1 Last time: introduction to determinants

Let n be a positive integer.
A permutation matrix is a square matrix whose entries are all 0 or 1 , and which has exactly one nonzero entry in each row and in each column. Let S_{n} be the set of $n \times n$ permutation matrices.

Note on terminology: If A is an $n \times n$ matrix and $X \in S_{n}$, then $A X$ has the same columns as A but in a different order: the columns of A are "permuted" by X.

Example. The six elements of S_{3} are

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Given $X \in S_{n}$ and an arbitrary $n \times n$ matrix A :

- Define $\Pi(X, A)$ as the product of the entries of A in the nonzero positions of X.
- Define $\operatorname{inv}(X)$ as the number of 2×2 submatrices of X equal to $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

To form a 2×2 submatrix of X, choose any two rows and any two columns, not necessarily adjacent or related, and then take the 4 entries determined by those rows and columns.
Note that each 2×2 submatrix of a permutation matrix is

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text { or }\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { or }\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \text { or }\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \text { or }\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \text { or }\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { or }\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Example. $\Pi\left(\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\right)=c d h$
Example. inv $\left(\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\right)=2$ and inv $\left(\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\right)=0$ and inv $\left(\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\right)=3$.

Definition. The determinant an $n \times n$ matrix A is the number given by the formula

$$
\operatorname{det} A=\sum_{X \in S_{n}} \Pi(X, A)(-1)^{\operatorname{inv}(X)}
$$

This general formula simplifies to the following expressions for $n=1,2,3$ (which you should remember):

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{l}
a
\end{array}\right]=a \\
& \operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c \\
& \operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=a(e i-f h)-b(d i-f g)+c(d h-e f) .
\end{aligned}
$$

For $n \geq 4$, our formula $\operatorname{det} A$ is a sum with at least 24 terms, and so is not easy to compute by hand. We will describe a better way of computing determinants today.

The most important properties of the determinant are described by the following theorem:

Theorem. The determinant is the unique function det : $\{n \times n$ matrices $\} \rightarrow \mathbb{R}$ with these 3 properties:
(1) $\operatorname{det} I_{n}=1$.
(2) If B is formed by switching two columns in an $n \times n$ matrix A, then $\operatorname{det} A=-\operatorname{det} B$.
(3) Suppose A, B, and C are $n \times n$ matrices with columns

$$
A=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{llll}
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right] \quad \text { and } C=\left[\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{n}
\end{array}\right] .
$$

If there is a single column i where $a_{i}=x b_{i}+y c_{i}$ for $x, y \in \mathbb{R}$ and in all other columns j we have $a_{j}=b_{j}=c_{j}$ then $\operatorname{det} A=x \operatorname{det} B+y \operatorname{det} C$.

Corollary. If A is a square matrix which is not invertible then $\operatorname{det} A=0$.

Corollary. If A is a permutation matrix then $\operatorname{det} A=(-1)^{\operatorname{inv}(A)}$.
Proof. Note that $\Pi(X, Y)=0$ if X and Y are different $n \times n$ permutation matrices, but $\Pi(X, X)=1$.

2 More properties of the determinant

Recall that A^{T} denotes the transpose of a matrix A (the matrix whose rows are the columns of A).
Lemma. If $X \in S_{n}$ then $X^{T} \in S_{n}$ and $\operatorname{inv}(X)=\operatorname{inv}\left(X^{T}\right)$.
Proof. Transposing a permutation matrix does not effect the $\#$ of 2×2 submatrices equal to $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
Corollary. If A is any square matrix then $\operatorname{det} A=\operatorname{det}\left(A^{T}\right)$.
Proof. If $X \in S_{n}$ then $\Pi(X, A)=\Pi\left(X^{T}, A^{T}\right)$, so our formula for the determinant gives

$$
\operatorname{det} A=\sum_{X \in S_{n}} \Pi(X, A)(-1)^{\operatorname{inv}(X)}=\sum_{X \in S_{n}} \Pi\left(X^{T}, A^{T}\right)(-1)^{\operatorname{inv}\left(X^{T}\right)}
$$

As X ranges over all elements of S_{n}, the transpose X^{T} also ranges over all elements of S_{n}, so the last sum is equal to $\sum_{X \in S_{n}} \Pi\left(X, A^{T}\right)(-1)^{\operatorname{inv}(X)}=\operatorname{det}\left(A^{T}\right)$.

