
MATH 2121 — Linear algebra (Fall 2017) Lecture 18

1 Last time: methods to check diagonalisability

Let n be a positive integer and let A be an n× n matrix.

Remember that A is diagonalisable if A = PDP−1 where P is an invertible n × n matrix and D is an
n × n diagonal matrix. In other words, A is diagonalisable if A is similar to a diagonal matrix. When
this holds and

P =
[
v1 v2 . . . vn

]
and D =


λ1

λ2
. . .

λn


then Avi = PDP−1vi = PDei = λiPei = λivi for each i = 1, 2, . . . , n. In other words, if A = PDP−1 is
diagonalisable then the columns of P are a basis for Rn made up of eigenvectors of A.

Matrices which are not diagonalisable.

Proposition.

[
0 1
0 0

]
is not diagonalisable.

Proof. To check this directly, suppose ad− bc 6= 0 and compute[
a b
c d

] [
0 1
0 0

] [
a b
c d

]−1

=
1

ad− bc

[
a b
c d

] [
0 1
0 0

] [
d −b
−c a

]
=

1

ad− bc

[
−ac a2

−c2 ac

]
.

The only way the last matrix can be diagonal is if a = c = 0, but then we would have ad − bc = 0 so[
a b
c d

]
would not be invertible. Therefore

[
0 1
0 0

]
is not similar to a diagonal matrix.

Here is a second family of examples.

Let A be an n× n upper-triangular matrix with all entries on the diagonal equal to 1:

A =


1 ∗ . . . ∗

1
. . .

...
. . . ∗

1


All entries in A below the diagonal are zero, and the entries above the diagonal can be anything.

Proposition. If A 6= I is not the identity matrix then A is not diagonalisable.

Proof. The matrix

A− I =


0 ∗ . . . ∗

0
. . .

...
. . . ∗

0


has zeros on and below the diagonal.
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You can check that the matrix

(A− I)2 =


0 ∗ . . . ∗

0
. . .

...
. . . ∗

0




0 ∗ . . . ∗

0
. . .

...
. . . ∗

0

 =



0 0 ∗ . . . ∗

0 0
. . .

...
. . .

. . . ∗
0 0

0


has zeros on and belong the diagonal, as well as in all positions which are one row above a diagonal
position. In turn, (A− I)3 has zeros in all positions which are on or below the main diagonal, and which
are up to two rows above a diagonal position. Continuing these calculations, it follows that (A− I)k = 0
is the zero matrix whenever k ≥ n.

Now suppose A is diagonalisable so that A = PDP−1 for some diagonal matrix D. Then

A− I = PDP−1 − I = PDP−1 − PIP−1 = P (D − I)P−1

so
0 = (A− I)k = (P (D − I)P−1)k = P (D − I)kP−1

for all k ≥ n. Multiplying this equation on the left by P−1 and on the right by P gives

0 = (D − I)k

for all k ≥ n. Since D − I is diagonal, the only way (D − I)k can be the zero matrix for any k is if
D − I = 0 so D = I. But then A = PDP−1 = PIP−1 = PP−1 = I.

We now have more general tools to decide if a matrix is diagonalisable. Let A be an n× n matrix.

Theorem. Suppose λ1, λ2, . . . , λp are the distinct eigenvalues of A. Let di = dim Nul(A − λiI) for
i = 1, 2, . . . , p be the dimension of the corresponding eigenspace.

1. For each i = 1, 2, . . . , p it holds that di ≥ 1, and p ≤ d1 + d2 + · · ·+ dp ≤ n.

2. The matrix A is diagonalisable if and only if d1 + d2 + · · ·+ dp = n.

3. Suppose A is diagonalisable. Let Di = λiIdi
and define D as the n× n diagonal matrix

D =


D1

D2

. . .

Dp

 .
Choose n vectors

a1, a2, . . . , ad1 , b1, b2, . . . , bd2 , . . . , z1, z2, . . . , zdp

which are bases for Nul(A− λ1I), Nul(A− λ2I),, . . . , Nul(A− λpI). Then A = PDP−1 for

P =
[
a1 a2 . . . ad1 b1 b2 . . . bd2 . . . z1 z2 . . . zdp

]

Shortcut. If p = n then n ≤ d1 + d2 + · · · + dp ≤ n which implies d1 + d2 + · · · + dp = n, so A is
automatically diagonalisable.
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2 Complex eigenvalues

We write C for the set of complex numbers {a+ bi : a, b ∈ R}.

