1 Last time: orthogonal vectors and projections

The inner product or dot product of two vectors

$$
u=\left[\begin{array}{r}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{r}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

in \mathbb{R}^{n} is the scalar $u \bullet v=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}=u^{T} v=v^{T} u=v \bullet u$.

The length of a vector $v \in \mathbb{R}^{n}$ is the nonnegative real number

$$
\|v\|=\sqrt{v \bullet v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

A vector with length 1 is a unit vector. Note that $\|v\|^{2}=v \bullet v$.

Two vectors $u, v \in \mathbb{R}^{n}$ are orthogonal if $u \bullet v=0$.
Pythagorean Theorem. Two vectors $u, v \in \mathbb{R}^{n}$ are orthogonal if and only if $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.
In \mathbb{R}^{2}, two vectors are orthogonal if and only if they belong to perpendicular lines through the origin.
The orthogonal complement of a subspace $V \subset \mathbb{R}^{n}$ is the subspace V^{\perp} whose elements are the vectors $w \in \mathbb{R}^{n}$ such that $w \bullet v=0$ for all $v \in V$. The only vector that is in both V and V^{\perp} is the zero vector.

We have $\{0\}^{\perp}=\mathbb{R}^{n}$ and $\left(\mathbb{R}^{n}\right)^{\perp}=\{0\}$. If A is an $m \times n$ matrix then $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$. We also showed last time that that $\operatorname{dim} V^{\perp} \leq n-\operatorname{dim} V$.

A list of vectors $u_{1}, u_{2}, \ldots, u_{p} \in \mathbb{R}^{n}$ is orthogonal if $u_{i} \bullet u_{j}=0$ whenever $1 \leq i<j \leq p$.
Theorem. Any list of orthogonal nonzero vectors is linearly independent and so is an orthogonal basis of the subspace they span.

If $u_{1}, u_{2}, \ldots, u_{p}$ is an orthogonal basis for a subspace $V \subset \mathbb{R}^{n}$ and $y \in V$, then $y=c_{1} u_{2}+c_{2} u_{2}+\cdots+c_{p} u_{p}$ where the coefficients $c_{1}, c_{2}, \ldots, c_{p} \in \mathbb{R}$ are defined by

$$
c_{i}=\frac{y \bullet u_{i}}{u_{i} \bullet u_{i}} .
$$

It is helpful to see work through statement for the standard orthogonal basis $e_{1}, e_{2}, \ldots, e_{n}$ for \mathbb{R}^{n}. If

$$
y=\left[\begin{array}{r}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=y_{1} e_{1}+y_{2} e_{2}+\cdots+y_{n} e_{n}
$$

then $y=c_{1} e_{1}+c_{2} e_{2}+\cdots+c_{n} e_{n}$ where $c_{i}=\frac{y \bullet e_{i}}{e_{i} \bullet e_{i}}$. But $e_{i} \bullet e_{i}=1$ and $y \bullet e_{i}=y_{i}$, so we just have $c_{i}=y_{i}$.
Let $L \subset \mathbb{R}^{n}$ be a one-dimensional subspace.
Then $L=\mathbb{R}-\operatorname{span}\{u\}$ for any nonzero vector $u \in L$.
Let $y \in \mathbb{R}^{n}$. The orthogonal projection of y onto L is the vector

$$
\operatorname{proj}_{L}(y)=\frac{y \bullet u}{u \bullet u} u \quad \text { for any } 0 \neq u \in L
$$

The value of $\operatorname{proj}_{L}(y)$ does not dependent on the choice of the nonzero vector u.
The component of y orthogonal to L is the vector $z=y-\operatorname{proj}_{L}(y)$.

