
MATH 2121 — Linear algebra (Fall 2017) Lecture 19

1 Last time: complex eigenvalues

Write C for the set of complex numbers {a+ bi : a, b ∈ R}.

Each complex number is a formal linear combination of two real numbers a+ bi.

The symbol i is defined as the square root of −1, so i2 = −1.

We add complex numbers like this:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

We multiply complex numbers just like polynomials, but substituting −1 for i2:

(a+ bi)(c+ di) = ac+ (ad+ bc)i+ bd(i2) = (ac− bd) + (ad+ bc)i.

The order of multiplication doesn’t matter since (a+ bi)(c+ di) = (c+ di)(a+ bi).

Draw a+ bi ∈ C as the vector

[
a
b

]
∈ R2.

Theorem (Fundamental theorem of algebra). Suppose

p(x) = anx
n + an−1x

n−1 + . . . a1x+ a0

is a polynomial of degree n (meaning an 6= 0) with coefficients a0, a1, . . . , an ∈ C. Then there are n (not
necessarily distinct) numbers r1, r2, . . . , rn ∈ C such that

p(x) = (−1)nan(r1 − x)(r2 − x) · · · (rn − x).

One calls the numbers r1, r2, . . . , rn the roots of p(x).

A root r has multiplicity m if exactly m of the numbers r1, r2, . . . , rn are equal to r.

Define Cn as the set of vectors with n-rows and entries in C, that is:

Cn =



v1
v2
...

vn

 : v1, v2, . . . , vn ∈ C

 .

We have Rn ⊂ Cn. The sum u+ v and scalar multiple cv for u, v ∈ Cn and c ∈ C are defined exactly as
for vectors in Rn, except we use the addition and multiplication operations for C instead of R. If A is an
n× n matrix and v ∈ Cn then we define Av in the same way as when v ∈ Rn.

Definition. Let A be an n × n matrix. A number λ ∈ C a (complex) eigenvalue of A if there exists a
nonzero vector v ∈ Cn such that Av = λv, or equivalently if det(A− λI) = 0.

If A is an n× n matrix then A has n possibly complex and not necessarily distinct eigenvalues, counting
repeated eigenvalues with their respective multiplicities.

Given a, b ∈ R, we define the complex conjugate of the complex number a+ bi ∈ C to be

a+ bi = a− bi ∈ C.

If A is a matrix and v ∈ Cn then we define A and v as the matrix and vector given by replacing all entries
of A and v by their complex conjugates.
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Lemma. Let z ∈ C. Then z = z if and only if z ∈ R.

Lemma. If y, z ∈ C then y + z = y + z and yz = y · z.

Hence if A is an m× n matrix (with real or complex entries) and v ∈ Cn then Av = Av.

If z = a+ bi ∈ C then zz = (a+ bi)(a− bi) = a2 + b2 ∈ R.

This indicates how to divide complex numbers:

1

a+ bi
=

a− bi
(a+ bi)(a− bi)

=
a− bi
a2 + b2

=
a

a2 + b2
− b

a2 + b2
i

and more generally
c+ di

a+ bi
= 1

a+bi · (c+ di).

Proposition. Suppose A is an n×n matrix with real entries. If A has a complex eigenvalue λ ∈ C with
eigenvector v ∈ Cn then v ∈ Cn is an eigenvector for A with eigenvalue λ.

The real part of a complex number a+ bi ∈ C is <(a+ bi) = a ∈ R.

The imaginary part of a a+ bi ∈ C is =(a+ bi) = b ∈ R.

Define <(v) and =(v) for v ∈ Cn by applying <(·) and =(·) to each entry in v.

Theorem. Let A be a real 2 × 2 matrix with a complex eigenvalue λ = a − bi (b 6= 0) and associated
eigenvector v ∈ C2. Then A = PCP−1 where

P =
[
<(v) =(v)

]
and C =

[
a −b
b a

]
.

2 Some final properties of eigenvalues and eigenvectors

Before moving on to to inner products and orthogonality, we prove a few remaining properties of the
(complex) eigenvalues and eigenvectors of a matrix which are worth remembering.

