
MATH 2121 — Linear algebra (Fall 2017) Lecture 16

1 Last time: eigenvector and eigenvalues

Everywhere is this lecture, n denotes a positive integer.

Let A be an n× n matrix.

Definition. A vector v ∈ Rn is an eigenvector for A with eigenvalue λ ∈ R if v 6= 0 and Av = λv.

The set of all v ∈ Rn with Av = λv is the λ-eigenspace of A for λ. This is just the nullspace of A− λI.

Proposition. Let λ be a number. The following are equivalent:

1. There exists an eigenvector v ∈ Rn for A with eigenvalue λ.

2. The matrix A− λI is not invertible, where I = In is the n× n identity matrix.

3. det(A− λI) = 0.

4. The λ-eigenspace for A is nonzero (that is, contains a nonzero vector).

Let x be a variable. Then det(A − xI) is a polynomial in x, called the characteristic polynomial of A.
The eigenvalues of A are precisely the solutions to the equation

det(A− xI) = 0

which we call the characteristics equation for A.

Last time we proved two nontrivial theorems:

Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries. If these numbers
are d1, d2, . . . , dn then the characteristic polynomial of A is (d1 − x)(d2 − x) · · · (dn − x).

Theorem. Suppose v1, v2, . . . , vr ∈ Rn are nonzero vectors. Assume each is an eigenvector for an n× n
matrix A. Let λi be the eigenvalue corresponding to vi, so that Avi = λivi. If λ1, λ2, . . . , λr are all
distinct, meaning that λi 6= λj if i 6= j, then the vectors v1, v2, . . . vr are linearly independent.

To illustrate these results and motivate the new topics today, we undertake a somewhat lengthy example.

Example. Consider the matrix

A =

 1 5 4
0 2 0
0 0 3

 .
Since A is triangular, its characteristic polynomial is (1− x)(2− x)(3− x) and its eigenvalues are 1, 2, 3.

1-eigenspace. The eigenvectors of A with eigenvalue 1 are the nonzero elements of Nul(A− I).

A− I =

 0 5 4
1 0

2

 ∼
 0 1 0

5 4
2

 ∼
 0 1 0

0 4
2

 ∼
 0 1 0

0 1
0

 = RREF(A− I).

This shows that x ∈ Nul(A − I) if and only if x =

 x1
x2
x3

 =

 x1
0
0

 = x1

 1
0
0

, so

 1
0
0

 is a basis

for Nul(A− I). Therefore all eigenvectors of A with eigenvalue 1 are nonzero scalar multiples of

 1
0
0

.
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2-eigenspace. The eigenvectors of A with eigenvalue 2 are the nonzero elements of Nul(A− 2I).

A− 2I =

 −1 5 4
0 0

1

 ∼
 1 −5 0

0 1
0

 = RREF(A− 2I).

This shows that x ∈ Nul(A− 2I) if and only if x =

 x1
x2
x3

 =

 5x2
x2
0

 = x2

 5
1
0

, so

 5
1
0

 is a basis

for Nul(A− 2I). All eigenvectors of A with eigenvalue 2 are nonzero scalar multiples of

 5
1
0

.

3-eigenspace. The eigenvectors of A with eigenvalue 3 are the nonzero elements of Nul(A− 3I).

A− 3I =

 −2 5 4
−1 0

0 0 0

 ∼
 −2 0 4

1 0
0

 ∼
 1 0 −2

1 0
0

 = RREF(A− 3I).

This shows that x ∈ Nul(A− 3I) if and only if x =

 x1
x2
x3

 =

 2x3
0
x3

 = x3

 2
0
1

 so

 2
0
1

 is a basis

for Nul(A− 3I). All eigenvectors of A with eigenvalue 3 are nonzero scalar multiples of

 2
0
1

.

Since 1, 2, 3, are distinct, the second theorem implies that

 1
0
0

,

 5
1
0

,

 2
0
1

 are linearly independent.

Consider the matrix whose columns are given by these linearly independent vectors:

P =

 1 5 2
0 1 0
0 0 1

 .
Since the columns of P are linearly independent, P is invertible. Recall that

e1 =

 1
0
0

 and e2 =

 0
1
0

 and e3 =

 0
0
1

 .
The product Pei is the ith column of P , so

Pe1 =

 1
0
0

 and Pe2 =

 5
1
0

 and Pe3 =

 2
0
1

 .
Since Px = y means that P−1y = P−1Px = Ix = x, it follows that

P−1

 1
0
0

 = e1 and P−1

 5
1
0

 = e2 and P−1

 2
0
1

 = e3.

