## 1 Last time: symmetric matrices

A matrix A is symmetric if  $A^T = A$ .

This happens if and only if A is square and  $A_{ij} = A_{ji}$  for all i, j.

**Example.** 
$$\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
 is symmetric but  $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$  is not.

A matrix U is orthogonal if U is invertible and  $U^{-1} = U^T$ .

This happens precisely when U is square with orthonormal columns.

An  $n \times n$  matrix A is orthogonally diagonalisable if there is an orthogonal matrix U and a diagonal matrix D such that  $A = UDU^{-1} = UDU^{T}$ . In this case, the columns of U are an orthonormal basis for  $\mathbb{R}^{n}$  consisting of eigenvectors for A, and the eigenvalues of these eigenvectors are the diagonal entries of D.

The following summarises the main results from last time:

## Theorem.

- (1) A square matrix is orthogonally diagonalisable if and only if it is symmetric.
- (2) Eigenvectors with distinct eigenvalues of a symmetric matrix are orthogonal.
- (3) All (complex) eigenvalues of a symmetric matrix A are real, i.e., the characteristic polynomial of A has all real roots and can be expressed as  $\det(A xI) = (\lambda_1 x)(\lambda_2 x)\cdots(\lambda_n x)$  for some not-necessarily-distinct real numbers  $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$ .

**Example.** Suppose 
$$A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
 for some  $a, b \in \mathbb{R}$ .

How does the preceding theorem apply to this generic 2-by-2 matrix? Since

$$\det(A - xI) = \det \begin{bmatrix} a - x & b \\ b & a - x \end{bmatrix} = (a - x)^2 - b^2 = (a - b - x)(a + b - x),$$

the eigenvalues of A are a - b and a + b.

It's not too hard to guess the eigenvectors corresponding to these eigenvectors just by looking, though the usual method of finding eigenvectors by row reducing  $A - \lambda I$  to find a basis for  $\operatorname{Nul}(A - \lambda I)$  will also produce the answer.

Namely, the vector  $\left[\begin{array}{c} 1 \\ -1 \end{array}\right]$  is an eigenvector for A with eigenvalue a-b.

The vector  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$  is an eigenvector for A with eigenvalue a + b.

These eigenvectors are orthogonal, as predicted by the theorem. We can convert them to unit vectors by multiplying each vector by the reciprocal of its length. This gives the eigenvectors

$$\begin{bmatrix} 1\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

1

which form an orthonormal basis for  $\mathbb{R}^2$ .

It follows that 
$$A = UDU^{-1} = UDU^T$$
 where  $U = \begin{bmatrix} 1\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$  and  $D = \begin{bmatrix} a-b & 0 \\ 0 & a+b \end{bmatrix}$ .

## 2 Singular value decomposition

Today, we'll apply the results from last time to prove the existence of *singular value decompositions*, which will give a sort of approximate orthogonal diagonalisation for any matrix, not just symmetric ones.

Let A be an  $m \times n$  matrix.

Then  $A^T A$  is a symmetric  $n \times n$  matrix, since  $(A^T A)^T = A^T (A^T)^T = A^T A$ .

It follows from our results last time that  $A^TA$  has all real eigenvalues. A stronger statement holds:

**Lemma.** All eigenvalues of  $A^TA$  are nonnegative real numbers.

*Proof.* Since  $A^TA$  is symmetric, we know that the matrix can be orthogonally diagonalised. In other words, we know there exists an orthonormal basis  $v_1, v_2, \ldots, v_n$  for  $\mathbb{R}^n$  consisting of eigenvectors of  $A^TA$ . Let  $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$  be the associated eigenvalues, so that  $A^TAv_i = \lambda_i v_i$  for  $i = 1, 2, \ldots, n$ . Then

$$||Av_i||^2 = (Av_i) \bullet (Av_i) = (Av_i)^T (Av_i) = v_i^T A^T Av_i = v_i^T (\lambda_i v_i) = \lambda_i ||v_i||^2 = \lambda_i$$

for each index i. Since  $||Av_i|| \ge 0$ , it follows that every eigenvalue satisfies  $\lambda_i \ge 0$ .

The preceding lemma allows us to make the following definition.

**Definition.** Let  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$  be the eigenvalues of  $A^T A$  arranged in decreasing order. Define  $\sigma_i = \sqrt{\lambda_i}$  for  $i = 1, 2, \dots, n$ . We call the numbers  $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$  the singular values of A.