Proposition. The only vector $\widehat{y} \in \operatorname{proj}_{L}(y)$ with $y-\widehat{y} \in L^{\perp}$ is the orthogonal projection $\widehat{y}=\operatorname{proj}_{L}(y)$.
Proof. If $u \in L$ is nonzero then $y-\operatorname{proj}_{L}(y)=y-\frac{y \bullet u}{u \bullet u} u$ and it holds that

$$
\left(y-\frac{y \bullet u}{u \bullet u} u\right) \bullet u=y \bullet u-\frac{y \bullet u}{u \bullet u} u \bullet u=y \bullet u-y \bullet u=0 .
$$

To see that $\operatorname{proj}_{L}(y)$ is the only vector in L with this property, suppose $\widehat{y} \in L$ is such that $y-\widehat{y} \in L^{\perp}$. Then $(y-\widehat{y}) \bullet \widehat{y}=y \bullet \widehat{y}-\widehat{y} \bullet \widehat{y}=0$ so $y \bullet \widehat{y}=\widehat{y} \bullet \widehat{y}$. But then $\widehat{y}=\frac{y \bullet u}{u \bullet u} u=\operatorname{proj}_{L}(y)$ for $u=\widehat{y} \in L$.

Example. If $y=\left[\begin{array}{l}7 \\ 6\end{array}\right]$ and $L=\mathbb{R}$-span $\left\{\left[\begin{array}{l}4 \\ 2\end{array}\right]\right\}$ then

$$
\operatorname{proj}_{L}(y)=\frac{\left[\begin{array}{l}
7 \\
6
\end{array}\right] \bullet\left[\begin{array}{l}
4 \\
2
\end{array}\right]}{\left[\begin{array}{l}
4 \\
2
\end{array}\right] \bullet\left[\begin{array}{l}
4 \\
2
\end{array}\right]}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\frac{28+12}{16+4}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right]
$$

Check that

$$
\left(\left[\begin{array}{l}
7 \\
6
\end{array}\right]-\left[\begin{array}{l}
8 \\
4
\end{array}\right]\right) \bullet\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2
\end{array}\right] \bullet\left[\begin{array}{l}
4 \\
2
\end{array}\right]=0
$$

2 Orthonormal vectors

A set of vectors $u_{1}, u_{2}, \ldots, u_{p}$ is orthonormal if the vectors are orthogonal and each vector is a unit vector. In other words, if $u_{i} \bullet u_{j}=0$ when $i \neq j$ and $u_{i} \bullet u_{i}=1$ for all i.
An orthonormal basis of a subspace is a basis which is orthonormal.
Example. The standard basis $e_{1}, e_{2}, \ldots, e_{n}$ is an orthonormal basis for \mathbb{R}^{n}.
Example. The vectors $v_{1}=\frac{1}{\sqrt{11}}\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], v_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right]$, and $v_{3}=\frac{1}{\sqrt{66}}\left[\begin{array}{r}-1 \\ -4 \\ 7\end{array}\right]$ form another orthonormal basis for \mathbb{R}^{3}.

Theorem. Let U be an $m \times n$ matrix. The columns of U are orthonormal vectors if and only if $U^{T} U=I_{n}$. If U is square then its columns are orthonormal if and only if $U^{T}=U^{-1}$.

Proof. Suppose $U=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right]$ where each $u_{i} \in \mathbb{R}^{n}$. The entry in position (i, j) of $U^{T} U$ is then $u_{i}^{T} u_{j}=u_{i} \bullet u_{j}$. Therefore $u_{i} \bullet u_{i}=1$ and $u_{i} \bullet u_{j}=0$ for all $i \neq j$ if and only if $U^{T} U$ is the $n \times n$ identity matrix.

Theorem. Let U be an $m \times n$ matrix with orthonormal columns. Suppose $x, y \in \mathbb{R}^{n}$.

1. $\|U x\|=\|x\|$.
2. $(U x) \bullet(U y)=x \bullet y$.
3. $(U x) \bullet(U y)=0$ if and only if $x \bullet y=0$.

