1 Last time: methods to check diagonalisability

Let n be a positive integer and let A be an $n \times n$ matrix.
Remember that A is diagonalisable if $A=P D P^{-1}$ where P is an invertible $n \times n$ matrix and D is an $n \times n$ diagonal matrix. In other words, A is diagonalisable if A is similar to a diagonal matrix. When this holds and

$$
P=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]
$$

then $A v_{i}=P D P^{-1} v_{i}=P D e_{i}=\lambda_{i} P e_{i}=\lambda_{i} v_{i}$ for each $i=1,2, \ldots, n$. In other words, if $A=P D P^{-1}$ is diagonalisable then the columns of P are a basis for \mathbb{R}^{n} made up of eigenvectors of A.

Matrices which are not diagonalisable.

Proposition. $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is not diagonalisable.
Proof. To check this directly, suppose $a d-b c \neq 0$ and compute

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}
-a c & a^{2} \\
-c^{2} & a c
\end{array}\right]
$$

The only way the last matrix can be diagonal is if $a=c=0$, but then we would have $a d-b c=0$ so $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ would not be invertible. Therefore $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is not similar to a diagonal matrix.

Here is a second family of examples.
Let A be an $n \times n$ upper-triangular matrix with all entries on the diagonal equal to 1 :

$$
A=\left[\begin{array}{cccc}
1 & * & \ldots & * \\
& 1 & \ddots & \vdots \\
& & \ddots & * \\
& & & 1
\end{array}\right]
$$

All entries in A below the diagonal are zero, and the entries above the diagonal can be anything.
Proposition. If $A \neq I$ is not the identity matrix then A is not diagonalisable.
Proof. The matrix

$$
A-I=\left[\begin{array}{cccc}
0 & * & \cdots & * \\
& 0 & \ddots & \vdots \\
& & \ddots & * \\
& & & 0
\end{array}\right]
$$

has zeros on and below the diagonal.

You can check that the matrix

$$
(A-I)^{2}=\left[\begin{array}{cccc}
0 & * & \ldots & * \\
& 0 & \ddots & \vdots \\
& & \ddots & * \\
& & & 0
\end{array}\right]\left[\begin{array}{llll}
0 & * & \ldots & * \\
& 0 & \ddots & \vdots \\
& & \ddots & * \\
& & & 0
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 0 & * & \ldots & * \\
& 0 & 0 & \ddots & \vdots \\
& & \ddots & \ddots & * \\
& & & 0 & 0 \\
& & & & 0
\end{array}\right]
$$

has zeros on and belong the diagonal, as well as in all positions which are one row above a diagonal position. In turn, $(A-I)^{3}$ has zeros in all positions which are on or below the main diagonal, and which are up to two rows above a diagonal position. Continuing these calculations, it follows that $(A-I)^{k}=0$ is the zero matrix whenever $k \geq n$.
Now suppose A is diagonalisable so that $A=P D P^{-1}$ for some diagonal matrix D. Then

$$
A-I=P D P^{-1}-I=P D P^{-1}-P I P^{-1}=P(D-I) P^{-1}
$$

so

$$
0=(A-I)^{k}=\left(P(D-I) P^{-1}\right)^{k}=P(D-I)^{k} P^{-1}
$$

for all $k \geq n$. Multiplying this equation on the left by P^{-1} and on the right by P gives

$$
0=(D-I)^{k}
$$

for all $k \geq n$. Since $D-I$ is diagonal, the only way $(D-I)^{k}$ can be the zero matrix for any k is if $D-I=0$ so $D=I$. But then $A=P D P^{-1}=P I P^{-1}=P P^{-1}=I$.

We now have more general tools to decide if a matrix is diagonalisable. Let A be an $n \times n$ matrix.
Theorem. Suppose $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ are the distinct eigenvalues of A. Let $d_{i}=\operatorname{dim} \operatorname{Nul}\left(A-\lambda_{i} I\right)$ for $i=1,2, \ldots, p$ be the dimension of the corresponding eigenspace.