The following lemma is a weaker form of a statement we will prove later in the lecture.
Lemma. Let A and B be $n \times n$ matrices with $\operatorname{det} A \neq 0$. Then $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$.
Proof. Define $f:\{n \times n$ matrices $\} \rightarrow \mathbb{R}$ as the function $f(M)=\frac{\operatorname{det}(A M)}{\operatorname{det} A}$.
Then f has the defining properties of the determinant, so must be equal to det since det is the unique function with these properties. In more detail:

- We have $f\left(I_{n}\right)=\frac{\operatorname{det}\left(A I_{n}\right)}{\operatorname{det} A}=\frac{\operatorname{det} A}{\operatorname{det} A}=1$.
- If M^{\prime} is given by swapping two columns in M, then $A M^{\prime}$ is given by swapping the two corresponding columns in $A M$, so $f\left(M^{\prime}\right)=\frac{\operatorname{det}\left(A M^{\prime}\right)}{\operatorname{det} A}=\frac{-\operatorname{det}(A M)}{\operatorname{det} A}=-f(M)$.
- If column i of M is x times column i of M^{\prime} plus y times column i of $M^{\prime \prime}$ and all other columns of M, M^{\prime}, and $M^{\prime \prime}$ are equal, then the same is true of $A M, A M^{\prime}$, and $A M^{\prime \prime}$ so

$$
f(M)=\frac{\operatorname{det}(A M)}{\operatorname{det} A}=\frac{x \operatorname{det}\left(A M^{\prime}\right)+y \operatorname{det}\left(A M^{\prime \prime}\right)}{\operatorname{det} A}=x f\left(M^{\prime}\right)+y f\left(M^{\prime \prime}\right)
$$

These properties uniquely characterise det, so f and det must be the same function.
Therefore $f(B)=\frac{\operatorname{det}(A B)}{\operatorname{det} A}=\operatorname{det} B$ for any $n \times n$ matrix B, so $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$.

3 Determinants of triangular and invertible matrices

An $n \times n$ matrix A is upper-triangular if all of its nonzero entries occur in positions on or above the diagonal positions $(1,1),(2,2),(3,3), \ldots,(n, n)$. Such a matrix looks like

$$
\left[\begin{array}{llll}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & *
\end{array}\right]
$$

where the $*$ entries can be any numbers (even 0).
An $n \times n$ matrix A is lower-triangular if all of its nonzero entries occur in positions on or below the diagonal positions. Such a matrix looks like

$$
\left[\begin{array}{llll}
* & 0 & 0 & 0 \\
* & * & 0 & 0 \\
* & * & * & 0 \\
* & * & * & *
\end{array}\right]
$$

where the $*$ entries can again be any numbers.
The transpose of an upper-triangular matrix is lower-triangular, and vice versa.
We say that a matrix is triangular if it is either upper- or lower-triangular.
A matrix is diagonal if it is both upper- and lower-triangular, i.e., has nonzero entries only on the diagonal:

$$
\left[\begin{array}{llll}
* & 0 & 0 & 0 \\
0 & * & 0 & 0 \\
0 & 0 & * & 0 \\
0 & 0 & 0 & *
\end{array}\right]
$$

The diagonal entries of A are the numbers that occur in positions $(1,1),(2,2),(3,3), \ldots,(n, n)$.
Proposition. If A is a triangular matrix then $\operatorname{det} A$ is the product of the diagonal entries of A.
For example, we have $\operatorname{det}\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]=a b c$.
Proof. Assume A is upper-triangular. If $X \in S_{n}$ and $X \neq I_{n}$ then at least one nonzero entry of X is in a position below the diagonal, in which case $\Pi(X, A)$ is a product of numbers which includes 0 (since all positions below the diagonal in A contain zeros) and is therefore 0 .
Hence $\operatorname{det} A=\sum_{X \in S_{n}} \Pi(X, A)(-1)^{\operatorname{inv}(X)}=\Pi\left(I_{n}, A\right)=$ the product of the diagonal entries of A.
If A is lower-triangular then the same result follows since $\operatorname{det} A=\operatorname{det}\left(A^{T}\right)$.

Lemma. If A is an $n \times n$ matrix then $\operatorname{det} A$ is a nonzero multiple of $\operatorname{det}(\operatorname{RREF}(A))$.
Proof. Suppose B is obtained from A by an elementary row operation. To prove the lemma, it is enough to show that $\operatorname{det} B$ is a nonzero multiple of $\operatorname{det} A$. There are three possibilities for B :