Combining these identities shows that
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P−1APe1 = P−1A

 1
0
0

 = P−1

 1
0
0

 = e1.

P−1APe2 = P−1A

 5
1
0

 = 2P−1

 5
1
0

 = 2e2.

P−1APe3 = P−1A

 2
0
1

 = 3P−1

 2
0
1

 = 3e3.

These calculations determine the columns of the matrix P−1AP .

If fact, we see that P−1AP = D where D is the diagonal matrix

D =
[
e1 2e2 3e3

]
=

 1 0 0
0 2 0
0 0 3

 .
This means that A = P (P−1AP )P−1 = PDP−1, i.e., 1 5 4

0 2 0
0 0 3

 =

 1 5 2
0 1 0
0 0 1

 1 0 0
0 2 0
0 0 3

 1 5 2
0 1 0
0 0 1

−1 .
One application of this decomposition: we can derive a simple formula for an arbitrary power An of A.

Recall that A0 = I, A1 = A, A2 = AA, A3 = AAA, and so on.

Lemma. For any integer n ≥ 0 we have An = (PDP−1)n = PDnP−1.

Proof. Do some small examples and convince yourself that the pattern continues:

A2 = AA = PDP−1PDP−1 = PDIDP−1 = PD2P−1

A3 = A2A = PD2P−1PDP−1 = PD2IDP−1 = PD3P−1

A4 = A3A = PD3P−1PDP−1 = PD3IDP−1 = PD4P−1

...

and so on.

Lemma. For any integer n ≥ 0 we have

Dn =

 1n 0 0
0 2n 0
0 0 3n

 =

 1 0 0
0 2n 0
0 0 3n

 .
Proof. This is true since to multiply diagonal matrices we just multiply the entries in the corresponding
diagonal positions:

x1
x2

. . .

xk



y1

y2
. . .

yk

 =


x1y1

x2y2
. . .

xkyk

 .
Therefore to evaluate Dn = DD · · ·D, we just raise each diagonal entry to the nth power.
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Finally, by the usual algorithm we can compute P−1 =

 1 −5 −2
1 0

1

.

(I’m skipping the details — check that this is the correct inverse!)

Putting everything together gives the identity

An = PDnP−1 =

 1 5 2
0 1 0
0 0 1

 1 0 0
0 2n 0
0 0 3n

 1 −5 −2
1 0

1


=

 1 5 · 2n 2 · 3n
0 2n 0
0 0 3n

 1 −5 −2
1 0

1

 =

 1 5(2n − 1) 2(3n − 1)
0 2n 0
0 0 3n

 .
We’ve done all these calculations for their own sake as a means of illustrating some key concepts. But
these calculations would also come up in the solution of the following discrete dynamical system. Suppose
a0, a1, a2, . . . , b0, b1, b2, . . . , and c0, c1, c2, . . . are sequences of numbers. For each integer n ≥ 1, suppose

an = an−1 + 5bn−1 + 4cn−1 and bn = 2bn−1 and cn = 3cn−1. (*)

How could we find a formula for an, bn, and cn in terms of n and the sequences’ initial values a0, b0, c0?
Note that (*) is equivalent to an

bn
cn

 =

 1 5 4
0 2 0
0 0 3

 an−1
bn−1
cn−1

 = A

 an−1
bn−1
cn−1

 = A2

 an−2
bn−2
cn−2

 = · · · = An

 a0
b0
c0

 .
Thus, our formula for An gives

an = a0 + 5(2n − 1)b0 + 2(3n − 1)c0 and bn = 2nb0 and cn = 3nc0.

If a0 = b0 = c0 = 1 then a10 = 123212 and b10 = 1024 and c10 = 59049. Moreover,

lim
n→∞

an
3n

= lim
n→∞

a0 + 5(2n − 1)b0 + 2(3n − 1)c0
3n

= 2c0.

2 Similar matrices

Definition. Two n× n matrices X and Y are similar if there exists an invertible n× n matrix P with
X = PY P−1. In this case observe that Y = P−1PY P−1P = P−1XP . If X and Y are similar, then we
say that “X is similar to Y ” and “Y is similar to X.” (Each statement implies the other.)

In the previous example we showed that A =

 1 5 4
0 2 0
0 0 3

 and D =

 1 0 0
0 2 0
0 0 3

 are similar matrices.

Proposition. An n× n matrix A is always similar to itself.