1. For each $i=1,2, \ldots, p$ it holds that $d_{i} \geq 1$, and $p \leq d_{1}+d_{2}+\cdots+d_{p} \leq n$.
2. The matrix A is diagonalisable if and only if $d_{1}+d_{2}+\cdots+d_{p}=n$.
3. Suppose A is diagonalisable. Let $D_{i}=\lambda_{i} I_{d_{i}}$ and define D as the $n \times n$ diagonal matrix

$$
D=\left[\begin{array}{llll}
D_{1} & & & \\
& D_{2} & & \\
& & \ddots & \\
& & & D_{p}
\end{array}\right]
$$

Choose n vectors

$$
a_{1}, a_{2}, \ldots, a_{d_{1}}, b_{1}, b_{2}, \ldots, b_{d_{2}}, \ldots, z_{1}, z_{2}, \ldots, z_{d_{p}}
$$

which are bases for $\operatorname{Nul}\left(A-\lambda_{1} I\right), \operatorname{Nul}\left(A-\lambda_{2} I\right), \ldots, \operatorname{Nul}\left(A-\lambda_{p} I\right)$. Then $A=P D P^{-1}$ for

$$
P=\left[\begin{array}{lllllllllllll}
a_{1} & a_{2} & \ldots & a_{d_{1}} & b_{1} & b_{2} & \ldots & b_{d_{2}} & \ldots & z_{1} & z_{2} & \ldots & z_{d_{p}}
\end{array}\right]
$$

Shortcut. If $p=n$ then $n \leq d_{1}+d_{2}+\cdots+d_{p} \leq n$ which implies $d_{1}+d_{2}+\cdots+d_{p}=n$, so A is automatically diagonalisable.

2 Complex eigenvalues

We write \mathbb{C} for the set of complex numbers $\{a+b i: a, b \in \mathbb{R}\}$.
Each complex number is a formal linear combination of two real numbers $a+b i$.
The symbol i is defined as the square root of -1 , so $i^{2}=-1$.
We add complex numbers like this:

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i
$$

We multiply complex numbers just like polynomials, but substituting -1 for i^{2} :

$$
(a+b i)(c+d i)=a c+(a d+b c) i+b d\left(i^{2}\right)=(a c-b d)+(a d+b c) i
$$

The order of multiplication doesn't matter since $(a+b i)(c+d i)=(c+d i)(a+b i)$.
Example. The complex numbers \mathbb{C} contain the real numbers \mathbb{R} as a subset. Numbers of the form $b i \in \mathbb{C}$ with $b \in \mathbb{R}$ are called imaginary, though this is mostly just a historical convention.

Another way to think of the complex numbers is as the set of 2×2 matrices

$$
\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right] \quad \text { for } a, b \in \mathbb{R}
$$

We identify this matrix with the number $a+b i \in \mathbb{C}$.
Addition and multiplication of complex numbers correspond, in terms as these matrices, to the usual notions of addition and multiplication:

$$
\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]+\left[\begin{array}{rr}
c & -d \\
d & c
\end{array}\right]=\left[\begin{array}{rr}
a+c & -(b+d) \\
b+d & a+c
\end{array}\right]
$$

and

$$
\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{rr}
c & -d \\
d & c
\end{array}\right]=\left[\begin{array}{rr}
a c-b d & -(a d+b c) \\
a d+b c & a c-b d
\end{array}\right]
$$

It can be helpful to draw the complex number $a+b i \in \mathbb{C}$ as the vector $\left[\begin{array}{l}a \\ b\end{array}\right] \in \mathbb{R}^{2}$.
The number $i(a+b i)=-b+a i \in \mathbb{C}$ then corresponds to the vector $\left[\begin{array}{r}-b \\ a\end{array}\right] \in \mathbb{R}^{2}$, which is given by rotating $\left[\begin{array}{l}a \\ b\end{array}\right]$ ninety degrees counterclockwise. (Try drawing this yourself.)

The main reason it is helpful to work with complex numbers is the following theorem about polynomials.
Theorem (Fundamental theorem of algebra). Suppose

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{1} x+a_{0}
$$

is a polynomial of degree n (meaning $a_{n} \neq 0$) with coefficients $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$, then there are n (not necessarily distinct) numbers $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{C}$ such that

$$
p(x)=(-1)^{n} a_{n}\left(r_{1}-x\right)\left(r_{2}-x\right) \cdots\left(r_{n}-x\right)
$$

One calls the numbers $r_{1}, r_{2}, \ldots, r_{n}$ the roots of $p(x)$.
A root r has multiplicity m if exactly m of the numbers $r_{1}, r_{2}, \ldots, r_{n}$ are equal to r.

The characteristic equation of an $n \times n$ matrix A is a degree n polynomial with real coefficients.
Counting multiplicities, $\operatorname{det}(A-x I)$ has exactly n roots but some roots may be complex numbers.

