MATH 5143 -Lecture 4

Suppose L is a Lie algebra wee a field If L is solvable if $L^{(n)}=0$ for some $n \gg 0$ where $L^{(0)}=L, L^{(1)}=[L, L], L^{(L)}=[[L, L],[L, L]], \ldots$ L is nilpotent if $L^{n}=0$ for some $n \gg 0$ where

$$
L^{0}=L, L^{\prime}=[L, L], L^{2}=[L,(L, L]), L^{3}=[L,[L,[L, L]], \ldots
$$

If $\operatorname{dim} L<\infty$ then L has a unique maximal solvable ideal called the radical, denoted $\operatorname{Rad}(L)$.
Deft L is semisimple if $(\operatorname{dim} L<\infty$ and) $\operatorname{Rad}(L)=0$
Fact Assume $\operatorname{dim} L<\infty$. Then $L /(\operatorname{Rad}(L)$ is semisimple and if L is simple then $\operatorname{Rad}(L)=0$.

Recall: if $X \in L$ then ad is map $L \rightarrow L$ $Y \mapsto[x, y]$ A map $f: V \rightarrow V$ is nilpotent if $f^{n}=0$ for some $n \geqslant 1$ we say that $X \in L$ is ad-nilporent if $a d x$ is nilpotent Fact If L is nilpotent then every $x \in L$ is ad-nilpotent Engel'sthim If dim $<\infty$ and every $X \in L$ is ad-nilpotent then L is nilpotent.
Them If dim $=n<\infty$ and $L \leqslant g l(V)$ consists of all nilpotent elements then there exists a basis of V relative to which the matrices of all elements $x \in L$ are strictly upper $-\Delta$.

Semisimple Lie algebras
From now on: \mathbb{F} is an algebraically closed field of characteristic zero leg con assume $\mathbb{F}=\mathbb{C}$)
L is always a Lie algebra over F of finite dimension The Assume $L \subseteq g l(v)$ is solvable, where $0<\operatorname{dim} V<\infty$. Then there exists $0 \neq v \in V$ that is an eigenvector of every $x \in L$. That ir, such that $X_{v}=t(x) v$ for all $X \in L$, for some linear map $\lambda: X \rightarrow F$.

Pf sketch Mimick proet of theorem above ("nipotent (are")
(1) Find an idea $K \subseteq L$ with $\operatorname{dim} L=\operatorname{dim} k+1$
(2) By induction V has a common eigenvector for K
(3) Check that L stabilizes this common K-eigenspace W (hardest part of proof)
(4) Show that some $Z \in L-K$ has an eigenvector in W (noting that $L=K \oplus \mathbb{F} Z$) as then we con conclude that v is an eigenvector of every $x \in L$.

For step (1): as L is solvable, $[L, L] \subset L$, so the quotient $L /[L, L]$ is nonzero and abelian, so any subspace of this quotient is an ideal.
Define K to be the preimage in L of any codim 1 subspace of $L([L, L]$. Then K is a (solvable) ideal of L with $\operatorname{dim} L=\operatorname{dim} k+1$.

For step (3): because $\mathbb{F}^{\text {is }}$ algebraically closed, the theorem definitely holds if $\operatorname{dim} L \leq 1$.
If we assume $\operatorname{dim} L \geqslant 2$ then by induction there is a linear map $t: K \rightarrow \mathbb{F}$ and $0 \neq v \in V$ with $X v=f(x) v \quad \forall x \in K$. Define $w=\left\{w \in V \mid x_{w}=f(x) w \forall x \in k\right\} \neq 0$.

For step (3), we need to show that L preserves W. Equivalently, we wont to check that il $X \in L, Y \in K, w \in W$ then $Y X_{w}=\lambda(Y) X w$. But all we know now is that $Y X_{w}=X \underbrace{Y_{w}}_{w}-\underbrace{[X, Y] w}=\lambda(Y) X_{w}-f([X, Y))_{w}$.