Proof. Since I = I−1 we have A = PAP−1 for P = I.

Proposition. Suppose A,B,C are n× n matrices. Assume A and B are similar. Assume B and C are
also similar. Then A and C are similar.
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Proof. If A = PBP−1 and B = QCQ−1 where P,Q are invertible n× n matrices, then

A = PQCQ−1P−1 = (PQ)C(PQ)−1 = RCR−1

for the invertible matrix R = PQ.

Theorem. If A and B are similar n×n matrices then A and B have the same characteristic polynomial
and so have the same eigenvalues.

Proof. We just need to remember that det(XY ) = det(X) det(Y ) and det(I) = 1.

If A = PBP−1 then P (A− xI)P−1 = PA− xP )P−1 = PAP−1 − xPP−1 = B − xI.

Therefore if A = PBP−1 then

det(B − xI) = det(P (A− xI)P−1) = det(P ) det(A− xI) det(P−1).

But note that det(P ) det(P−1 = det(PP−1 = det(I) = 1, so det(B − xI) = det(A− xI).

Caution. Matrices may have the same eigenvalues but not be similar.

The implication goes in one direction only:

similar ⇒ same eigenvalues.

For example, the matrices

A =

[
2 0
0 2

]
and B =

[
2 1
0 2

]
both have eigenvalues 2, 2 but are not similar.

Since A = 2I we have PAP−1 = 2PIP−1 = 2PP−1 = 2I = A 6= B for all invertible matrices P .

Caution. Row equivalence of matrices 6= similarity of matrices.

Row operations usually change eigenvalues, whereas similar matrices always have the same eignenvalues.

Definition. A square matrix X is diagonalisable (or diagonalizable) if X is similar to a diagonal matrix,
i.e., there exists a diagonal matrix

D =


λ1

λ2
. . .

λn


and an invertible matrix P such that X = PDP−1.

In our long example in the last section, we saw that A =

 1 5 4
0 2 0
0 0 3

 is diagonalisable.

Theorem. An n × n matrix A is diagonalisable if and only if the set of eigenvectors of A spans all of
Rn, or equivalently contains a subset of n linearly independent vectors.

More precisely, suppose D is an n × n diagonal matrix with diagonal entries λ1, λ2, . . . , λn and P is an
n × n invertible matrix with columns v1, v2, . . . , vn. Then A = PDP−1 if and only if λ1, λ2, . . . , λn are
the eigenvalues of A and v1, v2, . . . , vn are eigenvectors of A such that Avi = λivi for i = 1, 2, . . . , n.
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Proof. We have

D =


λ1

λ2
. . .

λn

 and P =
[
v1 v2 · · · vn

]
.

Then Pei = vi so P−1vi =i and Dei = λiei, so

PDP−1vi = PDei = λiPei = λivi

for each i = 1, 2, . . . , n.

Therefore if A = PDP−1 then v1, v2, . . . , vn are eigenvectors for A with corresponding eigenvalues
λ1, λ2, . . . , λn. In this case, as P is invertible, the columns v1, v2, . . . , vn must be linearly independent,
so A has n linearly independent eigenvectors.

Conversely, supposeA has n linearly independent eigenvectors v1, v2, . . . , vn with eigenvalues λ1, λ2, . . . , λn.
Define

D =


λ1

λ2
. . .

λn

 and P =
[
v1 v2 · · · vn

]

as before. Since Pei = vi and P−1vi = ei, we have

P−1APei = P−1Avi = P−1(λivi) = λiP
−1vi = λiei.

This calculates the ith column of P−1AP . Since λiei is also the i column of the diagonal matrix D, we
deduce that P−1AP = D. Therefore A = P (P−1AP )P−1 = PDP−1 is diagonalisable.

Not every matrix is diagonalisable. It takes some work to decide if a given matrix is diagonalisable. Here
is one easy criterion, which is sufficient but not necessary:

Corollary. An n× n matrix with n distinct eigenvalues is diagonalisable.

Proof. Suppose A has n distinct eigenvalues. By the theorem last time, any choice of eigenvectors for
A corresponding to these eigenvalues will be linearly independent, so A will have n linearly independent
eigenvectors.

Example. The matrix A =

 5 −8 1
0 0 7
0 0 −2

 is triangular so has eigenvalues 5, 0,−2.

These are distinct numbers, so A is diagonalisable.

Next time: how to “diagonalise” (that is, find P such that A = PDP−1) a diagonalisable matrix.
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