1. If B is formed by swapping two rows of A then $B=X A$ for a permutation matrix $X \in S_{n}$, so $\operatorname{det} B=\operatorname{det}(X A)=(\operatorname{det} X)(\operatorname{det} A)= \pm \operatorname{det} A$.
2. If B is formed by rescaling a row of A by a nonzero scalar $\lambda \in \mathbb{R}$ then $B=D A$ where D is a diagonal matrix of the form

$$
D=\left[\begin{array}{lllllll}
1 & & & & & & \\
& \ddots & & & & & \\
& & 1 & & & & \\
& & & \lambda & & & \\
& & & & 1 & & \\
& & & & & \ddots & \\
& & & & & & 1
\end{array}\right]
$$

and in this case $\operatorname{det} D=\lambda \neq 0$, so $\operatorname{det} B=\operatorname{det}(D A)=(\operatorname{det} D)(\operatorname{det} A)=\lambda \operatorname{det} A$.
3. If B is formed by adding a multiple of row i of A to row j, then $B=T A$ for a triangular matrix T whose diagonal entries are all 1 and whose only other nonzero entry appears in column i and row j, so we have $\operatorname{det} B=\operatorname{det}(T A)=(\operatorname{det} T)(\operatorname{det} A)=\operatorname{det} A$.

This shows that performing an elementary row operation to A multiplies $\operatorname{det} A$ by a nonzero number. Since we obtain $\operatorname{RREF}(A)$ by performing a sequence of row operations to A, it follows that $\operatorname{det}(\operatorname{RREF}(A))$ is a sequence of nonzero numbers times $\operatorname{det} A$.

This brings us to a famous property of the determinant.
Theorem. An $n \times n$ matrix A is an invertible if and only if $\operatorname{det} A \neq 0$.
Proof. We have already seen that if A is not invertible then $\operatorname{det} A=0$. If A is invertible then $\operatorname{RREF}(A)=I_{n}$ so $\operatorname{det} A \neq 0$ since $\operatorname{det} A$ is a nonzero multiple of $\operatorname{det}(\operatorname{RREF}(A))=\operatorname{det} I_{n}=1$.

Calculating the determinant is not a particularly efficient way of checking if a matrix is invertible. The quickest way to compute $\operatorname{det} A$ involves just as much work as it takes to row reduce A to echelon form, which would also tell us if A is invertible or not.

Now that we know that $\operatorname{det} A \neq 0$ for all invertible matrices, we can show that the determinant is a multiplicative function.

Lemma. Let A and B be $n \times n$ matrices. If A or B is not invertible then $A B$ is not invertible.
Proof. Note that $\mathrm{Col} A B \subset \mathrm{Col} A$ since if $x \in \operatorname{Col} A B$ then $x=(A B) v=A(B v)$ for some $v \in \mathbb{R}^{n}$.
Also note that Nul $B \subset \operatorname{Nul} A B$ since if $B v=0$ then $(A B) v=A(B v)=0$.
If A is not invertible then $\operatorname{Col} A$ is contained in but not equal to \mathbb{R}^{n}, so $\operatorname{Col} A B \neq \mathbb{R}^{n}$.
If B is not invertible then $\operatorname{Nul} B$ contains but is not equal to $\{0\}$, so $\operatorname{Nul} A B \neq\{0\}$.
In either case it follows that either $\operatorname{Col} A B \neq \mathbb{R}^{n}$ or $\operatorname{Nul} A B \neq\{0\}$ so $A B$ is not invertible.

Theorem. If A and B are any $n \times n$ matrices then $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$.

Proof. We already proved this in the case when $\operatorname{det} A \neq 0$.
If $\operatorname{det} A=0$, then A is not invertible, so by the previous lemma $A B$ is not invertible either, so

$$
\operatorname{det}(A B)=0=(\operatorname{det} A)(\operatorname{det} B)
$$

It is very difficult to derive this theorem directly from the formula $\operatorname{det} A=\sum_{X \in S_{n}} \Pi(X, A)(-1)^{\operatorname{inv}(X)}$. So as not to doubt this surprising property, let's try to verify it in an example.

Example. We have $\operatorname{det}\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=4-6=-2$ and $\operatorname{det}\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]=10-12=-2$.
On the other hand, $\operatorname{det}\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]\right)=\operatorname{det}\left[\begin{array}{cc}10 & 13 \\ 22 & 29\end{array}\right]=290-286=4$.

4 Computing determinants

Our proof that $\operatorname{det} A$ is a nonzero multiple of $\operatorname{det}(\operatorname{RREF}(A))$ can be turned into an effective algorithm for computing the determinant.
$\underline{\text { Algorithm to compute } \operatorname{det} A}$
Input: an $n \times n$ matrix A.

1. Start by setting $K=1$.
2. Row reduce A to an echelon form E. (It is not necessary to bring A all the way to reduced echelon form: we just need to row reduce A until we get an upper triangular matrix.) Each time you perform a row operation in this process, modify the number K as follows:
(a) When you switch two rows, multiply K by -1 .
(b) When you rescale a row by a nonzero factor λ, multiply K by λ.
(c) When you add a multiple of a row to another row, don't do anything to K.

The determinant of A is then given by $\operatorname{det} A=(\operatorname{det} E) / K$.
In words, $\operatorname{det} A$ is the product of the diagonal entries of the echelon form E divided by K.