Lemma. Suppose we can write a polynomial in x in two ways as

(λ1 − x)(λ2 − x) · · · (λn − x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

for some complex numbers λ1, λ2, . . . , λn, a0, a1, . . . , an ∈ C. Then

an = (−1)n and an−1 = (−1)n−1(λ1 + λ2 + · · ·+ λn) and a0 = λ1λ2 · · ·λn.

Proof. The product (λ1 − x)(λ2 − x) · · · (λn − x) is a sum of 2n monomials corresponding to a choice of
either λi or −x for each of the n factors, multiplied together.

The only such monomial of degree n is (−x)n = (−1)nxn = anx
n so an = (−1)n.

The only such monomial of degree 0 is λ1λ2 · · ·λn = a0.

Finally, there are n monomial which arise of degree n− 1:

λ1(−x)n−1 + (−x)λ2(−x)n−2 + (−x)2λ3(−x)n−3 + · · ·+ (−x)n−1λn = (−1)n−1(λ1 + · · ·+ λn)xn−1

This sum must be equal to an−1x
n−1 so an−1 = (−1)n−1(λ1 + λ2 + · · ·+ λn).
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Let A be an n× n matrix.

Define tr(A) as the sum of the diagonal entries of A. Call tr(A) the trace of A.

Example. tr

 1 0 7
−1 2 8

2 4 3

 = 1 + 2 + 3 = 6.

Proposition. If A,B are n× n matrices then tr(A+B) = tr(A) + tr(B) and tr(AB) = tr(BA).

However, usually tr(AB) 6= tr(A)tr(B), unlike for the determinant.

Proof. The diagonal entries of A + B are given by adding together the diagonal entries of A with those
of B in corresponding positions, so it follows that tr(A+B) = tr(A) + tr(B).

Let Aij and Bij be the entries of A and B in positions (i, j). Then

(AB)jj =

n∑
i=1

AijBji and (BA)jj =

n∑
i=1

BijAji =

n∑
i=1

AjiBij

so

tr(AB) =

n∑
j=1

n∑
i=1

AijBji and tr(BA) =

n∑
j=1

n∑
i=1

AjiBij .

These sums are equal, since if we swap the roles of i and j in one expression we get the other.

Theorem. Let A be an n× n matrix (with entries in R or C).

Suppose the characteristic polynomial of A factors as

det(A− xI) = (λ1 − x)(λ2 − x) · · · (λn − x).

Then detA = λ1λ2 · · ·λn and trA = λ1 + λ2 + · · ·+ λn. In other words:

(a) The product of the (complex) eigenvalues of A, counted with multiplicity, is det(A).

(b) The sum of the (complex) eigenvalues of A, counted with multiplicity if tr(A).

Remark. The noteworthy thing about this theorem is that it is true for all matrices.

For a diagonalisable matrix the result is much easier to prove.

If A = PDP−1 where D is a diagonal matrix, then

det(A) = det(PDP−1) = det(P ) det(D) det(P )−1 = det(D) = λ1λ2 · · ·λn

since det(P ) det(P−1) = det(PP−1) = det(I) = 1. Also

tr(A) = tr(PDP−1) = tr(DP−1P ) = tr(D) = λ1 + λ2 + · · ·+ λn.

Before proving the theorem let’s see an example.

Example. If we have

A =

 0 1 0
−1 0 0

0 0 i
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then

 −i1
0

,

 0
0
1

, and

 i
1
0

 are eigenvectors of A with eigenvalues i, i, and −i. One can check that

det(A− xI) = −x3 + ix2 − x+ i = (i− x)2(−i− x),

so the theorem asserts that (i)(i)(−i) = −i3 = i = det(A) and i+ i+ (−i) = i = tr(A).

Proof of the theorem. We can write det(A− xI) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 for some numbers
a0, a1, . . . , an ∈ C. By the lemma it suffices to show that a0 = det(A) and an−1 = (−1)n−1tr(A).

The first claim is easy. The value of a0 is given by setting x = 0 in det(A− xI), so a0 = det(A).

