1 Last time: methods to check diagonalisability

Let n be a positive integer and let A be an $n \times n$ matrix.

Remember that A is *diagonalisable* if $A = PDP^{-1}$ where P is an invertible $n \times n$ matrix and D is an $n \times n$ diagonal matrix. In other words, A is diagonalisable if A is similar to a diagonal matrix. When this holds and

$$P = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

then $Av_i = PDP^{-1}v_i = PDe_i = \lambda_i Pe_i = \lambda_i v_i$ for each i = 1, 2, ..., n. In other words, if $A = PDP^{-1}$ is diagonalisable then the columns of P are a basis for \mathbb{R}^n made up of eigenvectors of A.

Matrices which are not diagonalisable.

Proposition. $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is not diagonalisable.

Proof. To check this directly, suppose $ad - bc \neq 0$ and compute

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} -ac & a^2 \\ -c^2 & ac \end{bmatrix}.$$

The only way the last matrix can be diagonal is if a = c = 0, but then we would have ad - bc = 0 so $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ would not be invertible. Therefore $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is not similar to a diagonal matrix. \Box

Here is a second family of examples.

Let A be an $n \times n$ upper-triangular matrix with all entries on the diagonal equal to 1:

$$A = \begin{bmatrix} 1 & * & \dots & * \\ & 1 & \ddots & \vdots \\ & & \ddots & * \\ & & & & 1 \end{bmatrix}$$

All entries in A below the diagonal are zero, and the entries above the diagonal can be anything.

Proposition. If $A \neq I$ is not the identity matrix then A is not diagonalisable.

Proof. The matrix

$$A - I = \begin{bmatrix} 0 & * & \dots & * \\ & 0 & \ddots & \vdots \\ & & \ddots & * \\ & & & & 0 \end{bmatrix}$$

has zeros on and below the diagonal.

You can check that the matrix

$$(A-I)^{2} = \begin{bmatrix} 0 & * & \dots & * \\ & 0 & \ddots & \vdots \\ & & \ddots & * \\ & & & 0 \end{bmatrix} \begin{bmatrix} 0 & * & \dots & * \\ & 0 & \ddots & \vdots \\ & & \ddots & * \\ & & & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & * & \dots & * \\ & 0 & 0 & \ddots & \vdots \\ & & \ddots & & * \\ & & & 0 & 0 \\ & & & & 0 \end{bmatrix}$$

has zeros on and belong the diagonal, as well as in all positions which are one row above a diagonal position. In turn, $(A - I)^3$ has zeros in all positions which are on or below the main diagonal, and which are up to two rows above a diagonal position. Continuing these calculations, it follows that $(A - I)^k = 0$ is the zero matrix whenever $k \ge n$.

Now suppose A is diagonalisable so that $A = PDP^{-1}$ for some diagonal matrix D. Then

$$A - I = PDP^{-1} - I = PDP^{-1} - PIP^{-1} = P(D - I)P^{-1}$$

 \mathbf{SO}

$$0 = (A - I)^{k} = (P(D - I)P^{-1})^{k} = P(D - I)^{k}P^{-1}$$

for all $k \geq n$. Multiplying this equation on the left by P^{-1} and on the right by P gives

 $0 = (D - I)^k$

for all $k \ge n$. Since D - I is diagonal, the only way $(D - I)^k$ can be the zero matrix for any k is if D - I = 0 so D = I. But then $A = PDP^{-1} = PIP^{-1} = PP^{-1} = I$.

We now have more general tools to decide if a matrix is diagonalisable. Let A be an $n \times n$ matrix.

Theorem. Suppose $\lambda_1, \lambda_2, \ldots, \lambda_p$ are the distinct eigenvalues of A. Let $d_i = \dim \operatorname{Nul}(A - \lambda_i I)$ for $i = 1, 2, \ldots, p$ be the dimension of the corresponding eigenspace.

