SOLUTIONS TO FINAL EXAMINATION - MATH 2121, FALL 2022

Problem 1. (20 points) This question has five parts. Each part asks you to provide a definition and then give a short derivation of a related property.
(a) Give the definition of a linear function $T: V \rightarrow W$ from a vector space V to a vector space W.

Then explain why your definition implies $T(0)=0$ if $T: V \rightarrow W$ is linear.

Solution:

T is linear if $T(x+y)=T(x)+T(y)$ and $T(c x)=c T(x)$ for all $x, y \in V$ nd $c \in \mathbb{R}$. If T is linear then $T(0)=T(0+0)=T(0)+T(0)$ so $T(0)=0$.
(b) Give the definition of the span of three vectors $u, v, w \in V$ in a vector space.

Then explain why your definition implies that u, v, and w are each contained in \mathbb{R}-span $\{u, v, w\}$.

Solution:

The span of the vectors is the set of all vectors of the form $a u+b v+c w$ for $a, b, c \in \mathbb{R}$.
Each individual vector is in the span because

$$
u=1 u+0 v+0 w, \quad v=0 u+1 v+0 w, \quad \text { and } \quad w=0 u+0 v+1 w
$$

(c) Define what it means for three vectors $u, v, w \in V$ in a vector space to be linearly dependent.

Then explain why your definition implies that u, v, w are linearly dependent if $v=0$.

Solution:

The vectors are linearly dependent if $a u+b v+c w=0$ for some numbers $a, b, c \in \mathbb{R}$ with $a \neq 0$ or $b \neq 0$ or $c \neq 0$.

If $v=0$ then $0 u+1 v+0 w=v=0$ so the vectors are linearly dependent.
(d) Define what it means for a subset H to be a subspace of a vector space V.

Then explain why your definition implies that the null space

$$
\operatorname{Nul}(A)=\left\{v \in \mathbb{R}^{n}: A v=0\right\}
$$

of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}.

Solution:

H is a subspace if $0 \in H$, and $x+y \in H$ and $c x \in H$ for all $x, y \in H$ and $c \in \mathbb{R}$.
Since $A 0=0$ we have $0 \in \operatorname{Nul}(A)$.
If $x, y \in \operatorname{Nul}(A)$ then $A(x+y)=A x+A y=0+0=0$ so $x+y \in \operatorname{Nul}(A)$.
If $c \in \mathbb{R}$ and $x \in \operatorname{Nul}(A)$ then $A(c x)=c(A x)=c 0=0$ so $c x \in \operatorname{Nul}(A)$.
Therefore $\operatorname{Nul}(A)$ is a subspace.
(e) Define what it means for a set of vectors to be a basis of a vector space V.

Then explain why your definition implies that $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ form a basis for \mathbb{R}^{3}.

Solution:

A set of vectors is a basis for a subspace if the vectors are linearly independent and every element of the subspace is a linear combination of the vectors.

The vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ are linearly independent since if

$$
a\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=0
$$

then

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=0
$$

so we must have $a=b=c=0$.
Similarly, any vector $\left[\begin{array}{c}a \\ b \\ c\end{array}\right] \in \mathbb{R}^{3}$ is the linear combination

$$
a\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

so the vectors are a basis for \mathbb{R}^{3}.

Problem 2. (10 points) Let $A=\left[\begin{array}{rrr}-1 & 3 & -9 \\ 2 & 4 & -2 \\ 3 & 2 & 5\end{array}\right]$.
Compute the reduced echelon form $\operatorname{RREF}(A)$ of A.
Then find a basis for $\operatorname{Col}(A)$ and a basis for $\operatorname{Nul}(A)$. What is the rank of A ?
Show all steps in your calculations to receive full credit.