Proof. The first and third statements are special cases of the second since $\|U x\|=\|x\|$ if and only if $(U x) \bullet(U x)=x \bullet x$. The second statement holds since $(U x) \bullet(U y)=x^{T} u^{T} U y=x^{T} I_{n} y=x^{T} y=x \bullet y$.

Somewhat confusingly, a square matrix U with orthonormal columns is called an orthogonal matrix.

3 Orthogonal projections onto subspaces

We have already seen that if $y \in \mathbb{R}^{n}$ and $L \subset \mathbb{R}^{n}$ is a 1-dimensional subspace then y can be written uniquely as $y=\widehat{y}+z$ where $\widehat{y} \in L$ and $z \in L^{\perp}$.

This generalises to arbitrary subspaces as follows:
Theorem. Let $W \subset \mathbb{R}^{n}$ be any subspace. Let $y \in \mathbb{R}^{n}$. Then there are unique vectors $\widehat{y} \in W$ and $z \in W^{\perp}$ such that $y=\widehat{y}+z$.

If $u_{1}, u_{2}, \ldots, u_{p}$ is an orthogonal basis for W then

$$
\begin{equation*}
\widehat{y}=\frac{y \bullet u_{1}}{u_{1} \bullet u_{1}} u_{1}+\frac{y \bullet u_{2}}{u_{2} \bullet u_{2}} u_{2}+\cdots+\frac{y \bullet u_{p}}{u_{p} \bullet u_{p}} u_{p} \quad \text { and } \quad z=y-\widehat{y} . \tag{*}
\end{equation*}
$$

It doesn't matter which orthogonal basis is chosen for W; this formula gives the same value for \widehat{y} and z.
Proof. To prove the theorem, we need to assume that W has an orthogonal basis. This nontrivial fact will be proved later in this lecture. Fix one such basis $u_{1}, u_{2}, \ldots, u_{p} \in W$.
Define \widehat{y} by the given formula. Then $\widehat{y} \in W$ and

$$
(y-\widehat{y}) \bullet u_{i}=y \bullet u_{i}-\frac{y \bullet u_{i}}{u_{i} \bullet u_{i}} u_{i} \bullet u_{i}=0
$$

for each $i=1,2, \ldots, p$, so $y-\widehat{y} \in W^{\perp}$.
To show uniqueness, suppose $y=\widehat{u}+v$ where $\widehat{u} \in W$ and $v \in W^{\perp}$. Then $\widehat{u}-\widehat{y}=v-z$. But $\widehat{u}-\widehat{y}$ is in W while $v-z$ is in W^{\perp}, so both expressions must be zero as $W \cap W^{\perp}=\{0\}$. This means we must have $\widehat{u}=\widehat{y}$ and $v=z$.

Definition. The vector \widehat{y}, defined relative to y and W by the formula $\left(^{*}\right)$ in the preceding theorem, is the orthogonal projection of y onto W. From now on we will usually write

$$
\operatorname{proj}_{W}(y)=\widehat{y}
$$

to refer to this vector.
Corollary. If $W \subset \mathbb{R}^{n}$ is any subspace then $\operatorname{dim} W^{\perp}=n-\operatorname{dim} W$.
Proof. The preceding theorem shows that W and W^{\perp} together span \mathbb{R}^{n}. Therefore the union of any basis for W with a basis for W^{\perp} also spans \mathbb{R}^{n}. This size of such a union is at most $\operatorname{dim} W+\operatorname{dim} W^{\perp}$ (since $\operatorname{dim} W$ and $\operatorname{dim} W^{\perp}$ are the sizes of the two bases that we are combining) and at least n (since fewer than n vectors cannot span \mathbb{R}^{n}), so $n \leq \operatorname{dim} W+\operatorname{dim} W^{\perp}$. This means that

