1 Last time: similar and diagonalisable matrices

Let n be a positive integer. Suppose A is an $n \times n$ matrix, $v \in \mathbb{R}^{n}$, and $\lambda \in \mathbb{R}$.
Remember that v an eigenvector for A with eigenvalue λ if $v \neq 0$ and $A v=\lambda v$, or equivalently if v is a nonzero element of $\operatorname{Nul}(A-\lambda I)$. The number λ is an eigenvalue of A if there exists some eigenvector with this eigenvalue.

If the nullspace $\operatorname{Nul}(A-\lambda I)$ is nonzero, then it is called the λ-eigenspace of A.
The eigenvalues of A are the solutions to the polynomial equation $\operatorname{det}(A-x I)=0$.

Important fact. Any set of eigenvectors of A with all distinct eigenvalues is linearly independent.

Two $n \times n$ matrices A and B are similar if there is an invertible $n \times n$ matrix P such that $A=P B P^{-1}$. Similar matrices have the same eigenvalues but usually different eigenvectors.

Example. The matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$ is similar to $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right] A\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]^{-1}=\left[\begin{array}{lll}9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1\end{array}\right]$.
A matrix is diagonal if all of its nonzero entries appear in diagonal positions $(1,1),(2,2), \ldots$, or (n, n).
A matrix A is diagonalisable if it is similar to a diagonal matrix.
In other words, A is diagonalisable if we can write $A=P D P^{-1}$ where

$$
D=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]
$$

is a diagonal matrix. In this case $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of A are if $P=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ then $A v_{i}=\lambda_{i} v_{i}$ for each $i=1,2, \ldots, n$, i.e., the columns of P are a basis for \mathbb{R}^{n} of eigenvectors of A.

We proved these results last time:
Theorem. An $n \times n$ matrix A is diagonalisable if and only if \mathbb{R}^{n} has a basis whose elements are all eigenvectors of A.

Theorem. If A is an $n \times n$ matrix with n distinct eigenvalues then A is diagonalisable.

2 Diagonalisation and Fibonacci numbers

Knowing how to diagonalise matrices will let us prove an exact formula for the Fibonacci numbers.
The sequence f_{n} of Fibonacci numbers starts as

$$
f_{0}=0, \quad f_{1}=1, \quad f_{2}=1, \quad f_{3}=2, \quad f_{4}=3, \quad f_{5}=5, \quad f_{6}=8, \quad f_{7}=13 \quad \ldots
$$

For $n \geq 2$, the sequence is defined by $f_{n}=f_{n-2}+f_{n-1}$.
We have $f_{10}=55$ and $f_{100}=354224848179261915075$.
The sequence grows exponentially. Write log for the natural logarithm. Then

$$
\begin{aligned}
& \frac{1}{10} \log f_{10}=0.40073 \ldots \\
& \frac{1}{100} \log f_{100}=0.47316 \ldots \\
& \frac{1}{1000} \log f_{1000}=0.48040 \ldots \\
& \frac{1}{10000} \log f_{10000}=0.481131 \ldots \\
& \frac{1}{1000000} \log f_{1000000}=0.481211 \ldots
\end{aligned}
$$

These numbers seem to be converging to something.
In fact, if we set $x=0.481211 \ldots$ and $e=2.718 \ldots($ so that $\log e=1)$ then $\left(2 e^{x}-1\right)^{2}=4.999995 \cdots \approx 5$.
Can we explain this?