Solution:

We start by row reducing

$$
\begin{aligned}
A= & {\left[\begin{array}{rrr}
-1 & 3 & -9 \\
2 & 4 & -2 \\
3 & 2 & 5
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
-1 & 3 & -9 \\
0 & 10 & -20 \\
3 & 2 & 5
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
-1 & 3 & -9 \\
0 & 10 & -20 \\
0 & 11 & -22
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{rrr}
-1 & 3 & -9 \\
0 & 1 & -2 \\
0 & 11 & -22
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
-1 & 3 & -9 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
-1 & 0 & -3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & 3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]=\operatorname{RREF}(A) .
\end{aligned}
$$

The pivot positions are in the first two columns, so these columns of A, namely
$\left[\begin{array}{r}-1 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 4 \\ 2\end{array}\right]$
are a basis for $\operatorname{Col}(A)$. Therefore $\operatorname{rank}(A)=2$.
We also deduce that $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=0$ if and only if

$$
0=\operatorname{RREF}(A)\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
x_{1}+3 x_{3} \\
x_{2}-2 x_{3} \\
0
\end{array}\right]
$$

which means that

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-3 x_{3} \\
2 x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{r}
-3 \\
2 \\
1
\end{array}\right] .
$$

Thus

$$
\left[\begin{array}{r}
-3 \\
2 \\
1
\end{array}\right]
$$

is a basis for $\operatorname{Nul}(A)$.

Problem 3. (20 points) This problem has four parts.
Consider the $2 n \times 2 n$ matrix

$$
A=\left[\begin{array}{llllllll}
a & & & & & & & b \\
& a & & & & & b & \\
& & \ddots & & & . & & \\
& & & a & b & & & \\
& & & b & a & & & \\
& & . & & & \ddots & & \\
b & b & & & & & a & \\
b & & & & & & a
\end{array}\right]
$$

that has $a \in \mathbb{R}$ in all positions on the main diagonal, $b \in \mathbb{R}$ in all positions on the main anti-diagonal, and zeros in all other positions. For example, if $n=3$ then

$$
A=\left[\begin{array}{llllll}
a & 0 & 0 & 0 & 0 & b \\
0 & a & 0 & 0 & b & 0 \\
0 & 0 & a & b & 0 & 0 \\
0 & 0 & b & a & 0 & 0 \\
0 & b & 0 & 0 & a & 0 \\
b & 0 & 0 & 0 & 0 & a
\end{array}\right]
$$

However, for this problem we consider n to be an unspecified positive integer.
(a) Compute the determinant of A.

Show all steps in your calculations to receive full credit.

Solution to part (a):

If $a=0$ then A becomes the diagonal matrix $b I$ after swapping columns 1 and $2 n$, columns 2 and $2 n-1, \ldots$, and columns n and $n+1$ (n swaps in total). Each swap multiples the determinant's value by -1 , so in this case

$$
\operatorname{det}(A)=(-1)^{n} \operatorname{det}(b I)=(-1)^{n} b^{2 n}=\left(-b^{2}\right)^{n} .
$$

If $a \neq 0$ then by adding $-\frac{b}{a}$ times row i to row $2 n+1-i$ for $i=1,2, \ldots, n$, we can transform A to a row equivalent triangular matrix B whose diagonal entries are a, a, \ldots, a (n times) then $a-b^{2} / a, a-b^{2} / a, \ldots, a-b^{2} / a$ (also n times). None of these row operations change the value of the determinant, so

$$
\operatorname{det}(A)=\operatorname{det}(B)=a^{n}\left(a-b^{2} / a\right)^{n}=\left(a^{n}-b^{2}\right)^{n}
$$

In both cases $\operatorname{det}(A)=\left(a^{2}-b^{2}\right)^{n}$.
(b) Find all eigenvalues of A.

Solution to part (b):

The eigenvalues of A are the roots of the characteristic polynomial $\operatorname{det}(A-x I)$. But $A-x I$ has the same form as A just with a replaced by $a-x$, so

$$
\operatorname{det}(A-x I)=\left((a-x)^{2}-b^{2}\right)^{n} .
$$

This polynomial factors as
$\operatorname{det}(A-x I)=\left((a-x)^{2}-b^{2}\right)^{n}=((a-b-x)(a+b-x))^{n}=(a-b-x)^{n}(a+b-x)^{n}$ so the only eigenvalues are $\lambda=a-b$ and $\lambda=a+b$.
(c) Find an orthogonal matrix U and a diagonal matrix D such that

$$
A=U D U^{\top}=U D U^{-1}
$$

(Remember that an orthogonal matrix has orthonormal columns).