Each complex number is a formal linear combination of two real numbers a+ bi.

The symbol i is defined as the square root of −1, so i2 = −1.

We add complex numbers like this:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

We multiply complex numbers just like polynomials, but substituting −1 for i2:

(a+ bi)(c+ di) = ac+ (ad+ bc)i+ bd(i2) = (ac− bd) + (ad+ bc)i.

The order of multiplication doesn’t matter since (a+ bi)(c+ di) = (c+ di)(a+ bi).

Example. The complex numbers C contain the real numbers R as a subset. Numbers of the form bi ∈ C
with b ∈ R are called imaginary, though this is mostly just a historical convention.

Another way to think of the complex numbers is as the set of 2× 2 matrices[
a −b
b a

]
for a, b ∈ R.

We identify this matrix with the number a+ bi ∈ C.

Addition and multiplication of complex numbers correspond, in terms as these matrices, to the usual
notions of addition and multiplication:[

a −b
b a

]
+

[
c −d
d c

]
=

[
a+ c −(b+ d)
b+ d a+ c

]
and [

a −b
b a

] [
c −d
d c

]
=

[
ac− bd −(ad+ bc)
ad+ bc ac− bd

]
.

It can be helpful to draw the complex number a+ bi ∈ C as the vector

[
a
b

]
∈ R2.

The number i(a + bi) = −b + ai ∈ C then corresponds to the vector

[
−b
a

]
∈ R2, which is given by

rotating

[
a
b

]
ninety degrees counterclockwise. (Try drawing this yourself.)

The main reason it is helpful to work with complex numbers is the following theorem about polynomials.

Theorem (Fundamental theorem of algebra). Suppose

p(x) = anx
n + an−1x

n−1 + . . . a1x+ a0

is a polynomial of degree n (meaning an 6= 0) with coefficients a0, a1, . . . , an ∈ C, then there are n (not
necessarily distinct) numbers r1, r2, . . . , rn ∈ C such that

p(x) = (−1)nan(r1 − x)(r2 − x) · · · (rn − x).

One calls the numbers r1, r2, . . . , rn the roots of p(x).

A root r has multiplicity m if exactly m of the numbers r1, r2, . . . , rn are equal to r.
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The characteristic equation of an n× n matrix A is a degree n polynomial with real coefficients.

Counting multiplicities, det(A− xI) has exactly n roots but some roots may be complex numbers.

Define Cn as the set of vectors v =


v1
v2
...

vn

 with n rows and entries v1, v2, . . . , vn ∈ C.

Note that Rn ⊂ Cn.

The sum u + v and scalar multiple cv for u, v ∈ Cn and c ∈ C are defined exactly as for vectors in Rn,
except we use the addition and multiplication operations for C instead of R.

If A is an n× n matrix and v ∈ Cn then we define Av in the same way as when v ∈ Rn.

Definition. Let A be an n × n matrix. (The entries of A are real numbers.) Call λ ∈ C a (complex)
eigenvalue of A if there exists a nonzero vector v ∈ Cn such that Av = λv.

Equivalently, λ ∈ C is an eigenvalue of A if λ is a root of the characteristic polynomial det(A− xI).

This is no different from our first definition of an eigenvalue, except that now we permit λ to be in C.

Example. Let A =

[
0 −1
1 0

]
. Then det(A− xI) = x2 + 1 = (i− x)(−i− x).

The roots of this polynomial are the complex numbers i and −i. We have

A

[
1
−i

]
=

[
i
1

]
= i

[
1
−i

]
and A

[
1
i

]
=

[
−i

1

]
= −i

[
1
i

]

so i and −i are eigenvalues of A, with corresponding eigenvectors

[
1
−i

]
and

[
1
i

]
.

Example. Let A =

[
.5 −.6
.75 1.1

]
. Then

det(A− xI) = det

[
.5− x −.6
.75 1.1− x

]
= x2 − 1.6x+ 1.

