1 Last time: eigenvector and eigenvalues

Everywhere is this lecture, n denotes a positive integer.
Let A be an $n \times n$ matrix.
Definition. A vector $v \in \mathbb{R}^{n}$ is an eigenvector for A with eigenvalue $\lambda \in \mathbb{R}$ if $v \neq 0$ and $A v=\lambda v$.
The set of all $v \in \mathbb{R}^{n}$ with $A v=\lambda v$ is the λ-eigenspace of A for λ. This is just the nullspace of $A-\lambda I$.
Proposition. Let λ be a number. The following are equivalent:

1. There exists an eigenvector $v \in \mathbb{R}^{n}$ for A with eigenvalue λ.
2. The matrix $A-\lambda I$ is not invertible, where $I=I_{n}$ is the $n \times n$ identity matrix.
3. $\operatorname{det}(A-\lambda I)=0$.
4. The λ-eigenspace for A is nonzero (that is, contains a nonzero vector).

Let x be a variable. Then $\operatorname{det}(A-x I)$ is a polynomial in x, called the characteristic polynomial of A. The eigenvalues of A are precisely the solutions to the equation

$$
\operatorname{det}(A-x I)=0
$$

which we call the characteristics equation for A.

Last time we proved two nontrivial theorems:
Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries. If these numbers are $d_{1}, d_{2}, \ldots, d_{n}$ then the characteristic polynomial of A is $\left(d_{1}-x\right)\left(d_{2}-x\right) \cdots\left(d_{n}-x\right)$.

Theorem. Suppose $v_{1}, v_{2}, \ldots, v_{r} \in \mathbb{R}^{n}$ are nonzero vectors. Assume each is an eigenvector for an $n \times n$ $\operatorname{matrix} A$. Let λ_{i} be the eigenvalue corresponding to v_{i}, so that $A v_{i}=\lambda_{i} v_{i}$. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ are all distinct, meaning that $\lambda_{i} \neq \lambda_{j}$ if $i \neq j$, then the vectors $v_{1}, v_{2}, \ldots v_{r}$ are linearly independent.

To illustrate these results and motivate the new topics today, we undertake a somewhat lengthy example.
Example. Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 5 & 4 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Since A is triangular, its characteristic polynomial is $(1-x)(2-x)(3-x)$ and its eigenvalues are $1,2,3$.

1-eigenspace. The eigenvectors of A with eigenvalue 1 are the nonzero elements of $\operatorname{Nul}(A-I)$.

$$
A-I=\left[\begin{array}{lll}
0 & 5 & 4 \\
& 1 & 0 \\
& & 2
\end{array}\right] \sim\left[\begin{array}{lll}
0 & 1 & 0 \\
& 5 & 4 \\
& & 2
\end{array}\right] \sim\left[\begin{array}{lll}
0 & 1 & 0 \\
& 0 & 4 \\
& & 2
\end{array}\right] \sim\left[\begin{array}{lll}
0 & 1 & 0 \\
& 0 & 1 \\
& & 0
\end{array}\right]=\operatorname{RREF}(A-I)
$$

This shows that $x \in \operatorname{Nul}(A-I)$ if and only if $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ 0 \\ 0\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, so $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is a basis for $\operatorname{Nul}(A-I)$. Therefore all eigenvectors of A with eigenvalue 1 are nonzero scalar multiples of $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.

2-eigenspace. The eigenvectors of A with eigenvalue 2 are the nonzero elements of $\operatorname{Nul}(A-2 I)$.

$$
A-2 I=\left[\begin{array}{lll}
-1 & 5 & 4 \\
& 0 & 0 \\
& & 1
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -5 & 0 \\
& 0 & 1 \\
& & 0
\end{array}\right]=\operatorname{RREF}(A-2 I)
$$

This shows that $x \in \operatorname{Nul}(A-2 I)$ if and only if $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}5 x_{2} \\ x_{2} \\ 0\end{array}\right]=x_{2}\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right]$, so $\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right]$ is a basis for $\operatorname{Nul}(A-2 I)$. All eigenvectors of A with eigenvalue 2 are nonzero scalar multiples of $\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right]$.