Solution to part (c):

The vectors $e_{i}+e_{2 n+1-i}$ for $i=1,2,3, \ldots, n$ are eigenvectors with eigenvalue $a+b$.
The vectors $e_{i}-e_{2 n+1-i}$ for $i=n, \ldots, 3,2,1$ are eigenvectors with eigenvalue $a-b$.
These vectors are orthogonal and all of length $\sqrt{2}$. So one choice for U is

$$
U=\frac{1}{\sqrt{2}}\left[\begin{array}{cccccccc}
+1 & & & & & & & +1 \\
& +1 & & & & & +1 & \\
& & \ddots & & & . & & \\
& & & +1 & +1 & & & \\
& & . & & & +1 & & \\
& +1 & & & & \ddots & & \\
+1 & & & & & & -1 & \\
& & & & & & -1
\end{array}\right]
$$

and the corresponding value of D is

$$
D=\left[\begin{array}{ccccccc}
a+b & & & & & & \\
& a+b & & & & & \\
& & \ddots & & & & \\
& & & a+b & & & \\
& & & & a-b & & \\
& & & & & \ddots & \\
& & & & & & a-b \\
& & & & & & \\
& & & & a-b
\end{array}\right]
$$

(d) Find all values of $a, b \in \mathbb{R}$ such that A is invertible and compute A^{-1}.

Solution to part (d):

The matrix A is invertible if and only if its determinant is nonzero, which happens when $a^{2} \neq b^{2}$ or equivalently when $|a| \neq|b|$.

To compute A^{-1}, observe that A is secretly a block diagonal matrix composed of n copies of $\left[\begin{array}{cc}a & b \\ b & a\end{array}\right]$. The blocks are not in consecutive rows and columns, but in positions $\{i, 2 n+1-i\} \times\{i, 2 n+1-i\}$ for $i=1,2, \ldots, n$. Since

$$
\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]^{-1}=\frac{1}{a^{2}-b^{2}}\left[\begin{array}{rr}
a & -b \\
-b & a
\end{array}\right]
$$

it follows that

$$
A^{-1}=\frac{1}{a^{2}-b^{2}}\left[\begin{array}{rrrrrrr}
a & & & & & & \\
& a & & & & & -b \\
& & \ddots & & & . & \\
& & & a & -b & & \\
\\
& & & . & & & \\
& -b & & & & \ddots & \\
\\
& -b & & & & & \\
& & & \\
& & & & \\
& & & \\
&
\end{array}\right]
$$

when $|a| \neq|b|$.

Problem 4. (10 points) This problem has two parts.
(a) Determine the values of the constants $a, b \in \mathbb{R}$ such that the linear system

$$
\begin{cases}x_{1}+a x_{2}+2 x_{3} & =2 \\ 4 x_{1}-8 x_{2}+8 x_{3} & =b\end{cases}
$$

has (1) a unique solution, (2) infinitely many solutions, or (3) no solution.
Find the general solution in terms of a and b in cases (1) and (2).

Solution to part (a):

The augmented matrix of the given system is
$A=\left[\begin{array}{rrrr}1 & a & 2 & 2 \\ 4 & -8 & 8 & b\end{array}\right] \quad$ which is row equivalent to $\quad\left[\begin{array}{rrrr}1 & a & 2 & 2 \\ 0 & -8-4 a & 0 & b-8\end{array}\right]$.
If $-8-4 a=0 \neq b-8$ then there is a pivot in the last column so there are no solutions. Thus there are no solutions if $a=-2$ and $b \neq 8$.

If $a=-2$ and $b=8$ then

$$
\operatorname{RREF}(A)=\left[\begin{array}{rrrr}
1 & -2 & 2 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so there are infinitely many solutions, each of the form

$$
\left(x_{1}, x_{2}, x_{3}\right)=(2+2 y-2 z, y, z) \text { where } y, z \in \mathbb{R} \text { are arbitrary }
$$

If $a \neq-2$ then further row reduction gives
$\left[\begin{array}{rrrr}1 & a & 2 & 2 \\ 0 & -8-4 a & 0 & b-8\end{array}\right] \rightarrow\left[\begin{array}{rccc}1 & a & 2 & 2 \\ 0 & 1 & 0 & \frac{8-b}{8+4 a}\end{array}\right] \rightarrow\left[\begin{array}{lllr}1 & 0 & 2 & \frac{16+a b}{8+4 a} \\ 0 & 1 & 0 & \frac{8-b}{8+4 a}\end{array}\right]=\operatorname{RREF}(A)$.
This means there are again infinitely many solutions, each of the form

$$
\left(x_{1}, x_{2}, x_{3}\right)=\left(\frac{16+a b}{8+4 a}-2 z, \frac{8-b}{8+4 a}, z\right) \text { where } z \in \mathbb{R} \text { is arbitrary } .
$$

(b) Suppose A is a 3×3 matrix with all real entries.