- 1. For each $i = 1, 2, \ldots, p$ it holds that $d_i \ge 1$, and $p \le d_1 + d_2 + \cdots + d_p \le n$.
- 2. The matrix A is diagonalisable if and only if $d_1 + d_2 + \cdots + d_p = n$.
- 3. Suppose A is diagonalisable. Let $D_i = \lambda_i I_{d_i}$ and define D as the $n \times n$ diagonal matrix

$$D = \begin{bmatrix} D_1 & & & \\ & D_2 & & \\ & & \ddots & \\ & & & D_p \end{bmatrix}$$

Choose n vectors

$$a_1, a_2, \ldots, a_{d_1}, b_1, b_2, \ldots, b_{d_2}, \ldots, z_1, z_2, \ldots, z_{d_p}$$

which are bases for Nul $(A - \lambda_1 I)$, Nul $(A - \lambda_2 I)$, ..., Nul $(A - \lambda_p I)$. Then $A = PDP^{-1}$ for

$$P = \begin{bmatrix} a_1 & a_2 & \dots & a_{d_1} & b_1 & b_2 & \dots & b_{d_2} & \dots & z_1 & z_2 & \dots & z_{d_p} \end{bmatrix}$$

Shortcut. If p = n then $n \leq d_1 + d_2 + \cdots + d_p \leq n$ which implies $d_1 + d_2 + \cdots + d_p = n$, so A is automatically diagonalisable.

2 Complex eigenvalues

We write \mathbb{C} for the set of complex numbers $\{a + bi : a, b \in \mathbb{R}\}$.

Each complex number is a formal linear combination of two real numbers a + bi.

The symbol *i* is defined as the square root of -1, so $i^2 = -1$.

We add complex numbers like this:

$$(a+bi) + (c+di) = (a+c) + (b+d)i.$$

We multiply complex numbers just like polynomials, but substituting -1 for i^2 :

$$(a+bi)(c+di) = ac + (ad+bc)i + bd(i^{2}) = (ac-bd) + (ad+bc)i$$

The order of multiplication doesn't matter since (a + bi)(c + di) = (c + di)(a + bi).

Example. The complex numbers \mathbb{C} contain the real numbers \mathbb{R} as a subset. Numbers of the form $bi \in \mathbb{C}$ with $b \in \mathbb{R}$ are called *imaginary*, though this is mostly just a historical convention.

Another way to think of the complex numbers is as the set of 2×2 matrices

$$\left[\begin{array}{cc} a & -b \\ b & a \end{array}\right] \quad \text{for } a, b \in \mathbb{R}.$$

We identify this matrix with the number $a + bi \in \mathbb{C}$.

Addition and multiplication of complex numbers correspond, in terms as these matrices, to the usual notions of addition and multiplication:

$$\left[\begin{array}{cc} a & -b \\ b & a \end{array}\right] + \left[\begin{array}{cc} c & -d \\ d & c \end{array}\right] = \left[\begin{array}{cc} a+c & -(b+d) \\ b+d & a+c \end{array}\right]$$

and

$$\left[\begin{array}{cc} a & -b \\ b & a \end{array}\right] \left[\begin{array}{cc} c & -d \\ d & c \end{array}\right] = \left[\begin{array}{cc} ac -bd & -(ad + bc) \\ ad + bc & ac - bd \end{array}\right].$$

It can be helpful to draw the complex number $a + bi \in \mathbb{C}$ as the vector $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2$.

The number $i(a + bi) = -b + ai \in \mathbb{C}$ then corresponds to the vector $\begin{bmatrix} -b \\ a \end{bmatrix} \in \mathbb{R}^2$, which is given by rotating $\begin{bmatrix} a \\ b \end{bmatrix}$ ninety degrees counterclockwise. (Try drawing this yourself.)

The main reason it is helpful to work with complex numbers is the following theorem about polynomials.

Theorem (Fundamental theorem of algebra). Suppose

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a_0$$

is a polynomial of degree n (meaning $a_n \neq 0$) with coefficients $a_0, a_1, \ldots, a_n \in \mathbb{C}$, then there are n (not necessarily distinct) numbers $r_1, r_2, \ldots, r_n \in \mathbb{C}$ such that

$$p(x) = (-1)^n a_n (r_1 - x) (r_2 - x) \cdots (r_n - x).$$

One calls the numbers r_1, r_2, \ldots, r_n the roots of p(x).

A root r has multiplicity m if exactly m of the numbers r_1, r_2, \ldots, r_n are equal to r.

The characteristic equation of an $n \times n$ matrix A is a degree n polynomial with real coefficients. Counting multiplicities, det(A - xI) has exactly n roots but some roots may be complex numbers.