3-eigenspace. The eigenvectors of A with eigenvalue 3 are the nonzero elements of $\operatorname{Nul}(A-3 I)$.

$$
A-3 I=\left[\begin{array}{rrr}
-2 & 5 & 4 \\
& -1 & 0 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
-2 & 0 & 4 \\
& 1 & 0 \\
& & 0
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 0 & -2 \\
& 1 & 0 \\
& & 0
\end{array}\right]=\operatorname{RREF}(A-3 I)
$$

This shows that $x \in \operatorname{Nul}(A-3 I)$ if and only if $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}2 x_{3} \\ 0 \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$ so $\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$ is a basis for $\operatorname{Nul}(A-3 I)$. All eigenvectors of A with eigenvalue 3 are nonzero scalar multiples of $\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$.

Since $1,2,3$, are distinct, the second theorem implies that $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$ are linearly independent.

Consider the matrix whose columns are given by these linearly independent vectors:

$$
P=\left[\begin{array}{lll}
1 & 5 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Since the columns of P are linearly independent, P is invertible. Recall that

$$
e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \text { and } \quad e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

The product $P e_{i}$ is the i th column of P, so

$$
P e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \text { and } \quad P e_{2}=\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad P e_{3}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

Since $P x=y$ means that $P^{-1} y=P^{-1} P x=I x=x$, it follows that

$$
P^{-1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=e_{1} \quad \text { and } \quad P^{-1}\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]=e_{2} \quad \text { and } \quad P^{-1}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]=e_{3}
$$

Combining these identities shows that

$$
\begin{aligned}
& P^{-1} A P e_{1}=P^{-1} A\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=P^{-1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=e_{1} . \\
& P^{-1} A P e_{2}=P^{-1} A\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]=2 P^{-1}\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]=2 e_{2} . \\
& P^{-1} A P e_{3}=P^{-1} A\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]=3 P^{-1}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]=3 e_{3} .
\end{aligned}
$$

These calculations determine the columns of the matrix $P^{-1} A P$.
If fact, we see that $P^{-1} A P=D$ where D is the diagonal matrix

$$
D=\left[\begin{array}{lll}
e_{1} & 2 e_{2} & 3 e_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

This means that $A=P\left(P^{-1} A P\right) P^{-1}=P D P^{-1}$, i.e.,

$$
\left[\begin{array}{lll}
1 & 5 & 4 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 5 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 5 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]^{-1}
$$

One application of this decomposition: we can derive a simple formula for an arbitrary power A^{n} of A.
Recall that $A^{0}=I, A^{1}=A, A^{2}=A A, A^{3}=A A A$, and so on.
Lemma. For any integer $n \geq 0$ we have $A^{n}=\left(P D P^{-1}\right)^{n}=P D^{n} P^{-1}$.
Proof. Do some small examples and convince yourself that the pattern continues:

$$
\begin{aligned}
& A^{2}=A A=P D P^{-1} P D P^{-1}=P D I D P^{-1}=P D^{2} P^{-1} \\
& A^{3}=A^{2} A=P D^{2} P^{-1} P D P^{-1}=P D^{2} I D P^{-1}=P D^{3} P^{-1} \\
& A^{4}=A^{3} A=P D^{3} P^{-1} P D P^{-1}=P D^{3} I D P^{-1}=P D^{4} P^{-1}
\end{aligned}
$$

and so on.

Lemma. For any integer $n \geq 0$ we have

$$
D^{n}=\left[\begin{array}{rrr}
1^{n} & 0 & 0 \\
0 & 2^{n} & 0 \\
0 & 0 & 3^{n}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 2^{n} & 0 \\
0 & 0 & 3^{n}
\end{array}\right]
$$

Proof. This is true since to multiply diagonal matrices we just multiply the entries in the corresponding diagonal positions:

$$
\left[\begin{array}{llll}
x_{1} & & & \\
& x_{2} & & \\
& & \ddots & \\
& & & x_{k}
\end{array}\right]\left[\begin{array}{llll}
y_{1} & & & \\
& y_{2} & & \\
& & \ddots & \\
& & & y_{k}
\end{array}\right]=\left[\begin{array}{llll}
x_{1} y_{1} & & & \\
& x_{2} y_{2} & & \\
& & \ddots & \\
& & & x_{k} y_{k}
\end{array}\right]
$$

Therefore to evaluate $D^{n}=D D \cdots D$, we just raise each diagonal entry to the nth power.