The complex number $\lambda=3-2 i$ is an eigenvalue of A and $\operatorname{det}(A)=65$.
What is the trace of A ?
Explain how you found your answer to receive full credit.

Solution to part (b):

A must have two other eigenvalues of the form $3+2 i$ and $a+b i$ for some $a, b \in \mathbb{R}$. But then $\operatorname{det}(A)=(3-2 i)(3+2 i)(a+b i)=(9+4)(a+b i)=13 a+13 b i=65$ so $a=5$ and $b=0$. Therefore $\operatorname{tr}(A)=(3-2 i)+(3+2 i)+5=11$.

Problem 5. (15 points) This problem has five parts.
(a) Give an example of a diagonal square matrix that is not invertible.

Any square zero matrix will do, such as the 1×1 matrix [0].
(b) Give an example of a diagonalizable square matrix that is not diagonal.

An $n \times n$ triangular matrix with all distinct diagonal entries has n distinct eigenvalues so is diagonalizable. So one example is $\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$.
(c) Give an example of a triangular square matrix that is not diagonalizable.

We saw in class that any triangular-but-not-diagonal square matrix with equal diagonal entries is not diagonalizable. So any example is $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
(d) Give an example of an invertible square matrix that is not triangular.

Every permutation matrix is invertible, but only the identity matrix is triangular. So one example is $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
(e) Give an example of an orthogonal 2×2 matrix that is not a rotation matrix. The matrix $\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$ is orthogonal: its columns are orthonormal. It is not a rotation matrix since every rotation matrix $\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ has equal diagonal entries.

Problem 6. (15 points) This question has three parts.
(a) Find the orthogonal projection of the vector $v=\left[\begin{array}{l}5 \\ 2 \\ 4\end{array}\right]$ onto the subspace

$$
H=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \in \mathbb{R}^{3}: x+y+z=0\right\}
$$

Show all steps in your calculations to receive full credit.

Solution to part (a):

A basis for H is $\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]$ which we can convert to an orthogonal basis by setting

$$
x_{1}=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]
$$

and

$$
x_{2}=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]-\frac{\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right] \bullet\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]}{\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right] \bullet\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]}\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{r}
-1 / 2 \\
1 \\
-1 / 2
\end{array}\right]
$$

Then the projection is

$$
\begin{aligned}
\operatorname{proj}_{H}(v) & =\frac{v \bullet x_{1}}{x_{1} \bullet x_{1}} x_{1}+\frac{v \bullet x_{2}}{x_{2} \bullet x_{2}} x_{2} \\
& =\frac{1}{2}\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]+\frac{-5 / 2}{3 / 2}\left[\begin{array}{r}
-1 / 2 \\
1 \\
-1 / 2
\end{array}\right] \\
& =\left[\begin{array}{r}
1 / 2 \\
0 \\
-1 / 2
\end{array}\right]+\left[\begin{array}{r}
5 / 6 \\
-5 / 3 \\
5 / 6
\end{array}\right]=\left[\begin{array}{r}
8 / 6 \\
-5 / 3 \\
2 / 6
\end{array}\right]
\end{aligned}
$$

which simplifies to the answer

$$
\operatorname{proj}_{H}(v)=\left[\begin{array}{r}
4 / 3 \\
-5 / 3 \\
1 / 3
\end{array}\right] .
$$

(b) Find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line of best fit for the data points $(x, y)=(-1,0),(0,1),(1,2),(2,4)$.

Sketch a plot of the data points along with your line of best fit.