Define $a_{n}=f_{2 n}$ and $b_{n}=f_{2 n+1}$ for $n \geq 0$.
If $n>0$ then

$$
a_{n}=f_{2 n}=f_{2 n-2}+f_{2 n-1}=a_{n-1}+b_{n-1}
$$

Similarly, we compute that if $n>0$ then

$$
b_{n}=f_{2 n+1}=f_{2 n-1}+f_{2 n}=b_{n-1}+a_{n}=a_{n-1}+2 b_{n-1}
$$

We can put these two equations together into one matrix equation:

$$
\left[\begin{array}{c}
a_{n} \\
b_{n}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
a_{n-1} \\
b_{n-1}
\end{array}\right]
$$

Since this holds for all $n>0$, we have

$$
\left[\begin{array}{c}
a_{n} \\
b_{n}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
a_{n-1} \\
b_{n-1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]^{2}\left[\begin{array}{c}
a_{n-2} \\
b_{n-2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]^{3}\left[\begin{array}{c}
a_{n-3} \\
b_{n-3}
\end{array}\right]=\cdots=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]^{n}\left[\begin{array}{c}
a_{0} \\
b_{0}
\end{array}\right]
$$

In other words,

$$
\left[\begin{array}{c}
a_{n} \\
b_{n}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]^{n}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Thus if we could get an exact formula for the matrix

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]^{n}
$$

then we could derive a formula for $a_{n}=f_{2 n}$ and $b_{n}=f_{2 n+1}$, which would determine f_{n} for all n.
The best way we know to compute A^{n} for large values of n is to diagonalise A, that is, to find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$, since then $A^{n}=P D^{n} P^{-1}$. Note, however, that at the outset it's not clear if this is even possible.
Define the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

To determine if A is diagonalisable, our first step is to compute its eigenvalues, which are the roots of the polynomial

$$
\operatorname{det}(A-x I)=\operatorname{det}\left[\begin{array}{rr}
1-x & 1 \\
1 & 2-x
\end{array}\right]=(1-x)(2-x)-1=x^{2}-3 x+1
$$

By the quadratic formula, the values of x where this polynomial is zero are

$$
\alpha=\frac{3+\sqrt{5}}{2} \quad \text { and } \quad \beta=\frac{3-\sqrt{5}}{2} .
$$

These numbers are the eigenvalues of A.
Since $\alpha-\beta=\sqrt{5} \neq 0$, these eigenvalues are distinct so A is diagonalisable. Note that

$$
\alpha \beta=(3-\sqrt{5})(3+\sqrt{5}) / 4=(9-5) / 4=1 .
$$

Our next step is to find bases for the α - and β-eigenspaces of A.
To find an eigenvector for A with eigenvalue α, we row reduce
$A-\alpha I=\left[\begin{array}{rr}1-\alpha & 1 \\ 1 & 2-\alpha\end{array}\right] \sim\left[\begin{array}{rr}1 & 2-\alpha \\ 1-\alpha & 1\end{array}\right] \sim\left[\begin{array}{rr}1 & 2-\alpha \\ 0 & 1-(2-\alpha)(1-\alpha)\end{array}\right]=\left[\begin{array}{rr}1 & 2-\alpha \\ 0 & 0\end{array}\right]=\operatorname{RREF}(A-\alpha I)$.
The second equality holds since

$$
(2-\alpha)(1-\alpha)=(1-\sqrt{5})(-1-\sqrt{5}) / 4=(-1+5) / 4=1
$$

This computation show that $x \in \operatorname{Nul}(A-\alpha I)$ if and only if $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ where $x_{1}+(2-\alpha) x_{2}=0$, so

$$
v=\left[\begin{array}{r}
\alpha-2 \\
1
\end{array}\right]
$$

is an eigenvector for A with $A v=\alpha v$.

To find an eigenvector for A with eigenvalue β, we similarly row reduce

$$
A-\beta I=\left[\begin{array}{rr}
1-\beta & 1 \\
1 & 2-\beta
\end{array}\right] \sim\left[\begin{array}{rr}
1 & 2-\beta \\
1-\beta & 1
\end{array}\right] \sim\left[\begin{array}{lr}
1 & 2-\beta \\
0 & 1-(2-\beta)(1-\beta)
\end{array}\right]=\left[\begin{array}{rr}
1 & 2-\beta \\
0 & 0
\end{array}\right]=\operatorname{RREF}(A-\beta I)
$$

The second equality holds since also $(2-\beta)(1-\beta)=1$.
By algebra identical to the previous case, we deduce that

$$
w=\left[\begin{array}{r}
\beta-2 \\
1
\end{array}\right]
$$

is an eigenvector for A with $A v=\beta v$.