Finally, by the usual algorithm we can compute $P^{-1}=\left[\begin{array}{rrr}1 & -5 & -2 \\ & 1 & 0 \\ & & 1\end{array}\right]$.
(I'm skipping the details - check that this is the correct inverse!)
Putting everything together gives the identity

$$
\begin{aligned}
A^{n}=P D^{n} P^{-1} & =\left[\begin{array}{lll}
1 & 5 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 2^{n} & 0 \\
0 & 0 & 3^{n}
\end{array}\right]\left[\begin{array}{rrr}
1 & -5 & -2 \\
& 1 & 0 \\
& & 1
\end{array}\right] \\
& =\left[\begin{array}{rrr}
1 & 5 \cdot 2^{n} & 2 \cdot 3^{n} \\
0 & 2^{n} & 0 \\
0 & 0 & 3^{n}
\end{array}\right]\left[\begin{array}{rrr}
1 & -5 & -2 \\
& 1 & 0 \\
& & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 5\left(2^{n}-1\right) & 2\left(3^{n}-1\right) \\
0 & 2^{n} & 0 \\
0 & 0 & 3^{n}
\end{array}\right] .
\end{aligned}
$$

We've done all these calculations for their own sake as a means of illustrating some key concepts. But these calculations would also come up in the solution of the following discrete dynamical system. Suppose $a_{0}, a_{1}, a_{2}, \ldots, b_{0}, b_{1}, b_{2}, \ldots$, and $c_{0}, c_{1}, c_{2}, \ldots$ are sequences of numbers. For each integer $n \geq 1$, suppose

$$
\begin{equation*}
a_{n}=a_{n-1}+5 b_{n-1}+4 c_{n-1} \quad \text { and } \quad b_{n}=2 b_{n-1} \quad \text { and } \quad c_{n}=3 c_{n-1} \tag{*}
\end{equation*}
$$

How could we find a formula for a_{n}, b_{n}, and c_{n} in terms of n and the sequences' initial values a_{0}, b_{0}, c_{0} ? Note that $\left({ }^{*}\right)$ is equivalent to

$$
\left[\begin{array}{c}
a_{n} \\
b_{n} \\
c_{n}
\end{array}\right]=\left[\begin{array}{lll}
1 & 5 & 4 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
a_{n-1} \\
b_{n-1} \\
c_{n-1}
\end{array}\right]=A\left[\begin{array}{l}
a_{n-1} \\
b_{n-1} \\
c_{n-1}
\end{array}\right]=A^{2}\left[\begin{array}{c}
a_{n-2} \\
b_{n-2} \\
c_{n-2}
\end{array}\right]=\cdots=A^{n}\left[\begin{array}{c}
a_{0} \\
b_{0} \\
c_{0}
\end{array}\right]
$$

Thus, our formula for A^{n} gives

$$
a_{n}=a_{0}+5\left(2^{n}-1\right) b_{0}+2\left(3^{n}-1\right) c_{0} \quad \text { and } \quad b_{n}=2^{n} b_{0} \quad \text { and } \quad c_{n}=3^{n} c_{0}
$$

If $a_{0}=b_{0}=c_{0}=1$ then $a_{10}=123212$ and $b_{10}=1024$ and $c_{10}=59049$. Moreover,

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{3^{n}}=\lim _{n \rightarrow \infty} \frac{a_{0}+5\left(2^{n}-1\right) b_{0}+2\left(3^{n}-1\right) c_{0}}{3^{n}}=2 c_{0}
$$

2 Similar matrices

Definition. Two $n \times n$ matrices X and Y are similar if there exists an invertible $n \times n$ matrix P with $X=P Y P^{-1}$. In this case observe that $Y=P^{-1} P Y P^{-1} P=P^{-1} X P$. If X and Y are similar, then we say that " X is similar to Y " and " Y is similar to X." (Each statement implies the other.)

In the previous example we showed that $A=\left[\begin{array}{lll}1 & 5 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ and $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ are similar matrices.

Proposition. An $n \times n$ matrix A is always similar to itself.
Proof. Since $I=I^{-1}$ we have $A=P A P^{-1}$ for $P=I$.

Proposition. Suppose A, B, C are $n \times n$ matrices. Assume A and B are similar. Assume B and C are also similar. Then A and C are similar.

Proof. If $A=P B P^{-1}$ and $B=Q C Q^{-1}$ where P, Q are invertible $n \times n$ matrices, then

$$
A=P Q C Q^{-1} P^{-1}=(P Q) C(P Q)^{-1}=R C R^{-1}
$$

for the invertible matrix $R=P Q$.

Theorem. If A and B are similar $n \times n$ matrices then A and B have the same characteristic polynomial and so have the same eigenvalues.