Solution to part (b):

We find β_{0} and β_{1} as the least-squares solution to the equation

$$
\left[\begin{array}{rr}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2 \\
4
\end{array}\right]
$$

The least-squares solution to this equation are the exact solutions to

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
2 \\
4
\end{array}\right]
$$

which simplifies to

$$
\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{r}
7 \\
10
\end{array}\right]
$$

Since $\left[\begin{array}{ll}4 & 2 \\ 2 & 6\end{array}\right]^{-1}=\frac{1}{24-4}\left[\begin{array}{rr}6 & -2 \\ -2 & 4\end{array}\right]=\frac{1}{10}\left[\begin{array}{rr}3 & -1 \\ -1 & 2\end{array}\right]$ the unique solution is

$$
\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\frac{1}{10}\left[\begin{array}{rr}
3 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{r}
7 \\
10
\end{array}\right]=\frac{1}{10}\left[\begin{array}{l}
11 \\
13
\end{array}\right]
$$

and the line of best fit is

$$
y=1.1+1.3 x \text {. }
$$

(For full points, a picture of this line and the data points should also be included.)
(c) Find $x, y \in \mathbb{R}$ that minimize the distance between $\left[\begin{array}{r}2 x \\ 0 \\ 2 x \\ 1\end{array}\right]$ and $\left[\begin{array}{r}2 \\ y \\ 2 y \\ y\end{array}\right]$.

Solution to part (c):

Minimizing the distance means to minimize

$$
\begin{aligned}
\left\|\left[\begin{array}{r}
2 x \\
0 \\
2 x \\
1
\end{array}\right]-\left[\begin{array}{r}
2 \\
y \\
2 y \\
y
\end{array}\right]\right\| & =\left\|\left[\begin{array}{r}
2 x \\
0 \\
2 x \\
y
\end{array}\right]-\left[\begin{array}{r}
2 \\
y \\
2 y \\
1
\end{array}\right]\right\|=\left\|\left[\begin{array}{r}
2 x \\
-y \\
2 x-2 y \\
y
\end{array}\right]-\left[\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right]\right\| \\
& =\left\|\left[\begin{array}{rr}
2 & 0 \\
0 & -1 \\
2 & -2 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]-\left[\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right]\right\| .
\end{aligned}
$$

But any vector that minimize this quantity is a least-squares solution

$$
\left[\begin{array}{rr}
2 & 0 \\
0 & -1 \\
2 & -2 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right]
$$

Such least-squares solutions are the exact solutions to

$$
\left[\begin{array}{rrrr}
2 & 0 & 2 & 0 \\
0 & -1 & -2 & 1
\end{array}\right]\left[\begin{array}{rr}
2 & 0 \\
0 & -1 \\
2 & -2 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{rrrr}
2 & 0 & 2 & 0 \\
0 & -1 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right]
$$

which simplifies to

$$
\left[\begin{array}{rr}
8 & -4 \\
-4 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

This equation has a unique solution

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{rr}
8 & -4 \\
-4 & 6
\end{array}\right]^{-1}\left[\begin{array}{l}
4 \\
1
\end{array}\right]=\frac{1}{32}\left[\begin{array}{ll}
6 & 4 \\
4 & 8
\end{array}\right]\left[\begin{array}{l}
4 \\
1
\end{array}\right]=\frac{1}{32}\left[\begin{array}{l}
28 \\
24
\end{array}\right]=\frac{1}{8}\left[\begin{array}{l}
7 \\
6
\end{array}\right]
$$

so the answer is $x=7 / 8$ and $y=3 / 4$.

Problem 7. (15 points)
Define $\mathbb{R}^{2 \times 2}$ to be the set of all 2×2 matrices with all real entries.
The set $\mathbb{R}^{2 \times 2}$ is a vector space. Define $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ by the formula

$$
T(A)=\left[\begin{array}{ll}
2 & 0 \\
2 & 2
\end{array}\right] A\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right]
$$

This is a linear function.
(a) Find a basis for the subspace range $(T)=\left\{T(A): A \in \mathbb{R}^{2 \times 2}\right\}$.

Solution to part (a):

The first thing to do is to compute a more explicit formula

$$
\begin{aligned}
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) & =\left[\begin{array}{ll}
2 & 0 \\
2 & 2
\end{array}\right]\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right] \\
& =\left[\begin{array}{rr}
2 a & 2 b \\
2 a+2 c & 2 b+2 d
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{rr}
4(a+b) & 2(a+b) \\
4(a+b+c+d) & 2(a+b+c+d)
\end{array}\right] .
\end{aligned}
$$

We see from that $T(A)$ always has the form $\left[\begin{array}{ll}4 x & 2 x \\ 4 y & 2 y\end{array}\right]$ where $x=a+b$ and $y=a+$ $b+c+d$ can be any two real numbers. So a basis for range (T) is $\left[\begin{array}{ll}4 & 2 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 4 & 2\end{array}\right]$.
(b) Find a basis for the subspace $\operatorname{kernel}(T)=\left\{A \in \mathbb{R}^{2 \times 2}: T(A)=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right\}$.