This means that for

$$
P=\left[\begin{array}{ll}
v & w
\end{array}\right]=\left[\begin{array}{rr}
\alpha-2 & \beta-2 \\
1 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right]
$$

we have $A=P D P^{-1}$. Since P is 2×2 with $\operatorname{det} P=(\alpha-2)-(\beta-2)=\alpha-\beta=\sqrt{5}$, we have

$$
D^{n}=\left[\begin{array}{rr}
\alpha^{n} & 0 \\
0 & \beta^{n}
\end{array}\right] \quad \text { and } \quad P^{-1}=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
1 & 2-\beta \\
-1 & \alpha-2
\end{array}\right]
$$

We therefore have

$$
\left[\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right]=A^{n}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=P D^{n} P^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
\alpha-2 & \beta-2 \\
1 & 1
\end{array}\right]\left[\begin{array}{rr}
\alpha^{n} & 0 \\
0 & \beta^{n}
\end{array}\right]\left[\begin{array}{rr}
1 & 2-\beta \\
-1 & \alpha-2
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Before computing anything further, it helps to make a few simplifications. Note that

$$
\alpha-2=\frac{-1+\sqrt{5}}{2}=1-\beta \quad \text { and } \quad \beta-2=\frac{-1-\sqrt{5}}{2}=1-\alpha
$$

Hence

$$
\begin{aligned}
{\left[\begin{array}{l}
a_{n} \\
b_{n}
\end{array}\right] } & =\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
1-\beta & 1-\alpha \\
1 & 1
\end{array}\right]\left[\begin{array}{rr}
\alpha^{n} & 0 \\
0 & \beta^{n}
\end{array}\right]\left[\begin{array}{rr}
1 & \alpha-1 \\
-1 & 1-\beta
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
1-\beta & 1-\alpha \\
1 & 1
\end{array}\right]\left[\begin{array}{rr}
\alpha^{n} & 0 \\
0 & \beta^{n}
\end{array}\right]\left[\begin{array}{l}
\alpha-1 \\
1-\beta
\end{array}\right] \\
& =\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
1-\beta & 1-\alpha \\
1 & 1
\end{array}\right]\left[\begin{array}{r}
(\alpha-1) \alpha^{n} \\
-(\beta-1) \beta^{n}
\end{array}\right] \\
& =\frac{1}{\sqrt{5}}\left[\begin{array}{r}
(\alpha-1)(\beta-1)\left(\beta^{n}-\alpha^{n}\right) \\
(\alpha-1) \alpha^{n}-(\beta-1) \beta^{n}
\end{array}\right] .
\end{aligned}
$$

Since $(\alpha-1)(\beta-1)=\frac{(1-\sqrt{5})(1+\sqrt{5})}{4}=\frac{1-4}{4}=-1$, rewriting this matrix equation gives
(i) $f_{2 n}=a_{n}=\frac{1}{\sqrt{5}}\left(\alpha^{n}-\beta^{n}\right)$.
(ii) $f_{2 n+1}=b_{n}=\frac{1}{\sqrt{5}}\left((\alpha-1) \alpha^{n}-(\beta-1) \beta^{n}\right)$.