In other words, the singular values of a matrix A are the squares roots of the eigenvalues of  $A^T A$ , which are guaranteed to be nonnegative real numbers (and therefore always have well-defined square roots).

**Example.** Suppose 
$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$
. Then  $A^T A = \begin{bmatrix} 80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200 \end{bmatrix}$ .

This matrix  $A^T A$  has characteristic polynomial

$$\det(A^T A - xI) = (360 - x)(90 - x)x$$

so the eigenvalues of  $A^TA$  are  $\lambda_1 = 360$ ,  $\lambda_2 = 90$ , and  $\lambda_3 = 0$ .

The singular values of A are therefore  $\sigma_1 = \sqrt{360}$ ,  $\sigma_2 = \sqrt{90}$ , and  $\sigma_3 = 0$ .

As a sequel to the lemma above, we have this nontrivial statement about the eigenvectors of  $A^{T}A$ .

**Theorem.** Suppose  $v_1, v_2, \ldots, v_n$  is an orthonormal basis of  $\mathbb{R}^n$  composed of eigenvectors of  $A^T A$ , arranged so that if  $\lambda_i \in \mathbb{R}$  is the eigenvalue of  $v_i$  then  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ .

Assume A has r nonzero singular values.

Then  $Av_1, Av_2, \ldots, Av_r$  is an orthogonal basis for the column space of A and consequently rank A = r.

*Proof.* Choose indices  $i \neq j$ . Then  $v_i \bullet v_j = 0$  so also  $v_i \bullet \lambda_i v_j = 0$ .

Therefore 
$$(Av_i)^T (Av_i = v_i^T A^T Av_i = v_i^T (\lambda_i v_i) = v_i \bullet \lambda_i v_i = 0.$$

This shows that  $Av_1, Av_2, \ldots, Av_r$  are orthogonal vectors in Col A.

Since  $||Av_i|| = \sqrt{\lambda_i} > 0$ , these vectors are all nonzero and therefore are linearly independent.

To see that these vectors span the column space of A, suppose  $y \in \text{Col } A$ . The y = Ax for some vector  $x \in \mathbb{R}^n$ , which we can write as  $x = c_1v_1 + c_2v_2 + \cdots + c_nv_n$  for some coefficients  $c_1, c_2, \ldots, c_n \in \mathbb{R}$ . Then

$$y = Ax = c_1 A v_1 + c_2 A v_2 + \dots + c_r A v_r + \underbrace{c_{r+1} A v_{r+1} + \dots + c_n A v_n}_{=0} = c_1 A v_1 + c_2 A v_2 + \dots + c_r A v_r$$

since  $Av_i = 0$  as  $||Av_i|| = \sqrt{\lambda_i} = 0$  for i > r. We conclude that  $Av_1, Av_2, \dots, Av_r$  is a basis for Col A.  $\square$ 

Corollary. The rank of a matrix is the same as its number of nonzero singular values.

We arrive at today's main result.

**Theorem** (Existence of SVDs). Let A be an  $m \times n$  matrix with rank r. Then we can write

$$A = U\Sigma V^T$$

where

- (i) U is some  $m \times m$  orthogonal matrix.
- (ii) V is some  $n \times n$  orthogonal matrix.
- (iii)  $\Sigma$  is the  $m \times n$  matrix

$$\Sigma = \left[ egin{array}{ccc} D & 0 \\ 0 & 0 \end{array} 
ight] \qquad ext{where } D = \left[ egin{array}{ccc} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_r \end{array} 
ight]$$

and  $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$  are the singular values of A.

**Comments.** The three zeros in the matrix defining  $\Sigma$  are implicitly blocks of zeros: the upper right 0 stands for an  $r \times (n-r)$  zero submatrix, the lower right 0 stands for an  $(m-r) \times (n-r)$  zero submatrix, and the lower left 0 stands for an  $(m-r) \times r$  zero submatrix.

Another way to think of  $\Sigma$ : place the diagonal matrix D in the upper left corner of an  $m \times n$  matrix, and then fill all of the remaining entries with zeros.

A factorisation  $A = U\Sigma V^T$  with U, V, and  $\Sigma$  as in (i)-(iii) is a singular value decomposition (SVD) of A.

The matrices U and V in an SVD  $A = U\Sigma V^T$  are not uniquely determined by A, but  $\Sigma$  is. The columns of U are the *left singular vectors* of A while the columns of V are the *right singular vectors* of A.

