## 1 Last time: symmetric matrices

A matrix $A$ is symmetric if $A^{T}=A$.
This happens if and only if $A$ is square and $A_{i j}=A_{j i}$ for all $i, j$.
Example. $\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ is symmetric but $\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$ is not.

A matrix $U$ is orthogonal if $U$ is invertible and $U^{-1}=U^{T}$.
This happens precisely when $U$ is square with orthonormal columns.

An $n \times n$ matrix $A$ is orthogonally diagonalisable if there is an orthogonal matrix $U$ and a diagonal matrix $D$ such that $A=U D U^{-1}=U D U^{T}$. In this case, the columns of $U$ are an orthonormal basis for $\mathbb{R}^{n}$ consisting of eigenvectors for $A$, and the eigenvalues of these eigenvectors are the diagonal entries of $D$.

The following summarises the main results from last time:

## Theorem.

(1) A square matrix is orthogonally diagonalisable if and only if it is symmetric.
(2) Eigenvectors with distinct eigenvalues of a symmetric matrix are orthogonal.
(3) All (complex) eigenvalues of a symmetric matrix $A$ are real, i.e., the characteristic polynomial of $A$ has all real roots and can be expressed as $\operatorname{det}(A-x I)=\left(\lambda_{1}-x\right)\left(\lambda_{2}-x\right) \cdots\left(\lambda_{n}-x\right)$ for some not-necessarily-distinct real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}$.

Example. Suppose $A=\left[\begin{array}{cc}a & b \\ b & a\end{array}\right]$ for some $a, b \in \mathbb{R}$.
How does the preceding theorem apply to this generic 2-by-2 matrix? Since

$$
\operatorname{det}(A-x I)=\operatorname{det}\left[\begin{array}{rr}
a-x & b \\
b & a-x
\end{array}\right]=(a-x)^{2}-b^{2}=(a-b-x)(a+b-x)
$$

the eigenvalues of $A$ are $a-b$ and $a+b$.
It's not too hard to guess the eigenvectors corresponding to these eigenvectors just by looking, though the usual method of finding eigenvectors by row reducing $A-\lambda I$ to find a basis for $\operatorname{Nul}(A-\lambda I)$ will also produce the answer.
Namely, the vector $\left[\begin{array}{r}1 \\ -1\end{array}\right]$ is an eigenvector for $A$ with eigenvalue $a-b$.
The vector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector for $A$ with eigenvalue $a+b$.
These eigenvectors are orthogonal, as predicted by the theorem. We can convert them to unit vectors by multiplying each vector by the reciprocal of its length. This gives the eigenvectors

$$
\left[\begin{array}{r}
1 \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
$$

which form an orthonormal basis for $\mathbb{R}^{2}$.
It follows that $A=U D U^{-1}=U D U^{T}$ where $U=\left[\begin{array}{rr}1 \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$ and $D=\left[\begin{array}{rr}a-b & 0 \\ 0 & a+b\end{array}\right]$.

## 2 Singular value decomposition

Today, we'll apply the results from last time to prove the existence of singular value decompositions, which will give a sort of approximate orthogonal diagonalisation for any matrix, not just symmetric ones.

Let $A$ be an $m \times n$ matrix.
Then $A^{T} A$ is a symmetric $n \times n$ matrix, since $\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A$.
It follows from our results last time that $A^{T} A$ has all real eigenvalues. A stronger statement holds:
Lemma. All eigenvalues of $A^{T} A$ are nonnegative real numbers.
Proof. Since $A^{T} A$ is symmetric, we know that the matrix can be orthogonally diagonalised. In other words, we know there exists an orthonormal basis $v_{1}, v_{2}, \ldots, v_{n}$ for $\mathbb{R}^{n}$ consisting of eigenvectors of $A^{T} A$. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}$ be the associated eigenvalues, so that $A^{T} A v_{i}=\lambda_{i} v_{i}$ for $i=1,2, \ldots, n$. Then

$$
\left\|A v_{i}\right\|^{2}=\left(A v_{i}\right) \bullet\left(A v_{i}\right)=\left(A v_{i}\right)^{T}\left(A v_{i}\right)=v_{i}^{T} A^{T} A v_{i}=v_{i}^{T}\left(\lambda_{i} v_{i}\right)=\lambda_{i}\left\|v_{i}\right\|^{2}=\lambda_{i}
$$

for each index $i$. Since $\left\|A v_{i}\right\| \geq 0$, it follows that every eigenvalue satisfies $\lambda_{i} \geq 0$.

The preceding lemma allows us to make the following definition.
Definition. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$ be the eigenvalues of $A^{T} A$ arranged in decreasing order. Define $\sigma_{i}=\sqrt{\lambda_{i}}$ for $i=1,2, \ldots, n$. We call the numbers $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$ the singular values of $A$.
In other words, the singular values of a matrix $A$ are the squares roots of the eigenvalues of $A^{T} A$, which are guaranteed to be nonnegative real numbers (and therefore always have well-defined square roots).