We now make one more unexpected observation:

$$
(\alpha-1)^{2}=\left(\frac{1+\sqrt{5}}{2}\right)^{2}=\frac{1+2 \sqrt{5}+5}{4}=\frac{3+\sqrt{5}}{2}=\alpha
$$

and

$$
(\beta-1)^{2}=\left(\frac{1-\sqrt{5}}{2}\right)^{2}=\frac{1-2 \sqrt{5}+5}{4}=\frac{3-\sqrt{5}}{2}=\beta
$$

Thus (i) and (ii) become

$$
\begin{equation*}
f_{2 n}=\frac{1}{\sqrt{5}}\left((\alpha-1)^{2 n}-(\beta-1)^{2 n}\right) \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2 n+1}=\frac{1}{\sqrt{5}}\left((\alpha-1)^{2 n+1}-(\beta-1)(\alpha-1)^{2 n+1}\right) . \tag{}
\end{equation*}
$$

Putting $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ together gives a common formula for f_{n} for all n. Namely, since

$$
\alpha-1=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \beta-1=\frac{1-\sqrt{5}}{2}
$$

we get:
Theorem. For all integers $n \geq 0$ it holds that

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right) \approx 0.447\left(1.618^{n}-(-0.618)^{n}\right)
$$

(Check that this holds even when $n=0$ and $n=1$.)

How does this explain our original numeric observations?
Well, since $\frac{1-\sqrt{5}}{2}=-0.618 \ldots$ has absolute value less than 1 , it follows that if n is very large then

$$
f_{n} \approx \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

so

$$
\log f_{n} \approx \log \left(\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}\right)=\log \left(\frac{1}{\sqrt{5}}\right)+n \log \left(\frac{1+\sqrt{5}}{2}\right)
$$

Therefore

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log f_{n}=\lim _{n \rightarrow \infty}(\underbrace{\frac{1}{n} \log \left(\frac{1}{\sqrt{5}}\right)}_{\rightarrow 0}+\underbrace{\frac{n}{n}}_{=1} \log \left(\frac{1+\sqrt{5}}{2}\right))=\log \left(\frac{1+\sqrt{5}}{2}\right)
$$

And indeed

$$
\log \left(\frac{1+\sqrt{5}}{2}\right)=0.481211 \cdots \approx \frac{1}{1000000} \log f_{1000000}
$$

Moreover, if $x=\log \left(\frac{1+\sqrt{5}}{2}\right)$ then $e^{x}=(1+\sqrt{5}) / 2$ so $\left(2 e^{x}-1\right)^{2}=5$.

3 Diagonalising matrices whose eigenvalues are not distinct

If an $n \times n$ matrix A has n distinct eigenvalues with corresponding eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$, then the $\operatorname{matrix} P=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ is automatically invertible since its columns are linearly independent, and the matrix $D=P^{-1} A P$ is diagonal such that $A=P D P^{-1}$.

When A is diagonalisable but has fewer than n distinct eigenvalues, we can still build up P in such a way that P is automatically invertible and $P^{-1} A P$ is automatically diagonal.
Recall that if λ is an eigenvalue of A then $\operatorname{Nul}(A-\lambda I)$ is the λ-eigenspace of A.
The multiplicity of the eigenvalue λ is the largest integer $m \geq 1$ such that we can write the characteristic polynomial of A as the product $\operatorname{det}(A-x I)=(\lambda-x)^{m} p(x)$ for some polynomial $p(x)$.
For example, if $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 2\end{array}\right]$ then

$$
\operatorname{det}(A-x I)=\operatorname{det}\left[\begin{array}{rr}
-x & -1 \\
1 & 2-x
\end{array}\right]=(-x)(2-x)+1=x=x^{2}-2 x+1=(x-1)^{2}
$$

so 1 is an eigenvalue of A with multiplicity 2 .
Theorem. Let A be an $n \times n$ matrix. Suppose A has distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ where $p \leq n$. The following properties then hold:
(a) For each $i=1,2, \ldots, p$, the dimension of the λ_{i}-eigenspace of A is at most the multiplicity of λ_{i}.
(b) A is diagonalisable if and only if the sum of the dimensions of the eigenspaces of A is n.
(c) Suppose A is diagonalisable and \mathcal{B}_{i} is a basis for the λ_{i}-eigenspace. Then the union $\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \cdots \cup \mathcal{B}_{p}$ is a basis for \mathbb{R}^{n} consisting of eigenvectors of A. If the elements of this union are the vectors $v_{1}, v_{2}, \ldots, v_{n}$ then the matrix $P=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ is invertible and $P^{-1} A P$ is diagonal.