$$
\operatorname{dim} W^{\perp} \geq n-\operatorname{dim} W
$$

We showed last time that $\operatorname{dim} W^{\perp} \leq n-\operatorname{dim} W$, so $\operatorname{dim} W^{\perp}=n-\operatorname{dim} W$.
$\underline{\text { Properties of orthogonal projections onto a subspace } W \subset \mathbb{R}^{n}}$.
Fact. If $y \in W$ then $\operatorname{proj}_{W}(y)=y$. If $y \in W^{\perp}$ then $\operatorname{proj}_{W}(y)=0$.
Proposition. If $v \in W$ and $y \in \mathbb{R}^{n}$ and $v \neq \operatorname{proj}_{W}(y)$ then $\left\|y-\operatorname{proj}_{W}(y)\right\|<\|y-v\|$. In words: the projection $\operatorname{proj}_{W}(y)$ is the vector in W which is closest to y.

Proof. Let $\widehat{y}=\operatorname{proj}_{W}(y)$. Then $y-v=(y-\widehat{y})+(\widehat{y}-v)$. The first term in parentheses is in W^{\perp} while the second term is in W. Therefore by the Pythagorean theorem we have

$$
\|y-v\|^{2}=\|y-\widehat{y}\|^{2}+\|\widehat{y}-v\|^{2}>\|y-\widehat{y}\|^{2}
$$

since $\|\widehat{y}-v\|>0$.

Fact. Suppose $u_{1}, u_{2}, \ldots, u_{p}$ is an orthonormal basis of W. Then

$$
\operatorname{proj}_{W}(y)=\left(y \bullet u_{1}\right) u_{1}+\left(y \bullet u_{2}\right) u_{2}+\cdots+\left(y \bullet u_{p}\right) y_{p}
$$

If $U=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{p}\end{array}\right]$ then $\operatorname{proj}_{W}(y)=U U^{T} y$.

4 The Gram-Schmidt process

The Gram-Schmidt process is an important algorithm which takes an arbitrary basis for some subspace of \mathbb{R}^{n} as input, and produces an orthogonal basis of the same subspace as output.

Theorem (Gram-Schmidt process). Let $W \subset \mathbb{R}^{n}$ be a nonzero subspace.
Then W has an orthogonal basis.
(The zero subspace $\{0\}$ has an orthogonal basis given by the empty set, but we exclude this trivial case.)
Suppose $x_{1}, x_{2}, \ldots, x_{p}$ is any basis for W. Then an orthogonal basis is given by the vectors $v_{1}, v_{2}, \ldots, v_{p}$ defined by the following formulas:

$$
\begin{aligned}
& v_{1}=x_{1} . \\
& v_{2}=x_{2}-\frac{x_{2} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1} . \\
& v_{3}=x_{3}-\frac{x_{3} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{3} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2} . \\
& v_{4}=x_{4}-\frac{x_{4} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{4} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}-\frac{x_{4} \bullet v_{3}}{v_{3} \bullet v_{3}} v_{3} . \\
& \vdots \\
& v_{p}=x_{p}-\frac{x_{p} \bullet v_{1}}{v_{1} \bullet v_{1}}-\frac{x_{p} \bullet v_{2}}{v_{2} \bullet v_{2}}-\cdots-\frac{x_{p} \bullet v_{p-1}}{v_{p-1} \bullet v_{p-1}} v_{p-1} .
\end{aligned}
$$

These formulas are inductive: to compute any v_{i}, you have to have already computed $v_{1}, v_{2}, \ldots, v_{i-1}$.

More strongly, we can say the following. Let $W_{i}=\mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ for each $i=1,2, \ldots, p$. Then $v_{1}, v_{2}, \ldots, v_{i}$ is an orthogonal basis for W_{i}, and $v_{i+1}=x_{i+1}-\operatorname{proj}_{W_{i}}\left(x_{i+1}\right)$.