Proof that an SVD of A exists. Let  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$  be the decreasing list of eigenvalues of  $A^T A$ .

Let  $v_1, v_2, \ldots, v_n$  a list of corresponding orthonormal eigenvectors for  $A^T A$ .

Then  $\lambda_{r+1} = \lambda_{r+2} = \cdots = \lambda_n = 0$  are  $Av_1, Av_2, \ldots, Av_r$  is an orthogonal basis for Col A.

For each  $i = 1, 2, \ldots, r$ , define

$$u_i = \frac{1}{\|Av_i\|} Av_i = \frac{1}{\sqrt{\lambda_i}} Av = \frac{1}{\sigma_i} Av_i.$$

Then  $u_1, u_2, \ldots, u_r$  is an orthonormal basis for Col A.

We can choose vectors  $u_{r+1}, u_{r+2}, \dots, u_m \in \mathbb{R}^m$  such that the extended list of vectors  $u_1, u_2, \dots, u_m$  is an orthonormal basis for  $\mathbb{R}^m$ . Make any such choice, and define

$$U = [ u_1 \quad u_2 \quad \dots \quad u_m ]$$
 and  $V = [ v_1 \quad v_2 \quad \dots \quad v_n ].$ 

These matrices are orthogonal by construction, and

$$AV = \begin{bmatrix} Av_1 & Av_2 & \dots & Av_n \end{bmatrix}$$
  
= 
$$\begin{bmatrix} Av_1 & Av_2 & \dots & Av_r & 0 & \dots & 0 \end{bmatrix} = \begin{bmatrix} \sigma_1 u_1 & \sigma_2 u_2 & \dots & \sigma_r u_r & 0 & \dots & 0 \end{bmatrix}.$$

If  $\Sigma$  is the matrix given in (iii), then we also have

$$U\Sigma = \begin{bmatrix} \sigma_1 u_1 & \sigma_2 u_2 & \dots & \sigma_r u_r & 0 & \dots & 0 \end{bmatrix} = AV$$

so  $U\Sigma V^T = AVV^T = AI = A$ , which confirms the theorem statement.

We conclude this lecture with a small example, continuing from before.

**Example.** Again suppose  $A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$ .

To find a singular value decomposition for A, there are three steps.

1. Find an orthogonal diagonalisation of  $A^TA$ .

In this case  $A^TA$  is a  $3 \times 3$  matrix, and by the usual methods (of row reducing  $A - \lambda I$  to find a basis for  $\text{Nul}(A - \lambda I)$  for each eigenvalue  $\lambda$ ), you can find that

$$v_1 = \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix}, \quad \text{and} \quad v_3 = \begin{bmatrix} 2/3 \\ -2/3 \\ 1/3 \end{bmatrix}$$

is an orthonormal basis of  $\mathbb{R}^3$  consisting of eigenvectors of  $A^TA$ , with corresponding eigenvalues  $\lambda_1 = 360$ ,  $\lambda_2 = 90$ , and  $\lambda_3 = 0$ .

2. Set up V and  $\Sigma$ .

Following the proof of the theorem, we have

$$V = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}$$

for  $\sigma_1 = \sqrt{\lambda_1} = \sqrt{360}$  and  $\sigma_2 = \sqrt{\lambda_2} = \sqrt{90}$ .

Since  $\Sigma$  must have the same size as A, we get

$$\Sigma = \left[ \begin{array}{cc} \sqrt{360} & 0 & 0 \\ 0 & \sqrt{90} & 0 \end{array} \right].$$

3. Construct U.

We have  $U = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$  where  $u_i = \frac{1}{\sigma_i} A v_i$ .

In this case you can compute that

$$u_1 = \frac{1}{\sqrt{360}} \begin{bmatrix} 18 \\ 6 \end{bmatrix}$$
 and  $u_2 = \frac{1}{\sqrt{90}} \begin{bmatrix} 3 \\ -9 \end{bmatrix}$ 

which means that we can write

$$U = \frac{1}{\sqrt{10}} \left[ \begin{array}{cc} 3 & -1 \\ 1 & -3 \end{array} \right].$$

Putting everything together produces the singular value decomposition

$$A = U\Sigma V^T = \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix} \begin{bmatrix} \sqrt{360} & 0 & 0 \\ 0 & \sqrt{90} & 0 \end{bmatrix} \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ -2/3 & -1/3 & 2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}.$$

Be careful to note that the third matrix factor is the transpose  $V^T$  rather than V.