Via the quadratic formula, we find that the roots of this characteristic polynomial are

x =
1.6±

√
1.62 − 4

2
= .8± .6i

since i =
√
−1. To find a basis for the (.8− .6i)-eigenspace, we row reduce as usual

A− (.8− .7i)I =

[
.5 −.6
.75 1.1

]
−
[
.8− .6i 0

0 .8− .6i

]
=

[
−.3 + .6i −.6

.75 .3 + .6i

]
∼
[
.5− i 1

1 .8(.5 + i)

]
∼
[

1 .8(.5 + i)
.5− i 1

]
∼
[

1 .8(.5 + i)
0 1− .8(.5 + i)(.5− i)

]
=

[
1 .8(.5 + i)
0 0

]
.

The last equality holds since .8(.5 + i)(.5− i) = .8(.25− i2) = .8(1.25) = 1.
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This implies that Ax = (.8 − .6i)x if and only if x =

[
x1
x2

]
where x1 + .8(.5 + i)x2 = 0, i.e., where

5x1 = −4(.5 + i)x2 = −(2 + 4i)x2. Satisfying these conditions is the vector

v =

[
−2− 4i

5

]
which is therefore an eigenvector for A with eigenvalue .8− .6i.

Similar calculations show that the vector

w =

[
−2 + 4i

5

]
is an eigenvector for A with eigenvalue .8 + .6i.

3 Complex conjugation

Given a, b ∈ R, we define the complex conjugate of the complex number a+ bi ∈ C to be

a+ bi = a− bi ∈ C.

If A is a matrix and v ∈ Cn then we define A and v as the matrix and vector given by replacing all entries
of A and v by their complex conjugates.

Lemma. Let z ∈ C. Then z = z if and only if z ∈ R.

Proof. Write z = a + bi for a, b ∈ R. Then z − z = (a + bi) − (a − bi) = 2bi. This is zero if and only if
b = 0, in which case z = a ∈ R.

Lemma. If y, z ∈ C then y + z = y + z and yz = y · z.

Hence if A is an m× n matrix (with real or complex entries) and v ∈ Cn then Av = Av.

Proof. Write y = a+ bi and z = c+ di for a, b, c, d ∈ R. Then

y + z = (a+ c) + (b+ d)i = (a+ c)− (b+ d)i = y + z

and
y · z = (ad− bc) + (ad+ bc)i = (ad− bc)− (ad+ bc)i = (a− bi)(c− di) = y · z.

Combining these properties shows that Av = Av.

Proposition. Suppose A is an n×n matrix with real entries. If A has a complex eigenvalue λ ∈ C with
eigenvector v ∈ Cn then v ∈ Cn is an eigenvector for A with eigenvalue λ.

Proof. Since A has real entries, it holds that A = A.

Therefore Av = Av = Av = λv = λv.

The real part of a complex number a+ bi ∈ C is <(a+ bi) = a ∈ R.

The imaginary part of a a+ bi ∈ C is =(a+ bi) = b ∈ R.

Define <(v) and =(v) for v ∈ Cn by applying <(·) and =(·) to each entry in v.
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Example. Let A =

[
.5 −.6
.75 1.1

]
as in our earlier example.

Let λ = .8− .6i and v =

[
−2− 4i

5

]
. Define

P =
[
<(v) =(v)

]
=

[
−2 −4

5 0

]
so that P−1 =

1

20

[
0 4
−5 −2

]
.

Let C = P−1AP so that A = PCP−1. We compute

C = P−1AP =
1

20

[
0 4
−5 −2

] [
.5 −.6
.75 1.1

] [
−2 −4

5 0

]
=

[
.8 −.6
.6 .8

]
.

Since .82 + .62 = .64 + .36 = 1, C is the rotation matrix

C =

[
cosφ − sinφ
sinφ cosφ

]
for φ ∈ [0, 2π) with cosφ = .8. Thus A = PCP−1 is similar to a rotation matrix.

This phenomenon holds for all real 2× 2 matrices.

Theorem. Let A be a real 2 × 2 matrix with a complex eigenvalue λ = a − bi (b 6= 0) and associated
eigenvector v ∈ C2. Then A = PCP−1 where

P =
[
<(v) =(v)

]
and C =

[
a −b
b a

]
.

Moreover, C = r

[
cosφ − sinφ
sinφ cosφ

]
where r =

√
a2 + b2 and φ ∈ [0, 2π) is such that r cosφ = a.
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