}, are completely determined by their coordinate vectors which belong to \mathbb{R}^{k}.
The correspondence $v \mapsto[v]_{\mathcal{B}}$ is an invertible function $H \rightarrow \mathbb{R}^{k}$. We call this function an isomorphism between H and \mathbb{R}^{k} : its existence means that H "looks" the same as \mathbb{R}^{k}.
For this reason we say that a subspace H with a basis of size k is k-dimensional. More generally:

Definition. The dimension of a subspace H is the number of vectors in any basis of H.
We denote the dimension of H by $\operatorname{dim} H$. This number belongs to $\{0,1,2,3, \ldots\}$.
If $H=\{0\}$ then we define $\operatorname{dim} H=0$.
Example. We have $\operatorname{dim} \mathbb{R}^{n}=n$.
If H is the set of all vectors of the form $\left[\begin{array}{r}v_{1} \\ v_{2} \\ \vdots \\ v_{k} \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right] \in \mathbb{R}^{n}$, then H is a subspace and $\operatorname{dim} H=k$.
Note that $e_{1}, e_{2}, \ldots, e_{k}$ is a basis for H.
A line in \mathbb{R}^{2} through the origin is a 1-dimensional subspace.

Let A be an $m \times n$ matrix.
The processes we gave to construct bases of $\operatorname{Nul} A$ and $\operatorname{Col} A$ imply that:
Corollary. The dimension of $\operatorname{Nul} A$ is the number of free variables in the linear system $A x=0$.
Corollary. The dimension of $\operatorname{Col} A$ is the number of pivot columns in A.

There is a special name for the dimensional of the column space of a matrix:
Definition. The rank of a matrix A is $\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A$.

Putting everything together gives the following pair of important results.
Theorem (Rank-Nullity theorem). If A is a matrix with n columns then $\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n$.
Proof. Every column of A which is not a pivot column indexes a free variable in the system $A x=0$, so

$$
\begin{aligned}
n & =\#\{\text { pivot columns of } A\}+\#\{\text { non-pivot columns }\} \\
& =\#\{\text { pivot columns of } A\}+\#\{\text { free variables in } A x=0\} \\
& =\operatorname{dim} \operatorname{Col} A+\operatorname{dim} \operatorname{Nul} A \\
& =\operatorname{rank} A=\operatorname{dim} \operatorname{Nul} A
\end{aligned}
$$

Theorem (Basis theorem). If H is a subspace of \mathbb{R}^{n} with $\operatorname{dim} H=p$ then

1. Any set of p linearly independent vectors in H is a basis for H.
2. Any set of p vectors in H which span H is a basis for H.

Proof. Suppose we have p linearly independent vectors in H. If these vecttors do not span H, then adding a vector which is in H but not in their span would produce a set of $p+1$ linearly independent vectors in H. If this larger set still does not span H, then adding a vector from H that is not in the span gives an even larger linearly independent set of $p+2$ vectors. Continuing in this way must eventually produce a basis for H, but this basis will have more than p elements, contradicting $\operatorname{dim} H=p$.

Suppose we instead have p vectors which span H. If these vectors are not linearly independent, then one of the vectors is a linear combination of the others. Remove this vector; we then have $p-1$ vectors which span H. If these vectors are still not linearly independent, then one is a linear combination of the others and removing this vector gives a set of $p-2$ vectors which span H. Continuing in this way must eventually produce a basis for H, but this basis will have fewer than p elements, contradicting $\operatorname{dim} H=p$.

Corollary. If $H \subset \mathbb{R}^{n}$ is an n-dimensional subspace then $H=\mathbb{R}^{n}$.
Proof. If H has a basis with n elements then these elements are linearly independent, so form a basis for \mathbb{R}^{n}. Then every vector in \mathbb{R}^{n} is a linear combination of the basis vectors, so belongs to H.

Corollary. Let A be an $n \times n$ matrix. The following are equivalent:
(a) A is invertible.
(b) The columns of A form a basis for \mathbb{R}^{n}.
(c) $\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A=n$.
(d) $\operatorname{dim} \operatorname{Nul} A=0$.

Proof. We have already seen that (a) and (b) are equivalent.
(c) holds if and only if the columns of A span \mathbb{R}^{n} which is equivalent to (a).
(d) holds if and only if the columns of A are linearly independent which is equivalent to (a).