Example. Suppose $A=\left[\begin{array}{rrr}4 & 11 & 14 \\ 8 & 7 & -2\end{array}\right]$. Then $A^{T} A=\left[\begin{array}{rrr}80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200\end{array}\right]$.
This matrix $A^{T} A$ has characteristic polynomial

$$
\operatorname{det}\left(A^{T} A-x I\right)=(360-x)(90-x) x
$$

so the eigenvalues of $A^{T} A$ are $\lambda_{1}=360, \lambda_{2}=90$, and $\lambda_{3}=0$.
The singular values of $A$ are therefore $\sigma_{1}=\sqrt{360}, \sigma_{2}=\sqrt{90}$, and $\sigma_{3}=0$.

As a sequel to the lemma above, we have this nontrivial statement about the eigenvectors of $A^{T} A$.
Theorem. Suppose $v_{1}, v_{2}, \ldots, v_{n}$ is an orthonormal basis of $\mathbb{R}^{n}$ composed of eigenvectors of $A^{T} A$, arranged so that if $\lambda_{i} \in \mathbb{R}$ is the eigenvalue of $v_{i}$ then $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$.

Assume $A$ has $r$ nonzero singular values.
Then $A v_{1}, A v_{2}, \ldots, A v_{r}$ is an orthogonal basis for the column space of $A$ and consequently rank $A=r$.
Proof. Choose indices $i \neq j$. Then $v_{i} \bullet v_{j}=0$ so also $v_{i} \bullet \lambda_{j} v_{j}=0$.
Therefore $\left(A v_{i}\right)^{T}\left(A v_{j}=v_{i}^{T} A^{T} A v_{j}=v_{i}^{T}\left(\lambda_{j} v_{j}\right)=v_{i} \bullet \lambda_{j} v_{j}=0\right.$.
This shows that $A v_{1}, A v_{2}, \ldots, A v_{r}$ are orthogonal vectors in $\operatorname{Col} A$.
Since $\left\|A v_{i}\right\|=\sqrt{\lambda_{i}}>0$, these vectors are all nonzero and therefore are linearly independent.

To see that these vectors span the column space of $A$, suppose $y \in \operatorname{Col} A$. The $y=A x$ for some vector $x \in \mathbb{R}^{n}$, which we can write as $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$ for some coefficients $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{R}$. Then

$$
y=A x=c_{1} A v_{1}+c_{2} A v_{2}+\cdots+c_{r} A v_{r}+\underbrace{c_{r+1} A v_{r+1}+\cdots+c_{n} A v_{n}}_{=0}=c_{1} A v_{1}+c_{2} A v_{2}+\cdots+c_{r} A v_{r}
$$

since $A v_{i}=0$ as $\left\|A v_{i}\right\|=\sqrt{\lambda_{i}}=0$ for $i>r$. We conclude that $A v_{1}, A v_{2}, \ldots, A v_{r}$ is a basis for $\operatorname{Col} A$.

Corollary. The rank of a matrix is the same as its number of nonzero singular values.

We arrive at today's main result.
Theorem (Existence of SVDs). Let $A$ be an $m \times n$ matrix with rank $r$. Then we can write

$$
A=U \Sigma V^{T}
$$

where
(i) $U$ is some $m \times m$ orthogonal matrix.
(ii) $V$ is some $n \times n$ orthogonal matrix.
(iii) $\Sigma$ is the $m \times n$ matrix

$$
\Sigma=\left[\begin{array}{rr}
D & 0 \\
0 & 0
\end{array}\right] \quad \text { where } D=\left[\begin{array}{cccc}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & \ddots & \\
& & & \sigma_{r}
\end{array}\right]
$$

and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}$ are the singular values of $A$.
Comments. The three zeros in the matrix defining $\Sigma$ are implicitly blocks of zeros: the upper right 0 stands for an $r \times(n-r)$ zero submatrix, the lower right 0 stands for an $(m-r) \times(n-r)$ zero submatrix, and the lower left 0 stands for an $(m-r) \times r$ zero submatrix.
Another way to think of $\Sigma$ : place the diagonal matrix $D$ in the upper left corner of an $m \times n$ matrix, and then fill all of the remaining entries with zeros.
A factorisation $A=U \Sigma V^{T}$ with $U, V$, and $\Sigma$ as in (i)-(iii) is a singular value decomposition (SVD) of $A$.
The matrices $U$ and $V$ in an SVD $A=U \Sigma V^{T}$ are not uniquely determined by $A$, but $\Sigma$ is. The columns of $U$ are the left singular vectors of $A$ while the columns of $V$ are the right singular vectors of $A$.