Solution to part (b):

To be in $\operatorname{kernel}(T)$, the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ must have $a+b=0$ and $a+b+c+d=$ $c+d=0$, meaning that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
-b & b \\
-d & d
\end{array}\right]=b\left[\begin{array}{rr}
-1 & 1 \\
0 & 0
\end{array}\right]+d\left[\begin{array}{rr}
0 & 0 \\
-1 & 1
\end{array}\right]
$$

So a basis for $\operatorname{kernel}(T)$ is $\left[\begin{array}{rr}-1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{rr}0 & 0 \\ -1 & 1\end{array}\right]$.
(c) Find all nonzero numbers $\lambda \in \mathbb{R}$ such that $T(A)=\lambda A$ for some nonzero matrix $A \in \mathbb{R}^{2 \times 2}$. For each of these nonzero eigenvalues λ, compute a basis for the subspace $\left\{A \in \mathbb{R}^{2 \times 2}: T(A)=\lambda A\right\}$.

Solution to part (c):

If the matrix

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{rr}
4(a+b) & 2(a+b) \\
4(a+b+c+d) & 2(a+b+c+d)
\end{array}\right]
$$

is a nonzero scalar multiple of

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then we must have $a=2 b$ and $c=2 d$. For

$$
T\left(\left[\begin{array}{cc}
2 b & b \\
2 d & d
\end{array}\right]\right)=\left[\begin{array}{rr}
12 b & 6 b \\
12(b+d) & 6(b+d)
\end{array}\right]
$$

to equal

$$
\lambda\left[\begin{array}{cc}
2 b & b \\
2 d & d
\end{array}\right]=\left[\begin{array}{cc}
2 \lambda b & \lambda b \\
2 \lambda d & \lambda d
\end{array}\right]
$$

we must have $\lambda=6$ and $b=0$. The only possibility for λ is $\lambda=6$ and then a basis for the corresponding eigenspace is $\left[\begin{array}{ll}0 & 0 \\ 2 & 1\end{array}\right]$.

Problem 8. (15 points) This question has three parts.
(a) Compute the singular values of the matrix $A=\left[\begin{array}{rrr}3 & 2 & 2 \\ 2 & 3 & -2\end{array}\right]$.

Solution to part (a):

A shortcut to solving this part is to realize that A and A^{\top} have the same nonzero singular values, that is, the nonzero singular values of A are the square roots of the eigenvalues of $A A^{\top}$. We have

$$
A A^{\top}=\left[\begin{array}{rrr}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right]\left[\begin{array}{rr}
3 & 2 \\
2 & 3 \\
2 & -2
\end{array}\right]=\left[\begin{array}{rr}
17 & 8 \\
8 & 17
\end{array}\right]
$$

so $\operatorname{det}\left(A A^{\top}-x I\right)=(17-x)^{2}-8^{2}=(25-x)(9-x)$ has roots $\lambda_{1}=25$ and $\lambda_{2}=9$. So that first two singular values of A are $\sigma_{1}=5$ and $\sigma_{2}=3$ while the third is $\sigma_{3}=0$ since A has rank two.
(b) Suppose $A=U \Sigma V^{\top}$ is a singular value decomposition with

$$
U=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
u_{4} & u_{5} & u_{6} \\
u_{7} & u_{8} & u_{9}
\end{array}\right], \quad \Sigma=\left[\begin{array}{rrr}
71 & 0 & 0 \\
0 & 31 & 0 \\
0 & 0 & 0
\end{array}\right] \quad V^{\top}=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3} \\
v_{4} & v_{5} & v_{6} \\
v_{7} & v_{8} & v_{9}
\end{array}\right]
$$

Find a basis for $\operatorname{Col}(A)$ and a basis for $\operatorname{NuI}(A)$.

