
MATH 2121 — Linear algebra (Fall 2017) Lecture 14

1 Vector spaces

This course focuses on Rn and its subspaces.

These objects are examples of (real) vector spaces.

(There is also a notion of a complex vector space where our scalars can be complex numbers from C rather
than just R. Essentially all of the theory is the same, so for now we stick to real vector spaces which are
more closely aligned with applications.)

The definition of a general vector space is given as follows:

Definition. A vector space is a nonempty set V with two operations called vector addition and scalar
multiplication satisfying several conditions. We refer to the elements of V as vectors.

The vector addition operation for V should be a rule that takes two input vectors u, v ∈ V and produces
an output vector u+ v ∈ V such that

(a) u+ v = v + u.

(b) (u+ v) + w = u+ (v + w).

(c) There exists a unique zero vector 0 ∈ V with the property that 0 + v = v for all v ∈ V .

The scalar multiplication operation for V should be a rule that takes a scalar input c ∈ R and an input
vector v ∈ V and produces an output vector cv ∈ V such that

(a) If c = −1 then v + (−1)v = 0.

(b) c(u+ v) = cu+ cv.

(c) (c+ d)v = cv + dv for c, d ∈ R.

(d) c(dv) = (cd)v for c, d ∈ R.

(e) If c = 1 then 1v = v.

Notation: If V is a vector space and v ∈ V then we define −v = (−1)v and u− v = u+ (−v).

Example. Rn and any subspace of Rn is a vector space, with the usual operations of vector addition
and scalar multiplication.

Example. Let R∞ be the set of infinite sequences a = (a1, a2, a3, . . . ) of real numbers ai ∈ R. Define

a+ b = (a1 + b1, a2 + b2, a3 + b3, . . . ) and ca = (ca1, ca2, ca3, . . . )

for a, b ∈ R∞ and c ∈ R.

These operations make R∞ into a vector space.

The zero vector in this space is the sequence 0 = (0, 0, 0, . . . ) ∈ R∞.

It is rarely necessary to check the axioms of a vector space in detail, and not too useful to memorise the
abstract definition. If we have a set with operations that look like vector addition and scalar multiplication
for Rn, then we usually have a vector space. Moreover, it’s usually easy to identify any vector space we
encounter as a special case of a few general constructions like the following:

Example. Let X be any set. Define Map(X,R) as the set of functions f : X → R.

Given f, g ∈ Map(X,R) define f + g as the function with the formula

(f + g)(x) = f(x) + g(x) for x ∈ X.
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Given c ∈ R and f ∈ Map(X,R), define cf as the function with the formula

(cf)(x) = cf(x) for x ∈ X.

The set Map(X,R) is a vector space relative to these operations. The corresponding zero vector in
Map(X,R) is the function f(x) = 0.

In a sense which can be made precise, we have

Rn = Map({1, 2, 3, . . . , n},R).

R∞ = Map({1, 2, 3, . . . },R).

More generally, if V is any vector space then the set of functions Map(X,V ) = {f : X → V } is a vector
space for similar definitions of vector addition and scalar multiplication.

As an example of how one can use the axioms to prove properties of a general vector space, consider the
following identities which are obvious for subspaces of Rn.

Proposition. If V is a vector space then 0v = 0 and c0 = 0 for all c ∈ R and v ∈ V .

Proof. We have 0v = (0 + 0)v = 0v+ 0v so 0 = 0v− 0v = (0v+ 0v)− 0v = 0v+ (0v− 0v) = 0v+ 0 = 0v.

Similarly, c0 = c(0 + 0) = c0 + c0 so 0 = c0− c0 = (c0 + c0)− c0 = c0 + (c0− c0) = c0 + 0 = c0.

2 Subspaces, bases, and dimension

Definition. A subspace of a vector space V is a subset H containing the zero vector of V , such that if
u, v ∈ H then u+ v ∈ H and if c ∈ R and v ∈ H then cv ∈ H.

If H ⊂ V is a subspace then H is itself a vector space with the same operations of scalar multiplication
and vector addition.

Example. V is a subspace of itself and {0} ⊂ V is a subspace.

Example. R2 is technically not a subspace of R3 since R2 is not a subset of R3.

Example. Let X be any set. Let Y ⊂ X be a subset. Define H as the subset of Map(X,R) consists of
the functions f : X → R with f(y) = 0 for all y ∈ Y . Then H is a subspace.

Example. The set of all functions Map(Rn,Rm) is a vector space since Rm is a vector space. The subset
of linear functions f : Rn → Rm is a subspace of this vector space.

Let V be a vector space.

A linear combination of a finite list of vectors v1, v2, . . . , vk ∈ V is a vector of the form c1v1 + c2v2 + · · ·+
ckvk for some scalars c1, c2, . . . , ck ∈ R. A linear combination by definition only involves finitely many
vectors.

The span of a set of vectors is the set of all linear combinations that can be formed from the vectors. It
is important to note that each such linear combination can only involve finitely many vectors at a time.
The span of a set of vectors in V is a subspace of V .

Example. Let V = Map(R,R). The span of the infinite set of functions 1, x, x2, x3, · · · ∈ V is the
subspace P ⊂ H of polynomial functions. Note that each polynomial function is a linear combination of
a finite number of monomials cnx

n + cn−1x
n−1 + · · ·+ c1x+ c0.
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A finite list of vectors v1, v2, . . . , vk ∈ V is linearly independent if it is impossible to express 0 = c1v1 +
c2v2 + · · · + ckvk except when c1 = c2 = · · · = ck = 0. An infinite list of vectors is linearly independent
if every finite subset is linearly independent.