Showing that an−1 = (−1)n−1tr(A) takes a little more work. Consider the coefficient an−1 of xn−1 in
the characteristic polynomial det(A− xI). Remember our formula

det(A− xI) =
∑
Z∈Sn

(−1)inv(Z)Π(Z,A− xI) (*)

where Π(Z,A − xI) is the product of the entries of A − xI in the nonzero positions of the permutation
matrix Z. The key observation to make is that if Z ∈ Sn is not the identity matrix then Z has at most
n− 2 nonzero entries on the diagonal, so Π(Z,A− xI) is a polynomial in x degree at most n− 2.

Therefore the formula (*) implies that

det(A− xI) = Π(I, A− xI) + polynomial terms of degree ≤ n− 2.

Let di be the diagonal entry of A in position (i, i). Then Π(I, A− xI) = (d1− x)(d2− x) · · · (dn− x) and
the coefficient of xn−1 in this polynomial must be equal to the coefficient of xn−1 in det(A− xI).

By the lemma, the coefficient of xn−1 in (d1 − x)(d2 − x) · · · (dn − x) is (−1)n−1(d1 + d2 + · · · + dn) =
(−1)n−1tr(A), and so an−1 = (−1)n−1tr(A).

Here’s one way we might use the preceding theorem.

Corollary. Suppose A is a 2× 2 matrix. Let p = detA and q = trA.

Then A has distinct eigenvalues if and only if q2 6= 4p.

Proof. Suppose a, b ∈ C are the eigenvalues of A (repeated with multiplicity).

Then ab = p and a+ b = q so a(q − a) = qa− a2 = p and therefore a2 − qa+ p = 0.

The quadratic formula implies that

a =
q ±

√
q2 − 4p

2
and b =

q ∓
√
q2 − 4p

2

so we have a 6= b if and only if q2 − 4p 6= 0.

Some other useful properties:

Proposition. If A is a square matrix then A and AT have the same eigenvalues.

Proof. In fact, A and AT has the same characteristic polynomial since

det(A− xI) = det((A− xI)T ) = det(AT − xIT ) = det(AT − xI).
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Proposition. Let A be a square matrix. Then A is invertible if and only if 0 is not one of its eigenvalues.
Assume A is invertible. Then A and A−1 have the same eigenvectors, but v is an eigenvector of A with
eigenvalue λ if and only if v is an eigenvector of A−1 with eigenvalue 1/λ.

Proof. 0 is an eigenvalue of A if and only if detA = 0 which occurs precisely when A is not invertible.

If A is invertible and Av = λv then v = A−1Av = A−1λv = λA−1v so A−1v = λ−1v.

Corollary. If A is invertible and diagonalisable then A−1 is diagonalisable.

Proof. If A is invertible and diagonalisable, then Rn has a basis consisting of eigenvectors of A, but this
basis is then also made up of eigenvectors of A−1, so A−1 is diagonalisable.

Corollary. If A is diagonalisable then AT is diagonalisable.

Proof. If A = PDP−1 then AT = (PDP−1)T = (P−1)TDTPT = QEQ−1 for the invertible matrix
Q = (P−1)T = (PT )−1 and the diagonal matrix E = DT .

3 Inner products and orthogonality

We return (for the most part) to the setting of vectors in Rn and matrices with real entries.

Definition. The inner product (also called the dot product) of two vectors

u =


u1
u2
...

un

 and


v1
v2
...

vn


in Rn is the scalar

u • v = u1v1 + u2v2 + · · ·+ unvn.

Note that u • v = uT v = vTu = v • u.

For example,

 2
−5
−1

 •
 3

2
−3

 = 6− 10 + 3 = −1.

In the textbook, the inner product is printed more like “u · v.”

This means the same thing as what I’m writing here as “u • v.”

Some easy properties of the inner product.

Let u, v, w ∈ Rn and c ∈ R.

(a) u • v = v • u.

(b) (u+ v) • w = u • w + v • w.

(c) (cu) • v = c(u • v).

(d) v • v = v21 + v22 + · · ·+ v2n ≥ 0.

(e) if v • v = 0 ten v1 = v2 = · · · = vn = 0 ∈ R so v = 0 ∈ Rn.
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Definition. The length of a vector v ∈ Rn is the nonnegative real number

‖v‖ =
√
v • v =

√
v21 + v22 + · · ·+ v2n.

Although u • v can be any real number, we always have ‖v‖ ≥ 0.

For any v ∈ Rn it holds that ‖v‖2 = v • v and ‖cv‖ = |c|‖v‖ for c ∈ R.

