MATH 5143 - Lecture \#2

MATH 5143 -Lecture 2
From last time: if un specified, $[x, y] \stackrel{\text { del }}{=} x y-Y x$ Suppose \mathbb{F} is a field and L is an F-vector space with a map $[\cdot]: L \times L \rightarrow L$. For $X \in L$ let ad $X \stackrel{\text { def }}{=}[X, 0]$ denote the map $L+L$ sending $y \mapsto[X, Y)$
Def L is a Lie algebra with bracket $[\because]$
if (1) $[1$,$] is bilinear \longrightarrow$ implies $[x, y]=-[r, x]$
(2) $[,-]$ is alternating: $[x, x]=0 \forall x \in L$
(3) $[\operatorname{ad} x, \operatorname{ad} y]=\operatorname{ad}[X, Y] \quad \forall x, Y \in L$ (Jacobi identity)

A new abstract example: derivations
Suppose A is an F-algebra, possibly non-associative. (A is just a vector space with a bilinear multiplication) space of linear maps $A \rightarrow A$
we have seen that $g \ell(A)$ is a Lie algebra with bracket $[X, Y]=X Y-Y X$
Let $\operatorname{Der} A=\left\{\begin{array}{l}\text { linear maps } \delta: A+A \\ \text { with } \delta(a b)=a, \delta(b)+\delta(a) b \quad \forall a b\end{array}\right\}$
Call celoms $\delta \in \operatorname{Der} A$ derivations.
Exercise $\operatorname{Der} A$ is a Lie subalgebra of $g l(A)$

Should also mention: if A is an associative algebra (meaning $(a b) c=a(b c) \forall a, b c c A)$ then A can be viewed as a Lie algebra for the brocket $[X, Y]=X Y-Y X$, .
(the fact that this satisfies the Jacobi identity does require associativity of the algebra)

Next: a laundry list of analogies with graptheory

Notation: ad $X: Y \mapsto[X, Y]$ for X, Y in a Lie algebra L
Ad $g: h H g^{-1} h g$ for $9, h$ in a gram G

Lie algebras L
an ideal of L is
a subspace $I \subseteq L$ with
$(\operatorname{ad} x)(I) \subseteq I \quad \forall x \in L$
(every ideal is a Lie subabebra)
the center of L is the
grapes 6
a normal subgroup of G is a subgroup H with $(A d g)(H) \subseteq H \quad \forall g \in G$
the center of $6 \checkmark$ the normal subgroup $Z(6)=$ $[h \in G \mid(A d g)(h)=h \forall g \in G]$
ideal $Z(L)=\left\{\begin{array}{c}Y \in L \mid \operatorname{Cad} X)(Y)=0 \\ \forall X \in L\end{array}\right\}$

Lie algebras L
quatient Lie algebra:
given an ideal $I \subseteq L$
the quotient vector spore

$$
L / I=\{x+I \mid x \in L\}
$$

is a Lie algebra for the bracket $[x+I, y+I] \stackrel{\text { deft }}{=}$

$$
[x, y]+I
$$

for $X, Y \in L$
the derived Lie algebra $[L, 1]$
is the span of $[(x, y) \mid x, y \in L]$
groups G
quotient grans:
given a normal subgroup N the set d corsets $G / N=[g N \mid g \in G]$ is a group for usual set product.
the derived subgroup $[6,6]$
is the subgroup generated
b) $\left\{g h g^{-1} h^{-1} \mid g, h \in G\right\}$

Some other ter misology:
the normalizer of a Lie subalgebra $K S L$ is $N_{L}(k)=\{x \in L \backslash(a d x)(k) \subseteq k\}$
(this is a Lie subalgebra, the largest ane such that $K S N_{L}(K)$ is an ideal)
the centralizer of a subspace $K \subseteq L$
if $\left.C_{L}(k)=\{x \in L \mid \operatorname{cod} x)(k)=0\right\}$
(this is another Lie subalgebra)

Ex. Suppose $L=s \ell_{2}(\mathbb{H})=\left\{\left.\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right) \right\rvert\, a, b, c \in \mathbb{F}\right\}$ Assume char($(\mathbb{F}) \neq 2$.
A basis for L is $X=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], Y=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], A=\left[\begin{array}{cc}10 \\ 0 & -1\end{array}\right]$ The Lie brackets are:

$$
\begin{aligned}
& {[X, X]=[Y, Y]=[H, H]=0} \\
& {[X, Y]=-[Y, X]=H} \\
& {[A, X]=-[X, H]=2 X \quad \text { so ad } A \text { is }} \\
& {[H, Y]=-[Y, H]=-2 Y \quad \text { dicgonaizable }}
\end{aligned}
$$