Proof. Fix an index $i \in\{1,2, \ldots, p\}$.
Let $\lambda=\lambda_{i}$ and suppose λ has multiplicity m and $\operatorname{Nul}(A-\lambda I)$ has dimension d.
Let $v_{1}, v_{2}, \ldots, v_{d}$ be a basis for $\operatorname{Nul}(A-\lambda I)$.
One of the corollaries we saw for the dimension theorem is that it is always possible to choose vectors $v_{d+1}, v_{d+2}, \ldots, v_{n} \in \mathbb{R}^{n}$ such that $v_{1}, v_{2}, \ldots, v_{d}, v_{d+1}, v_{d+2}, \ldots, v_{n}$ is a basis for \mathbb{R}^{n}.
Define $Q=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$. The columns of this matrix are linearly independent, so Q is invertible with $Q e_{j}=v_{j}$ and $Q^{-1} v_{j}=e_{j}$ for all $j=1,2, \ldots, n$. Define $B=Q^{-1} A Q$.
If $j \in\{1,2, \ldots, d\}$ then the j th column of B is

$$
B e_{j}=Q^{-1} A Q e_{j}=Q^{-1} A v_{j}=\lambda Q^{-1} v_{j}=\lambda e_{j}
$$

This means that the first d columns of B are

$$
\left[\begin{array}{cccc}
\lambda & & & \\
& \lambda & & \\
& & \ddots & \\
& & & \lambda \\
0 & 0 & \ldots & 0 \\
\vdots & & & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right]
$$

so B has the block-triangular form

$$
B=\left[\begin{array}{cccccccc}
\lambda & & & & * & * & \ldots & * \\
& \lambda & & & * & * & \ldots & * \\
& & \ddots & & \vdots & \vdots & \ddots & \vdots \\
& & & \lambda & * & * & \ldots & * \\
0 & 0 & \ldots & 0 & * & * & \ldots & * \\
\vdots & & & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & * & * & \ldots & *
\end{array}\right]=\left[\begin{array}{r|r}
\lambda I_{d} & Y \\
\hline 0 & Z
\end{array}\right]
$$

where Y is an arbitrary $d \times(n-d)$ matrix and Z is an arbitrary $(n-d) \times(n-d)$ matrix.
From the properties of the determinant that we know, there are various ways to deduce that

$$
\operatorname{det}(B-x I)=(\lambda-x)^{d} \operatorname{det}(Z-x I)
$$

Since $\operatorname{det}(A-x I)=\operatorname{det}(B-x I)$ as A and B are similar, and since $\operatorname{det}(Z-x I)$ is a polynomial in x, we see that $\operatorname{det}(A-x I)$ can be written as $(\lambda-x)^{d} p(x)$ for some polynomial $p(x)$. Since m is maximal such that $\operatorname{det}(A-x I)=(\lambda-x)^{m} p(x)$, it must hold that $d \leq m$. This proves part (a).

To prove parts (b) and (c), suppose $v_{i}^{1}, v_{i}^{2}, \ldots, v_{i}^{\ell_{i}}$ is a basis for the λ_{i}-eigenspace of A for each $i=$ $1,2, \ldots, p$. Let $\mathcal{B}_{i}=\left\{v_{i}^{1}, v_{i}^{2}, \ldots, v_{i}^{\ell_{i}}\right\}$. We claim that $\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \ldots \mathcal{B}_{p}$ is a linearly independent set.
To prove this, suppose $\sum_{i=1}^{p} \sum_{j=1}^{\ell_{i}} c_{i}^{j} v_{i}^{j}=0$ for some coefficients $c_{i}^{j} \in \mathbb{R}$.
It suffices to show that every $c_{i}^{j}=0$.
Let $w_{i}=\sum_{j=1}^{\ell_{i}} c_{i}^{j} v_{i}^{j} \in \mathbb{R}^{n}$. We then have $w_{1}+w_{2}+\cdots+w_{p}=0$.
Each w_{i} is either zero or an eigenvector of A with eigenvalue λ_{i}. (Why?)
Since eigenvectors of A with distinct eigenvalues are linearly independent, we must have