Define \mathbb{C}^{n} as the set of vectors $v=\left[\begin{array}{r}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ with n rows and entries $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{C}$.
Note that $\mathbb{R}^{n} \subset \mathbb{C}^{n}$.
The sum $u+v$ and scalar multiple $c v$ for $u, v \in \mathbb{C}^{n}$ and $c \in \mathbb{C}$ are defined exactly as for vectors in \mathbb{R}^{n}, except we use the addition and multiplication operations for \mathbb{C} instead of \mathbb{R}.

If A is an $n \times n$ matrix and $v \in \mathbb{C}^{n}$ then we define $A v$ in the same way as when $v \in \mathbb{R}^{n}$.
Definition. Let A be an $n \times n$ matrix. (The entries of A are real numbers.) Call $\lambda \in \mathbb{C}$ a (complex) eigenvalue of A if there exists a nonzero vector $v \in \mathbb{C}^{n}$ such that $A v=\lambda v$.
Equivalently, $\lambda \in \mathbb{C}$ is an eigenvalue of A if λ is a root of the characteristic polynomial $\operatorname{det}(A-x I)$.

This is no different from our first definition of an eigenvalue, except that now we permit λ to be in \mathbb{C}.
Example. Let $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$. Then $\operatorname{det}(A-x I)=x^{2}+1=(i-x)(-i-x)$.
The roots of this polynomial are the complex numbers i and $-i$. We have

$$
A\left[\begin{array}{c}
1 \\
-i
\end{array}\right]=\left[\begin{array}{c}
i \\
1
\end{array}\right]=i\left[\begin{array}{r}
1 \\
-i
\end{array}\right] \quad \text { and } \quad A\left[\begin{array}{c}
1 \\
i
\end{array}\right]=\left[\begin{array}{r}
-i \\
1
\end{array}\right]=-i\left[\begin{array}{c}
1 \\
i
\end{array}\right]
$$

so i and $-i$ are eigenvalues of A, with corresponding eigenvectors $\left[\begin{array}{c}1 \\ -i\end{array}\right]$ and $\left[\begin{array}{c}1 \\ i\end{array}\right]$.
Example. Let $A=\left[\begin{array}{rr}.5 & -.6 \\ .75 & 1.1\end{array}\right]$. Then

$$
\operatorname{det}(A-x I)=\operatorname{det}\left[\begin{array}{rr}
.5-x & -.6 \\
.75 & 1.1-x
\end{array}\right]=x^{2}-1.6 x+1
$$

Via the quadratic formula, we find that the roots of this characteristic polynomial are

$$
x=\frac{1.6 \pm \sqrt{1.6^{2}-4}}{2}=.8 \pm .6 i
$$

since $i=\sqrt{-1}$. To find a basis for the $(.8-.6 i)$-eigenspace, we row reduce as usual

$$
\begin{aligned}
A-(.8-.7 i) I & =\left[\begin{array}{rr}
.5 & -.6 \\
.75 & 1.1
\end{array}\right]-\left[\begin{array}{rr}
.8-.6 i & 0 \\
0 & .8-.6 i
\end{array}\right] \\
& =\left[\begin{array}{rr}
-.3+.6 i & -.6 \\
.75 & .3+.6 i
\end{array}\right] \\
& \sim\left[\begin{array}{rr}
.5-i & 1 \\
1 & .8(.5+i)
\end{array}\right] \\
& \sim\left[\begin{array}{rr}
1 & .8(.5+i) \\
.5-i & 1
\end{array}\right] \sim\left[\begin{array}{lr}
1 & .8(.5+i) \\
0 & 1-.8(.5+i)(.5-i)
\end{array}\right]=\left[\begin{array}{rr}
1 & .8(.5+i) \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

The last equality holds since $.8(.5+i)(.5-i)=.8\left(.25-i^{2}\right)=.8(1.25)=1$.

This implies that $A x=(.8-.6 i) x$ if and only if $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ where $x_{1}+.8(.5+i) x_{2}=0$, i.e., where $5 x_{1}=-4(.5+i) x_{2}=-(2+4 i) x_{2}$. Satisfying these conditions is the vector

$$
v=\left[\begin{array}{r}
-2-4 i \\
5
\end{array}\right]
$$

which is therefore an eigenvector for A with eigenvalue $.8-.6 i$.
Similar calculations show that the vector

$$
w=\left[\begin{array}{r}
-2+4 i \\
5
\end{array}\right]
$$

is an eigenvector for A with eigenvalue $.8+.6 i$.

3 Complex conjugation

Given $a, b \in \mathbb{R}$, we define the complex conjugate of the complex number $a+b i \in \mathbb{C}$ to be

$$
\overline{a+b i}=a-b i \in \mathbb{C} .
$$

If A is a matrix and $v \in \mathbb{C}^{n}$ then we define \bar{A} and \bar{v} as the matrix and vector given by replacing all entries of A and v by their complex conjugates.