As usual, the easiest way to understand this algorithm is through an example.
Example. Consider the matrix $A=\left[\begin{array}{rrr}1 & 3 & 5 \\ 1 & 0 & -4 \\ 2 & 4 & 6\end{array}\right]$.

To compute its determinant, we row reduce to echelon form which keeping track of the factor K :

$$
\begin{array}{rlrl}
A & =\left[\begin{array}{rrr}
1 & 3 & 5 \\
1 & 0 & -4 \\
2 & 4 & 6
\end{array}\right] & K=1 \\
& \sim\left[\begin{array}{rrr}
1 & 3 & 5 \\
0 & -3 & -9 \\
2 & 4 & 6
\end{array}\right] & \text { (we added a multiple of row one to row two) } & K=1 \\
& \sim\left[\begin{array}{rrr}
1 & 3 & 5 \\
0 & -3 & -9 \\
0 & -2 & -4
\end{array}\right] \\
& \sim\left[\begin{array}{rrr}
1 & 3 & 5 \\
0 & 1 & 3 \\
0 & -2 & -4
\end{array}\right] \quad \text { (we added a multiple of row one to row three) } & K=1 \\
& \sim\left[\begin{array}{rrr}
1 & 3 \\
0 & 1 & 3 \\
0 & 0 & 2
\end{array}\right]=E & \text { (we added a multiple of row two to row three) } & K=-1 / 3
\end{array}
$$

We then get $\operatorname{det} A=(\operatorname{det} E) / K=(1 \cdot 1 \cdot 2) /(-1 / 3)=-6$.
This agrees with our earlier for the determinant of a 3-by-3 matrix, which gives

$$
\operatorname{det} A=1(0-(-16))-3(6-(-8))+5(4-0)=16-3(14)+5(4)=16-42+20=-6
$$

$\underline{\text { Another sometimes useful algorithm to compute } \operatorname{det} A}$
Given an $n \times n$ matrix A, define $A^{(i, j)}$ as the $(n-1) \times(n-1)$ submatrix formed by removing row i and column j from A.

Example. If $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ then $A^{(1,2)}=\left[\begin{array}{ll}d & f \\ g & i\end{array}\right]$.
Theorem. If A is the $n \times n$ matrix

$$
A=\left[\begin{array}{rrrrr}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right]
$$

then

$$
\operatorname{det} A=a_{11} \operatorname{det} A^{(1,1)}-a_{12} \operatorname{det} A^{(1,2)}+a_{13} \operatorname{det} A^{(1,3)}-\cdots-(-1)^{n} a_{1 n} \operatorname{det} A^{(1, n)}
$$

and also

$$
\operatorname{det} A=a_{11} \operatorname{det} A^{(1,1)}-a_{21} \operatorname{det} A^{(2,1)}+a_{31} \operatorname{det} A^{(3,1)}-\cdots-(-1)^{n} a_{n 1} \operatorname{det} A^{(n, 1)} .
$$

Note that each $A^{(1, j)}$ or $A^{(j, 1)}$ is a square matrix smaller than A, so $\operatorname{det} A^{(1, j)}$ or $\operatorname{det} A^{(j, 1)}$ can be computed by the same formula on a smaller scale.

Proof. The second formula follows from the first formula since $\operatorname{det} A=\operatorname{det}\left(A^{T}\right)$. (Why?)
The first formula is a consequence of the formula for $\operatorname{det} A$ we derived last lecture. One needs to show

$$
-(-1)^{j} a_{1 j} \operatorname{det} A^{(1, j)}=\sum_{X \in S_{n}^{(j)}} \Pi(X, A)(-1)^{\operatorname{inv}(X)}
$$

where $S_{n}^{(j)}$ is the set of $n \times n$ permutation matrices which have a 1 in column j of the first row. Summing the left expression over $j=1,2, \ldots, n$ gives the desired formula, while summing the right expression over $j=1,2, \ldots, n$ gives $\sum_{X \in S_{n}} \Pi(X, A)(-1)^{\operatorname{inv}(X)}=\operatorname{det} A$.

Example. This result can be used to derive our formula for the determinant of a 3-by-3 matrix:
$\operatorname{det}\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=a \operatorname{det}\left[\begin{array}{cc}e & f \\ h & i\end{array}\right]-b \operatorname{det}\left[\begin{array}{cc}d & f \\ g & i\end{array}\right]+c \operatorname{det}\left[\begin{array}{cc}d & e \\ g & h\end{array}\right]=a(e f-h i)-b(d i-f g)+c(d h-e g)$.
For anything larger than a 3-by-3 matrix, it is usually faster to compute the determinant by our first algorithm using row reduction, however.