Finally, a basis of a vector space V is a subset of linearly independent vectors whose span is V . Saying
b1, b2, b3, . . . is a basis for V is the same as saying that each v ∈ V can be expressed as a uniquely linear
combination of basis elements.

When V has a basis which is finite in size, then the notions of linear combinations, span, and linear
independence work out exactly the same as our earlier definitions for vectors in Rn. When V has no
finite basis, for example in the case when V = R∞, things are more complicated. The following properties
still hold, but their proofs in general are a bit beyond the scope of this course:

Theorem. Let V be a vector space.

1. V has at least one basis.

2. Every basis of V has the same size.

3. If A is a subset of linearly independent vectors in V then V has a basis B with A ⊂ B.

4. If C is a subset of vectors in V whose span is V then V has a basis B with B ⊂ C.

As for subspaces of Rn, we define the dimension of a vector space V to be the common size of any of its
bases. Denote the dimension of V by dimV .

Corollary. If H ⊂ V is a subspace then dimH ≤ dimV , and if dimH = dimV then H = V .

Proof. This follows from the last two parts of the previous theorem.

Example. If X is a finite set then dim Map(X,R) = |X| where |X| is the size of X. A basis is given by
the functions δy : X → R for y ∈ X, defined by the formulas

δy(x) =

{
1 if x = y

0 if x 6= y.

Example. Let ei ∈ R∞ be the infinite sequence with 1 in entry i and 0 is all other entries. The sequences
e1, e2, e3, . . . are linearly independent in R∞ by essentially the same argument as used to show that the
standard basis elements of Rn are linearly independent. This set of vectors is not a basis, since its
span does not contain sequences like the constant sequence (1, 1, 1, 1, . . . ), for example. (Instead, these
sequences are a basis for the subspace of R∞ of infinite sequences whose terms are eventually zero.)

Hard problem: can you describe a basis of R∞?

The following is a more interesting example involving the space of solutions of a differential equation.
The problem of of describing all solutions to a differential equation is an important motivation for the
consideration of abstract vectors spaces (rather than just subspaces of Rn) in the first place.

Example. Let V be the subset of Map(R,R) of twice-differentiable functions f : R→ R with

f ′′ + f = 0.

Here f ′′ denotes the second derivative of f . The subset V is a subspace of Map(R,R) (check this!).

Th vector space V contains the functions cosx and sinx since (cosx)′ = − sinx and (sinx)′ = cosx.

These functions are linearly independent since if could express

a cosx+ b sinx = 0 for all x ∈ R
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then setting x = 0 would imply a = 0 and setting x = π/2 would imply b = 0.

We conclude that dimV ≥ 2. What is dimV ? Is it finite? We’ll answer this question in a moment.

Suppose U and V are vector spaces.

A function f : U → V is linear if f(u+ v) = f(u) + f(v) and f(cv) = cf(v) for all c ∈ R and u, v ∈ U .

Define range(f) = {f(x) : x ∈ U} and kernel(f) = {x ∈ U : f(x) = 0}.

Proposition. If f : U → V is linear then range(f) and kernel(f) are subspaces.

These subspaces are generalisations of the column space and null space of a matrix.

Proposition. If U, V,W are vector spaces and f : V → W and g : U → V are linear functions then
f ◦ g : U → V →W is linear, where f ◦ g(x) = f(g(x)).

If D is the subspace of twice-differentiable functions in Map(R,R) and L : D → Map(R,R) is the function
D(f) = f ′′ + f , then L is a linear map and the subspace V = {f ∈ D : f ′′ + f = 0} is our previous
example is precisely kernel(L).

To compute the dimension of this subspace, some notation is useful. Define

0! = 1.

1! = 1.

2! = 2 · 1 = 2.

3! = 3 · 2 · 1 = 6.

4! = 4 · 3 · 2 · 1 = 24.

...

n! = n(n− 1)(n− 2) · · · 3 · 2 · 1.

So that in general n! (pronounced “n factorial”) is the product of all positive integers at most n.

Now suppose we could write f ∈ V as

f(x) = a0/0! + a1x/1! + a2x
2/2! + a3x

3/3! + a4x
4/4! + . . .

for some real numbers a0, a1, a2, a3, a4, · · · ∈ R. Then

f ′(x) = a1/0! + a2x/1! + a3x
2/2! + a4x

3/3! + a5x
4/4! + . . .

and
f ′′(x) = a2/0! + a3x/1! + a4x

2/2! + a5x
3/3! + a6x

4/4! + . . .

Since f ′′ + f = 0 we have

0 = (a0 + a2)/0! + (a1 + a3)x/1! + (a2 + a4)x2/2! + (a3 + a5)x3/3! + (a4 + a6)x4/4! + . . .

this means

a0 + a2 = 0 and a1 + a3 = 0 and a2 + a4 = 0 and a3 + a5 = 0 etc.

Therefore a0 = −a2 = a4 = −a6 = a8 = . . . and a1 = −a3 = a5 = −a7 = a9 = . . . so

f(x) = a0(1− x2/2! + x4/4!− x6/6! + . . . ) + a1(x/1!− x3/3! + x5/5!− x7/7! + . . . ).

Remembering our Taylor series from calculus, this shows that

f(x) = a0 cosx+ a1 sinx.

Therefore the linearly independent functions cosx and sinx also span V , so these functions are a basis
and dimV = 2.
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