Proof. We just need to remember that $\operatorname{det}(X Y)=\operatorname{det}(X) \operatorname{det}(Y)$ and $\operatorname{det}(I)=1$.
If $A=P B P^{-1}$ then $\left.P(A-x I) P^{-1}=P A-x P\right) P^{-1}=P A P^{-1}-x P P^{-1}=B-x I$.
Therefore if $A=P B P^{-1}$ then

$$
\operatorname{det}(B-x I)=\operatorname{det}\left(P(A-x I) P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(A-x I) \operatorname{det}\left(P^{-1}\right)
$$

But note that $\operatorname{det}(P) \operatorname{det}\left(P^{-1}=\operatorname{det}\left(P P^{-1}=\operatorname{det}(I)=1\right.\right.$, so $\operatorname{det}(B-x I)=\operatorname{det}(A-x I)$.

Caution. Matrices may have the same eigenvalues but not be similar.
The implication goes in one direction only:

$$
\text { similar } \quad \Rightarrow \quad \text { same eigenvalues. }
$$

For example, the matrices

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

both have eigenvalues 2,2 but are not similar.
Since $A=2 I$ we have $P A P^{-1}=2 P I P^{-1}=2 P P^{-1}=2 I=A \neq B$ for all invertible matrices P.

Caution. Row equivalence of matrices \neq similarity of matrices.
Row operations usually change eigenvalues, whereas similar matrices always have the same eignenvalues.

Definition. A square matrix X is diagonalisable (or diagonalizable) if X is similar to a diagonal matrix, i.e., there exists a diagonal matrix

$$
D=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]
$$

and an invertible matrix P such that $X=P D P^{-1}$.
In our long example in the last section, we saw that $A=\left[\begin{array}{lll}1 & 5 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ is diagonalisable.
Theorem. An $n \times n$ matrix A is diagonalisable if and only if the set of eigenvectors of A spans all of \mathbb{R}^{n}, or equivalently contains a subset of n linearly independent vectors.
More precisely, suppose D is an $n \times n$ diagonal matrix with diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and P is an $n \times n$ invertible matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$. Then $A=P D P^{-1}$ if and only if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of A and $v_{1}, v_{2}, \ldots, v_{n}$ are eigenvectors of A such that $A v_{i}=\lambda_{i} v_{i}$ for $i=1,2, \ldots, n$.

Proof. We have

$$
D=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right] .
$$

Then $P e_{i}=v_{i}$ so $P^{-1} v_{i}={ }_{i}$ and $D e_{i}=\lambda_{i} e_{i}$, so

$$
P D P^{-1} v_{i}=P D e_{i}=\lambda_{i} P e_{i}=\lambda_{i} v_{i}
$$

for each $i=1,2, \ldots, n$.
Therefore if $A=P D P^{-1}$ then $v_{1}, v_{2}, \ldots, v_{n}$ are eigenvectors for A with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. In this case, as P is invertible, the columns $v_{1}, v_{2}, \ldots, v_{n}$ must be linearly independent, so A has n linearly independent eigenvectors.

Conversely, suppose A has n linearly independent eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$ with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Define

$$
D=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]
$$

as before. Since $P e_{i}=v_{i}$ and $P^{-1} v_{i}=e_{i}$, we have

$$
P^{-1} A P e_{i}=P^{-1} A v_{i}=P^{-1}\left(\lambda_{i} v_{i}\right)=\lambda_{i} P^{-1} v_{i}=\lambda_{i} e_{i}
$$

This calculates the i th column of $P^{-1} A P$. Since $\lambda_{i} e_{i}$ is also the i column of the diagonal matrix D, we deduce that $P^{-1} A P=D$. Therefore $A=P\left(P^{-1} A P\right) P^{-1}=P D P^{-1}$ is diagonalisable.

Not every matrix is diagonalisable. It takes some work to decide if a given matrix is diagonalisable. Here is one easy criterion, which is sufficient but not necessary:

Corollary. An $n \times n$ matrix with n distinct eigenvalues is diagonalisable.
Proof. Suppose A has n distinct eigenvalues. By the theorem last time, any choice of eigenvectors for A corresponding to these eigenvalues will be linearly independent, so A will have n linearly independent eigenvectors.

Example. The matrix $A=\left[\begin{array}{rrr}5 & -8 & 1 \\ 0 & 0 & 7 \\ 0 & 0 & -2\end{array}\right]$ is triangular so has eigenvalues $5,0,-2$.
These are distinct numbers, so A is diagonalisable.

Next time: how to "diagonalise" (that is, find P such that $A=P D P^{-1}$) a diagonalisable matrix.