$$
w_{1}=w_{2}=\cdots=w_{p}=0
$$

But since each set \mathcal{B}_{i} is linearly independent, this implies that $c_{i}^{j}=0$ for all i, j.
We conclude that $\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \ldots \mathcal{B}_{p}$ is a linearly independent set.

If the sum of the dimensions of the eigenspaces of A is n then $\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \cdots \cup \mathcal{B}_{p}$ is a set of n linearly independent eigenvectors of A, so A is diagonalisable.

If A is diagonalisable then A has n linearly independent eigenvectors. Among these vectors, the number that can belong to any particular eigenspace of A is necessarily the dimension of that eigenspace, so it follows that sum of the dimensions of the eigenspaces of A at least n. This sum cannot be more than n since the sum is the size of the linearly independent set $\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \cdots \cup \mathcal{B}_{p} \subset \mathbb{R}^{n}$. This proves part (b).
To prove part (c), note that if A is diagonalisable then $\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \cdots \cup \mathcal{B}_{p}$ is a set of n linearly independent vectors in \mathbb{R}^{n}, so is a basis for \mathbb{R}^{n}.

Example. Consider the lower-triangular matrix

$$
A=\left[\begin{array}{rrrr}
5 & & & \\
0 & 5 & & \\
1 & 4 & -3 & \\
-1 & -2 & 0 & -3
\end{array}\right]
$$

Its characteristic polynomial is $\operatorname{det}(A-x I)=(5-x)^{2}(-x-3)^{2}$.
The eigenvalues of A are therefore 5 and -3 , each with multiplicity 2 .
Since

$$
A-5 I=\left[\begin{array}{rrrr}
0 & & & \\
0 & 0 & & \\
1 & 4 & -8 & \\
-1 & -2 & 0 & -8
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 8 & 16 \\
0 & 1 & -4 & -4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\operatorname{RREF}(A-5 I)
$$

it follows that $x \in \operatorname{Nul}(A-5 I)$ if and only if

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-8 x_{3}-16 x_{4} \\
4 x_{3}+4 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{r}
-8 \\
4 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-16 \\
4 \\
0 \\
1
\end{array}\right]
$$

so
$\left[\begin{array}{r}-8 \\ 4 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-16 \\ 4 \\ 0 \\ 1\end{array}\right]$ is a basis for $\operatorname{Nul}(A-5 I)$.

Since

$$
A-(-3) I=A+3 I=\left[\begin{array}{rrrr}
8 & & & \\
0 & 8 & & \\
1 & 4 & 0 & \\
-1 & -2 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\operatorname{RREF}(A+3 I)
$$

it follows that $x \in \operatorname{Nul}(A+3 I)$ if and only if

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
0 \\
0 \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

so

$$
\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \text { is a basis for } \operatorname{Nul}(A+3 I)
$$

Each eigenspace has dimension 2, so the sum of the dimensions of the eigenspaces of A is $2+2=4=n$. Thus A is diagonalisable.

In particular, if

$$
P=\left[\begin{array}{rrrr}
-8 & -16 & 0 & 0 \\
4 & 4 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

then P is invertible and

$$
P^{-1} A P=\left[\begin{array}{cccc}
5 & & & \\
& 5 & & \\
& & -3 & \\
& & & -3
\end{array}\right] \quad \text { and } \quad A=P\left[\begin{array}{llll}
5 & & & \\
& 5 & & \\
& & -3 & \\
& & & -3
\end{array}\right] P^{-1} .
$$