Lemma. If v ∈ Rn then ‖v‖ = 0 if and only if v = 0.

Proof. The only way we can have ‖v‖ = 0 is if v1 = v2 = · · · = vn = 0.

A vector v ∈ Rn is a unit vector if ‖v‖ = 1.

Proposition. If v ∈ Rn is a nonzero vector then u = 1
‖v‖v ∈ Rn is a unit vector.

Proof. We have
∥∥∥ 1
‖v‖v

∥∥∥ = 1
‖v‖‖v‖ = 1.

We refer to u = 1
‖v‖v as the unit vector in the same direction as the nonzero vector v ∈ Rn.

Example. If

v =


1
−2

2
0


then ‖v‖ =

√
1 + 4 + 4 + 0 =

√
9 = 3 so

u =


1/3
−2/3

2/3
0


is the unit vector in the same direction as v.

The distance between two vectors u, v ∈ Rn is the length of the their difference ‖u− v‖.

Definition. Two vectors u, v ∈ Rn are orthogonal if u • v = 0.

To motivate this definition we consider what it means in 2 dimensions.

Suppose u =

[
a
b

]
and v =

[
x
y

]
are orthogonal vectors in R2, so that ax+ by = 0. Assume both u and

v are nonzero (since a zero vector is orthogonal to any vector and so is not very interesting to consider).

If a = 0 then we must have b 6= 0 = by, so y = 0 and u =

[
0
b

]
and v =

[
x
0

]
= −x

b

[
−b

0

]
.

If a 6= 0 then x = −b
a y so v =

[
− b

ay
y

]
= y

a

[
−b
a

]
.

We conclude the following from these cases:
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Proposition. If u, v ∈ R2 are orthogonal and u =

[
a
b

]
then v is a scalar multiple

[
−b
a

]
, which is

the vector obtained by rotating u counterclockwise by 90 degrees. Thus orthogonal vectors in R2 are
perpendicular/orthogonal in the usual sense of lines in planar geometry.

Suppose V ⊂ Rn is a subspace. The orthogonal complement of V is the set

V ⊥ = {w ∈ Rn : v • w = 0 for all v ∈ V }.

Pronounce “V ⊥” as “vee perp.”

Proposition. If V ⊂ Rn is a subspace then its orthogonal complement V ⊥ ⊂ Rn is also a subspace.

Proof. Since v • 0 = 0 for all v ∈ Rn it holds that 0 ∈ V ⊥.

If x, y ∈ V ⊥ and c ∈ R then v • cx = c(v • x) = 0 and v • (x+ y) = v • x+ v • y = 0 + 0 = 0 for all v ∈ V
so cx and x+ y both belong to V ⊥. Hence V ⊥ is a subspace.

The operation (·)⊥ relates the column space, null space, and transpose of a matrix in the following way:

Theorem. Suppose A is an m× n matrix. Then (ColA)⊥ = Nul(AT ).

Proof. Write A =
[
a1 a2 . . . an

]
where ai ∈ Rm. Let v ∈ Rn.

Then v ∈ (ColA)⊥ if and only if v • ai = aTi v = 0 for all i. This holds if and and only if

AT v =


aT1
aT2
...

aTn

 v = 0 ∈ Rm,

i.e., if and only if v ∈ Nul(AT ).

Here is our last result for today:

Lemma. Let V ⊂ Rn be a subspace . Suppose v1, v2, . . . , vk is a basis for V and w1, w2, . . . , wl is a basis
for V ⊥. Then the concatenated list of vectors v1, v2, . . . , vk, w1, w2, . . . , wl is linearly independent.

Later, we will show that actually k + l = n so these linearly independent vectors are a basis for Rn.

Proof. The only way that the vectors v1, v2, . . . , vk, w1, w2, . . . , wl can be linearly dependent is if we could
write

a1v1 + · · ·+ akvk = b1w1 + · · ·+ blwl

for some coefficients a1, a2, . . . , ak, b1, b2, . . . , bl ∈ R which are not all zero. But then there would exist a
nonzero vector in both V and V ⊥, which is impossible since any u ∈ V ∩ V ⊥ has u • u = 0 so u = 0.
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