Note: ad $H: 2 H(H, 2)$ has eigenvalues $-2,0,2$

Claim $L=\mathscr{\&}(\mathbb{F})$ is simple when $\operatorname{char}(\mathbb{F}) \neq 2$.
Pf Suppose $0 \neq g \stackrel{\text { del }}{=} a x+b \psi+c A \quad(a, b, c \in \mathbb{F})$ belongs to an ideal ISL.

$$
\begin{aligned}
& {[X,[X, g]]=[X, b A-2 c X]=-2 b X \in I} \\
& {[Y,[Y, g]]=[Y, a H-2 C Y]=-2 a Y \in I}
\end{aligned}
$$

 If $b \neq 0$ then $\tilde{x} \vec{\in} \vec{f}$, then $A \in \mathcal{F}$, so $Y \in I=L$. If $a=b=0$ then $H \in I$, so $X, Y \in I=L$. Thus $I=L$.

Basis facts about quotients
(a) If $\phi: l+K$ is a subjective Lie algebra. morphism then the kernel $\operatorname{ker} \phi=\{x \in L \mid \phi(\alpha)=0\}$ is an ideal of L and $L / K \operatorname{er} \phi \cong K$ via the map $x+\operatorname{ker} \phi \longmapsto \phi(x)$ for $x \in L$
(b) If $I, J S L$ are ideals and $I \leq J$ then JII is ideal of LII and
(LII) $/(J / I) \xrightarrow{\underset{\longrightarrow}{\longrightarrow}} L / T$ as Lie algebras $(x+I)+J / I \longmapsto x+J$
(C) If $I, J \leqq L$ are ideal then $(I+J) / J \cong I /(I \cap J)$

Terminology: a representation of a Lie algebra L is a Lie algebra morphism $\phi: L \rightarrow g l(v)$ for some (not necessarily finite-dim. rector space V)

Ex The adjoint representation ad: $L \rightarrow g l(L)$ is a representation.
Mat interesting Lie agebivas arse as subaligebnow of $g e(v)$.
Prop Any simple Lie algebra is isomorphic to a subalgebra of a general linear Lie algebra

PA More generally, if $Z(L) \stackrel{\operatorname{det}}{=}\left\{X_{f} L \mid[X, M]=0 \forall Y\right]$ then $Z(L)=\operatorname{ker}(a d)$ so

$$
L / z(L)=L / \operatorname{ker}(a d) \cong \operatorname{ad}(L) \subseteq g l(L)
$$

Therefore $L \cong($ subabebir of $g(L))$ whenever $Z(L)=0$
The center is an idol so is zero if L is simple (as simple \Rightarrow non-abelion)

Derived series of a Lie algebra L : $L^{(0)}=L$

$$
L^{(n+1)}=\left[L^{(n)}, L^{(n)}\right]
$$

Def If $I, J \subseteq L$ then $[I, J]$ is the spend $\{[x, M) \mid x \in J\}$
L is solvable if $L^{(n)}=0$ for same $n \gg 0$.
Ex If $\left.\begin{array}{rl}t_{n}(\mathbb{F}) & =\text { upper }-\Delta \text { matrices } \\ \Pi_{n}(\mathbb{F}) & =\text { strictly upper }-\Delta \text { matrices }\end{array}\right]$ both solvable as one con check that $t_{n}\left(\right.$ (ri $^{(1)}=\pi_{n}(\mathbb{F})$

$$
\begin{aligned}
& t_{n}^{(\mathbb{F})}=\pi_{n}(\mathbb{F}) \\
& t_{n}(\mathbb{F})^{(k)} \subseteq \operatorname{span}\left[E_{i j} \mid j-i \geq 2^{k-1}\right\}
\end{aligned}
$$

so $\quad t_{n}(\pi)^{(k)}=0$ if $L^{(L-1}>n^{-1}$ so $t_{n}(\mathbb{F})$ is solvable.

Lower/descending central series: $L^{0}=L$

$$
L^{n+1}=\left[L, L^{n}\right]
$$

L is nilpotent if $L^{n}=0$ for some $h \gg$,
nilpotent \Rightarrow solvable but not reverse
strictly

upper- Δ upper $-\Delta$
Can show that $t_{n}(\mathbb{F})$ has $t_{n}(\mathbb{F})^{k}=\pi_{n}$ (\mathbb{F}) for all $k \geq 1$. so $t_{n}(\mathbb{T})$ is solvable but not nilpotent. But $\pi_{n}(\mathbb{F})$ is nilpotent.

Next time: a little more discussion of solvable and nilpotent Lie algebras m Engels's theorem
then we will discuss the problem of classifying semismple Lie algebras