Define
$$\mathbb{C}^n$$
 as the set of vectors $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ with *n* rows and entries $v_1, v_2, \dots, v_n \in \mathbb{C}$

Note that $\mathbb{R}^n \subset \mathbb{C}^n$.

The sum u + v and scalar multiple cv for $u, v \in \mathbb{C}^n$ and $c \in \mathbb{C}$ are defined exactly as for vectors in \mathbb{R}^n , except we use the addition and multiplication operations for \mathbb{C} instead of \mathbb{R} .

If A is an $n \times n$ matrix and $v \in \mathbb{C}^n$ then we define Av in the same way as when $v \in \mathbb{R}^n$.

Definition. Let A be an $n \times n$ matrix. (The entries of A are real numbers.) Call $\lambda \in \mathbb{C}$ a *(complex)* eigenvalue of A if there exists a nonzero vector $v \in \mathbb{C}^n$ such that $Av = \lambda v$.

Equivalently, $\lambda \in \mathbb{C}$ is an eigenvalue of A if λ is a root of the characteristic polynomial det(A - xI).

This is no different from our first definition of an eigenvalue, except that now we permit λ to be in \mathbb{C} .

Example. Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
. Then $\det(A - xI) = x^2 + 1 = (i - x)(-i - x)$.

The roots of this polynomial are the complex numbers i and -i. We have

$$A\begin{bmatrix}1\\-i\end{bmatrix} = \begin{bmatrix}i\\1\end{bmatrix} = i\begin{bmatrix}1\\-i\end{bmatrix} \quad \text{and} \quad A\begin{bmatrix}1\\i\end{bmatrix} = \begin{bmatrix}-i\\1\end{bmatrix} = -i\begin{bmatrix}1\\i\end{bmatrix}$$

so *i* and -i are eigenvalues of *A*, with corresponding eigenvectors $\begin{bmatrix} 1 \\ -i \end{bmatrix}$ and $\begin{bmatrix} 1 \\ i \end{bmatrix}$.

Example. Let $A = \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix}$. Then $\det(A - xI) = \det \begin{bmatrix} .5 - x & -.6 \\ .75 & 1.1 - x \end{bmatrix} = x^2 - 1.6x + 1.$

Via the quadratic formula, we find that the roots of this characteristic polynomial are

$$x = \frac{1.6 \pm \sqrt{1.6^2 - 4}}{2} = .8 \pm .6i$$

since $i = \sqrt{-1}$. To find a basis for the (.8 - .6i)-eigenspace, we row reduce as usual

$$\begin{aligned} A - (.8 - .7i)I &= \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix} - \begin{bmatrix} .8 - .6i & 0 \\ 0 & .8 - .6i \end{bmatrix} \\ &= \begin{bmatrix} -.3 + .6i & -.6 \\ .75 & .3 + .6i \end{bmatrix} \\ &\sim \begin{bmatrix} .5 - i & 1 \\ 1 & .8(.5 + i) \end{bmatrix} \\ &\sim \begin{bmatrix} 1 & .8(.5 + i) \\ .5 - i & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & .8(.5 + i) \\ 0 & 1 - .8(.5 + i)(.5 - i) \end{bmatrix} = \begin{bmatrix} 1 & .8(.5 + i) \\ 0 & 0 \end{bmatrix}. \end{aligned}$$

The last equality holds since $.8(.5+i)(.5-i) = .8(.25-i^2) = .8(1.25) = 1$.

This implies that Ax = (.8 - .6i)x if and only if $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where $x_1 + .8(.5 + i)x_2 = 0$, i.e., where $5x_1 = -4(.5+i)x_2 = -(2+4i)x_2$. Satisfying these conditions is the vector

$$v = \left[\begin{array}{c} -2 - 4i \\ 5 \end{array} \right]$$

which is therefore an eigenvector for A with eigenvalue .8 - .6i. Similar calculations show that the vector

$$w = \left[\begin{array}{c} -2+4i \\ 5 \end{array} \right]$$

is an eigenvector for A with eigenvalue .8 + .6i.