Solution to part (b):

Since V^{\top} is invertible, $\left\{V^{\top} x: x \in \mathbb{R}^{3}\right\}=\mathbb{R}^{3}$, so
$\operatorname{Col}(A)=\left\{U \Sigma V^{\top} x: x \in \mathbb{R}^{3}\right\}$

$$
=\left\{U \Sigma x: x \in \mathbb{R}^{3}\right\}
$$

$$
=\left\{U\left[\begin{array}{r}
71 x_{1} \\
72 x_{2} \\
0
\end{array}\right]: x_{1}, x_{2} \in \mathbb{R}\right\}=\left\{U\left[\begin{array}{r}
x_{1} \\
x_{2} \\
0
\end{array}\right]: x_{1}, x_{2} \in \mathbb{R}\right\}
$$

$$
=\left\{x_{1}\left[\begin{array}{l}
u_{1} \\
u_{4} \\
u_{7}
\end{array}\right]+x_{2}\left[\begin{array}{l}
u_{2} \\
u_{5} \\
u_{8}
\end{array}\right]: x_{1}, x_{2} \in \mathbb{R}\right\}=\mathbb{R}-\operatorname{span}\left\{\left[\begin{array}{l}
u_{1} \\
u_{4} \\
u_{7}
\end{array}\right],\left[\begin{array}{l}
u_{2} \\
u_{5} \\
u_{8}
\end{array}\right]\right\}
$$

Thus $\left[\begin{array}{l}u_{1} \\ u_{4} \\ u_{7}\end{array}\right],\left[\begin{array}{l}u_{2} \\ u_{5} \\ u_{8}\end{array}\right]$ is a basis for $\operatorname{Col}(A)$. The null space of A has dimension
$3-\operatorname{rank}(A)=1$. A nonzero vector in $\operatorname{Nul}(A)$ is $\left[\begin{array}{l}v_{7} \\ v_{8} \\ v_{9}\end{array}\right]$ since

$$
A\left[\begin{array}{l}
v_{7} \\
v_{8} \\
v_{9}
\end{array}\right]=U \Sigma V^{\top}\left[\begin{array}{l}
v_{7} \\
v_{8} \\
v_{9}
\end{array}\right]=U \Sigma\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=U\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=0
$$

and this vector provides a basis.
(c) Let \mathbb{D}^{2} be the set of vectors $v \in \mathbb{R}^{2}$ with $\|v\|=1$.

Suppose A is a 2×2 matrix with

$$
\min \left\{\|A v\|: v \in \mathbb{D}^{2}\right\}=20 \quad \text { and } \quad \max \left\{\|A v\|: v \in \mathbb{D}^{2}\right\}=22
$$

Assume that $A\left[\begin{array}{l}3 \\ 4\end{array}\right]=\left[\begin{array}{r}0 \\ 100\end{array}\right]$.
Draw a picture of the region $\left\{A v: v \in \mathbb{D}^{2}\right\}$ in \mathbb{R}^{2}.
Then determine all possible values for A.

Solution to part (c):

The matrix A transforms the unit vector $\left[\begin{array}{l}3 / 5 \\ 4 / 5\end{array}\right]$ to the length 20 vector $\left[\begin{array}{r}0 \\ 20\end{array}\right]$.
The region $\left\{A v: v \in \mathbb{D}^{2}\right\}$ is an ellipse whose radii have lengths 22 and 20. It follows that the shorter radii of this ellipse are the vectors $\left[\begin{array}{r}0 \\ 20\end{array}\right]$ and $\left[\begin{array}{r}0 \\ -20\end{array}\right]$ while the longer radii are $\left[\begin{array}{r}22 \\ 0\end{array}\right]$ and $\left[\begin{array}{r}-22 \\ 0\end{array}\right]$.
The unit vector $\left[\begin{array}{r}4 / 5 \\ -3 / 5\end{array}\right]$ must be mapped by A to one of the latter two vectors. Therefore A must have one of the two singular value decompositions

$$
A=\left[\begin{array}{rr}
\pm 1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
22 & 0 \\
0 & 20
\end{array}\right]\left[\begin{array}{rr}
4 / 5 & 3 / 5 \\
-3 / 5 & 4 / 5
\end{array}\right]^{\top}
$$

which simplifies to

$$
A=\left[\begin{array}{rr}
88 / 5 & -66 / 5 \\
60 / 5 & 80 / 5
\end{array}\right] \quad \text { or } \quad A=\left[\begin{array}{rr}
-88 / 5 & 66 / 5 \\
60 / 5 & 80 / 5
\end{array}\right] .
$$