Lemma. Let $z \in \mathbb{C}$. Then $\bar{z}=z$ if and only if $z \in \mathbb{R}$.
Proof. Write $z=a+b i$ for $a, b \in \mathbb{R}$. Then $z-\bar{z}=(a+b i)-(a-b i)=2 b i$. This is zero if and only if $b=0$, in which case $z=a \in \mathbb{R}$.

Lemma. If $y, z \in \mathbb{C}$ then $\overline{y+z}=\bar{y}+\bar{z}$ and $\overline{y z}=\bar{y} \cdot \bar{z}$.
Hence if A is an $m \times n$ matrix (with real or complex entries) and $v \in \mathbb{C}^{n}$ then $\overline{A v}=\bar{A} \bar{v}$.
Proof. Write $y=a+b i$ and $z=c+d i$ for $a, b, c, d \in \mathbb{R}$. Then

$$
\overline{y+z}=\overline{(a+c)+(b+d) i}=(a+c)-(b+d) i=\bar{y}+\bar{z}
$$

and

$$
\overline{y \cdot z}=\overline{(a d-b c)+(a d+b c) i}=(a d-b c)-(a d+b c) i=(a-b i)(c-d i)=\bar{y} \cdot \bar{z}
$$

Combining these properties shows that $\overline{A v}=\bar{A} \bar{v}$.

Proposition. Suppose A is an $n \times n$ matrix with real entries. If A has a complex eigenvalue $\lambda \in \mathbb{C}$ with eigenvector $v \in \mathbb{C}^{n}$ then $\bar{v} \in \mathbb{C}^{n}$ is an eigenvector for A with eigenvalue $\bar{\lambda}$.

Proof. Since A has real entries, it holds that $\bar{A}=A$.
Therefore $A \bar{v}=\bar{A} \bar{v}=\overline{A v}=\overline{\lambda v}=\bar{\lambda} \bar{v}$.
The real part of a complex number $a+b i \in \mathbb{C}$ is $\Re(a+b i)=a \in \mathbb{R}$.
The imaginary part of a $a+b i \in \mathbb{C}$ is $\Im(a+b i)=b \in \mathbb{R}$.
Define $\Re(v)$ and $\Im(v)$ for $v \in \mathbb{C}^{n}$ by applying $\Re(\cdot)$ and $\Im(\cdot)$ to each entry in v.

Example. Let $A=\left[\begin{array}{rr}.5 & -.6 \\ .75 & 1.1\end{array}\right]$ as in our earlier example.
Let $\lambda=.8-.6 i$ and $v=\left[\begin{array}{r}-2-4 i \\ 5\end{array}\right]$. Define

$$
P=\left[\begin{array}{ll}
\Re(v) & \Im(v)
\end{array}\right]=\left[\begin{array}{rr}
-2 & -4 \\
5 & 0
\end{array}\right] \quad \text { so that } \quad P^{-1}=\frac{1}{20}\left[\begin{array}{rr}
0 & 4 \\
-5 & -2
\end{array}\right]
$$

Let $C=P^{-1} A P$ so that $A=P C P^{-1}$. We compute

$$
C=P^{-1} A P=\frac{1}{20}\left[\begin{array}{rr}
0 & 4 \\
-5 & -2
\end{array}\right]\left[\begin{array}{rr}
.5 & -.6 \\
.75 & 1.1
\end{array}\right]\left[\begin{array}{rr}
-2 & -4 \\
5 & 0
\end{array}\right]=\left[\begin{array}{rr}
.8 & -.6 \\
.6 & .8
\end{array}\right]
$$

Since $.8^{2}+.6^{2}=.64+.36=1, C$ is the rotation matrix

$$
C=\left[\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
$$

for $\phi \in[0,2 \pi)$ with $\cos \phi=.8$. Thus $A=P C P^{-1}$ is similar to a rotation matrix.

This phenomenon holds for all real 2×2 matrices.
Theorem. Let A be a real 2×2 matrix with a complex eigenvalue $\lambda=a-b i(b \neq 0)$ and associated eigenvector $v \in \mathbb{C}^{2}$. Then $A=P C P^{-1}$ where

$$
P=\left[\begin{array}{ll}
\Re(v) & \Im(v)
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]
$$

Moreover, $C=r\left[\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right]$ where $r=\sqrt{a^{2}+b^{2}}$ and $\phi \in[0,2 \pi)$ is such that $r \cos \phi=a$.