Complex conjugation 3

Given $a, b \in \mathbb{R}$, we define the *complex conjugate* of the complex number $a + bi \in \mathbb{C}$ to be

$$\overline{a+bi} = a - bi \in \mathbb{C}.$$

If A is a matrix and $v \in \mathbb{C}^n$ then we define \overline{A} and \overline{v} as the matrix and vector given by replacing all entries of A and v by their complex conjugates.

Lemma. Let $z \in \mathbb{C}$. Then $\overline{z} = z$ if and only if $z \in \mathbb{R}$.

Proof. Write z = a + bi for $a, b \in \mathbb{R}$. Then $z - \overline{z} = (a + bi) - (a - bi) = 2bi$. This is zero if and only if b = 0, in which case $z = a \in \mathbb{R}$.

Lemma. If $y, z \in \mathbb{C}$ then $\overline{y+z} = \overline{y} + \overline{z}$ and $\overline{yz} = \overline{y} \cdot \overline{z}$.

Hence if A is an $m \times n$ matrix (with real or complex entries) and $v \in \mathbb{C}^n$ then $\overline{Av} = \overline{Av}$.

Proof. Write y = a + bi and z = c + di for $a, b, c, d \in \mathbb{R}$. Then

$$\overline{y+z} = \overline{(a+c) + (b+d)i} = (a+c) - (b+d)i = \overline{y} + \overline{z}$$

and

$$\overline{y \cdot z} = \overline{(ad - bc) + (ad + bc)i} = (ad - bc) - (ad + bc)i = (a - bi)(c - di) = \overline{y} \cdot \overline{z}$$

Combining these properties shows that $\overline{Av} = \overline{Av}$.

Proposition. Suppose A is an $n \times n$ matrix with real entries. If A has a complex eigenvalue $\lambda \in \mathbb{C}$ with eigenvector $v \in \mathbb{C}^n$ then $\overline{v} \in \mathbb{C}^n$ is an eigenvector for A with eigenvalue $\overline{\lambda}$.

Proof. Since A has real entries, it holds that $\overline{A} = A$.

Therefore $A\overline{v} = \overline{A}\overline{v} = \overline{Av} = \overline{\lambda v} = \overline{\lambda v}$.

The real part of a complex number $a + bi \in \mathbb{C}$ is $\Re(a + bi) = a \in \mathbb{R}$.

The imaginary part of a $a + bi \in \mathbb{C}$ is $\Im(a + bi) = b \in \mathbb{R}$.

Define $\Re(v)$ and $\Im(v)$ for $v \in \mathbb{C}^n$ by applying $\Re(\cdot)$ and $\Im(\cdot)$ to each entry in v.

Example. Let $A = \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix}$ as in our earlier example. Let $\lambda = .8 - .6i$ and $v = \begin{bmatrix} -2 - 4i \\ 5 \end{bmatrix}$. Define

$$P = \begin{bmatrix} \Re(v) & \Im(v) \end{bmatrix} = \begin{bmatrix} -2 & -4\\ 5 & 0 \end{bmatrix} \quad \text{so that} \quad P^{-1} = \frac{1}{20} \begin{bmatrix} 0 & 4\\ -5 & -2 \end{bmatrix}.$$

Let $C = P^{-1}AP$ so that $A = PCP^{-1}$. We compute

$$C = P^{-1}AP = \frac{1}{20} \begin{bmatrix} 0 & 4 \\ -5 & -2 \end{bmatrix} \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix} \begin{bmatrix} -2 & -4 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} .8 & -.6 \\ .6 & .8 \end{bmatrix}.$$

Since $.8^2 + .6^2 = .64 + .36 = 1$, C is the rotation matrix

$$C = \left[\begin{array}{cc} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{array} \right]$$

for $\phi \in [0, 2\pi)$ with $\cos \phi = .8$. Thus $A = PCP^{-1}$ is similar to a rotation matrix.

This phenomenon holds for all real 2×2 matrices.

Theorem. Let A be a real 2×2 matrix with a complex eigenvalue $\lambda = a - bi$ $(b \neq 0)$ and associated eigenvector $v \in \mathbb{C}^2$. Then $A = PCP^{-1}$ where

$$P = \begin{bmatrix} \Re(v) & \Im(v) \end{bmatrix}$$
 and $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

Moreover, $C = r \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$ where $r = \sqrt{a^2 + b^2}$ and $\phi \in [0, 2\pi)$ is such that $r \cos \phi = a$.