Proof. Our proof of the existence of orthogonal projections relies on this theorem.
To avoid circular arguments, define

$$
\operatorname{proj}_{W_{i}}(y)=\frac{y \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}+\frac{y \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}+\cdots+\frac{y \bullet v_{i}}{v_{i} \bullet v_{i}} v_{i}
$$

for $i=1,2, \ldots, p$ and $y \in \mathbb{R}^{n}$.
We want to show that $v_{1}, v_{2}, \ldots, v_{i}$ is an orthogonal basis for W_{i} for each i.
If we assume that this is true for any particular value of i, then the formula $v_{i+1}=x_{i+1}-\operatorname{proj}_{W_{i}}\left(x_{i+1}\right)$ automatically holds, which means that $v_{i+1} \in W_{i}^{\perp}$ so $v_{1}, v_{2}, \ldots, v_{i}, v_{i+1}$ is also an orthogonal set, and therefore an orthogonal basis for W_{i+1}.
The single vector $v_{1}=x_{1}$ is necessarily an orthogonal basis for $W_{1}=\mathbb{R}-\operatorname{span}\left\{v_{1}\right\}$.
Therefore v_{1}, v_{2} is an orthogonal basis for W_{2}, which means that v_{1}, v_{2}, v_{3} is an orthogonal basis for W_{3}, which means \ldots continuing in this way \ldots that $v_{1}, v_{2}, \ldots, v_{i}$ is an orthogonal basis for W_{i} for each $i=1,2, \ldots, p$. In particular $v_{1}, v_{2}, \ldots, v_{p}$ is an orthogonal basis for $W_{p}=W$.

Remark. To find an orthonormal basis for a subspace W, first find an orthogonal basis $v_{1}, v_{2}, \ldots, v_{p}$. Then replace each vector v_{i} by $u_{i}=\frac{1}{\left\|v_{i}\right\|} v_{i}$. The vectors $u_{1}, u_{2}, \ldots, u_{p}$ will then be an orthonormal basis.

Example. Suppose $x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ and $x_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]$ and $x_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$.
These vectors are linearly independent and so are a basis for the subspace $W=\mathbb{R}$-span $\left\{x_{1}, x_{2}, x_{3}\right\}$.
To compute an orthogonal basis for W, we carry out the Gram-Schmit process as follows:

1. First let $v_{1}=x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$.
2. Next let $v_{2}=x_{2}-\frac{x_{2} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]-\frac{3}{4}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{r}-3 / 4 \\ 1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right]$.
3. Finally let $v_{3}=x_{3}-\frac{x_{3} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{3} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]-\frac{2}{3}\left[\begin{array}{r}-3 / 4 \\ 1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right]=\left[\begin{array}{r}0 \\ -2 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right]$.

The vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{r}
-3 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right], \quad v_{3}=\left[\begin{array}{r}
0 \\
-2 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right]
$$

then form an orthogonal basis for W.

We note one final result related to the Gram-Schmidt process.

Theorem (QR factorisation). Let A be an $m \times n$ matrix with linearly independent columns. Then $A=Q R$ where Q is an $m \times n$ matrix whose columns are an orthonormal basis for $\operatorname{Col} A$ and R is an $n \times n$ upper-triangular matrix with positive entries on the diagonal.
One calls the decomposition $A=Q R$ a $Q R$ factorisation of A.
Proof. Let $A=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$ where each $x_{i} \in \mathbb{R}^{m}$.
Perform the Gram-Schmidt process on $x_{1}, x_{2}, \ldots, x_{n}$ to get an orthogonal basis $v_{1}, v_{2}, \ldots, v_{n}$ for $\mathrm{Col} A$.
Then define $Q=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right]$ where $u_{i}=\frac{1}{\left\|v_{i}\right\|} v_{i}$ for $i=1,2, \ldots, n$.
These vectors have the property that \mathbb{R}-span $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}=\mathbb{R}$-span $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ for each $k=$ $1,2, \ldots, n$, and $x_{i} \in\left\|v_{i}\right\| u_{i}+\mathbb{R}$-span $\left\{u_{1}, u_{2}, \ldots, u_{i-1}\right\}$. It follows that $A=Q R$ for an upper-triangular matrix R of the desired form.