Proof that an $S V D$ of $A$ exists. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the decreasing list of eigenvalues of $A^{T} A$.
Let $v_{1}, v_{2}, \ldots, v_{n}$ a list of corresponding orthonormal eigenvectors for $A^{T} A$.
Then $\lambda_{r+1}=\lambda_{r+2}=\cdots=\lambda_{n}=0$ are $A v_{1}, A v_{2}, \ldots, A v_{r}$ is an orthogonal basis for $\operatorname{Col} A$.
For each $i=1,2, \ldots, r$, define

$$
u_{i}=\frac{1}{\left\|A v_{i}\right\|} A v_{i}=\frac{1}{\sqrt{\lambda_{i}}} A v=\frac{1}{\sigma_{i}} A v_{i}
$$

Then $u_{1}, u_{2}, \ldots, u_{r}$ is an orthonormal basis for $\operatorname{Col} A$.
We can choose vectors $u_{r+1}, u_{r+2}, \ldots, u_{m} \in \mathbb{R}^{m}$ such that the extended list of vectors $u_{1}, u_{2}, \ldots, u_{m}$ is an orthonormal basis for $\mathbb{R}^{m}$. Make any such choice, and define

$$
U=\left[\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{m}
\end{array}\right] \quad \text { and } \quad V=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]
$$

These matrices are orthogonal by construction, and

$$
\begin{aligned}
A V & =\left[\begin{array}{llll}
A v_{1} & A v_{2} & \ldots A v_{n}
\end{array}\right] \\
& =\left[\begin{array}{llllll}
A v_{1} & A v_{2} & \ldots & A v_{r} & 0 & \ldots
\end{array}\right]=\left[\begin{array}{lllllll}
\sigma_{1} u_{1} & \sigma_{2} u_{2} & \ldots & \sigma_{r} u_{r} & 0 & \ldots & 0
\end{array}\right] .
\end{aligned}
$$

If $\Sigma$ is the matrix given in (iii), then we also have

$$
U \Sigma=\left[\begin{array}{lllllll}
\sigma_{1} u_{1} & \sigma_{2} u_{2} & \ldots & \sigma_{r} u_{r} & 0 & \ldots & 0
\end{array}\right]=A V
$$

so $U \Sigma V^{T}=A V V^{T}=A I=A$, which confirms the theorem statement.

We conclude this lecture with a small example, continuing from before.
Example. Again suppose $A=\left[\begin{array}{rrr}4 & 11 & 14 \\ 8 & 7 & -2\end{array}\right]$.
To find a singular value decomposition for $A$, there are three steps.

1. Find an orthogonal diagonalisation of $A^{T} A$.

In this case $A^{T} A$ is a $3 \times 3$ matrix, and by the usual methods (of row reducing $A-\lambda I$ to find a basis for $\operatorname{Nul}(A-\lambda I)$ for each eigenvalue $\lambda$ ), you can find that

$$
v_{1}=\left[\begin{array}{c}
1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right], \quad v_{2}=\left[\begin{array}{r}
-2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right], \quad \text { and } \quad v_{3}=\left[\begin{array}{r}
2 / 3 \\
-2 / 3 \\
1 / 3
\end{array}\right]
$$

is an orthonormal basis of $\mathbb{R}^{3}$ consisting of eigenvectors of $A^{T} A$, with corresponding eigenvalues $\lambda_{1}=360, \lambda_{2}=90$, and $\lambda_{3}=0$.
2. Set up $V$ and $\Sigma$.

Following the proof of the theorem, we have

$$
V=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{rrr}
1 & -2 & 2 \\
2 & -1 & -2 \\
2 & 2 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{rr}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]
$$

for $\sigma_{1}=\sqrt{\lambda_{1}}=\sqrt{360}$ and $\sigma_{2}=\sqrt{\lambda_{2}}=\sqrt{90}$.
Since $\Sigma$ must have the same size as $A$, we get

$$
\Sigma=\left[\begin{array}{rrr}
\sqrt{360} & 0 & 0 \\
0 & \sqrt{90} & 0
\end{array}\right]
$$

3. Construct $U$.

We have $U=\left[\begin{array}{ll}u_{1} & u_{2}\end{array}\right]$ where $u_{i}=\frac{1}{\sigma_{i}} A v_{i}$.
In this case you can compute that

$$
u_{1}=\frac{1}{\sqrt{360}}\left[\begin{array}{r}
18 \\
6
\end{array}\right] \quad \text { and } \quad u_{2}=\frac{1}{\sqrt{90}}\left[\begin{array}{r}
3 \\
-9
\end{array}\right]
$$

which means that we can write

$$
U=\frac{1}{\sqrt{10}}\left[\begin{array}{ll}
3 & -1 \\
1 & -3
\end{array}\right]
$$

Putting everything together produces the singular value decomposition

$$
A=U \Sigma V^{T}=\left[\begin{array}{rr}
3 / \sqrt{10} & 1 / \sqrt{10} \\
1 / \sqrt{10} & -3 / \sqrt{10}
\end{array}\right]\left[\begin{array}{rrr}
\sqrt{360} & 0 & 0 \\
0 & \sqrt{90} & 0
\end{array}\right]\left[\begin{array}{rrr}
1 / 3 & 2 / 3 & 2 / 3 \\
-2 / 3 & -1 / 3 & 2 / 3 \\
2 / 3 & -2 / 3 & 1 / 3
\end{array}\right]
$$

Be careful to note that the third matrix factor is the transpose $V^{T}$ rather than $V$.