So it suffices to check that $\underset{\text { (assume this for now, proof later) }}{\underset{\lambda}{\lambda([x, y]))}=0 \quad \forall x \in L, ~ Y \in K}$
For step (4): write $L=K \oplus \mathbb{Z}$ for some $Z \in L-K$. since \mathbb{F} is abs. closed, \mathbb{Z} has on eigenvector $0 \neq v_{0} \in W$. But v_{0} is then an eigenvector for every $x \in L=K \oplus G Z . D$

Now: Claim $f([x, Y])=0$ for all $x \in L, Y \in K$ where $f: K \rightarrow \mathbb{F}$ is function with $Y_{w}=f(Y) w V_{w}$ WW Week Pf Let $w \in W$. Let $n>0$ be minimal with $w_{1} x_{r}, x_{w, \ldots,}^{2}, x_{w}^{n}$ linearly dependent. Define $w_{i}=\operatorname{Frpan}\left[w, x_{v}, x_{w}^{2}, \cdots, x^{i-1} w\right]$ so that $w_{0}=0$ and $\operatorname{dim} w_{i}=\min (i, n)$. Claim that $Y x^{i}{ }_{w} \in J(Y) X^{i} w+W_{i}$ Clear if $i=0$ and if iso then

Conclude that relative to the boss $w, x_{w}, x_{w}^{2}, \ldots, x_{w}^{r-1}$ the matrix of Y is $\left[\begin{array}{lll}f(Y) & * \\ & f(y) & \\ 0 & \ddots & \ddots(Y)\end{array}\right]$
Thus $\operatorname{trace}_{w_{n}}(y)=n \lambda(Y)$
But then trace $w_{n}(\underbrace{[x, y]}_{\in K})=n \lambda([x, y])$
Since X and Y preserve W_{n}, the products $X Y$ and $Y x$ also preserve W_{n}, so trace $w_{n}([x, y))$ $=\operatorname{trace}(X Y)-\operatorname{trace}(Y X)=0$.

Lie's theorem Suppose $L \subseteq g l(v)$ is a Solvable Lie algebra where $\operatorname{dim} V=n<\infty$. Then there is some basis of V relative to which the matrices of all elements of L are upper $-\Delta$.
Pf Choose $0 \neq v, \in V$ with $X_{v}=f(x) v, \forall x \in L$ for some linear mop $\lambda: L+\mathbb{F}$. Set $V_{1}=\mathbb{F}_{v_{1}}$ and apply theorem by induction to V / V_{1}. This gives a basis $v_{2}+V_{1}, v_{3}+v_{1}, \ldots, v_{n}+V_{1}$ for VIV, and the desired basis is then $v_{1}, v_{2}, v_{3}, \ldots, v_{n}, \square$

Con Suppose L is solvable with $n=\operatorname{dim} L(<\infty)$. Then there exists a chain of ideals

$$
0=L_{0} \subset L_{1} \subset L_{2} \subset \ldots C L_{n}=L \text { with din } L_{i}=i .
$$

a hamomapiris inst of L, hence also solvable
Pf Apply Lie's theorem to Lie algebra ad l $\subseteq g l(L)$ to get a basis $V_{1}, v_{2}, \ldots, v_{n} \in L$ such that $(a d x) v_{i} \in \mathbb{F}-S$ pan $\left[v_{1}, v_{2},-v_{i}\right] \underset{\forall i}{v x \in L}$ which means that $L_{i} \stackrel{\text { deft }}{=} \mathbb{E}$-span $\left[v_{1}, v_{2}, \ldots, v_{i}\right]$ is an (zeal. \square

Cor. Suppose L is solvable. Then $[L, L]$ is nipptent Pf Choose a basis of L such that matrices of $a d x \in g l(L)$ for every $x \in L$ are upper- Δ.
The matrix of $\operatorname{ad}[x, y]=[a d x, a d y]$ is then strictly, upper $-\Delta \forall X, Y \in L$, so ad Z is nipolent for all $Z \in[L, L]$. Engel's theorem then implies that $[L, L]$ is nipotent.

Remarks (Assuming \mathbb{F} als.closed of char, zero and $L \subseteq g l(V)$ where $\operatorname{dim} V<\infty)$
(1) Have shown that if L is solvable, \exists basis of V that makes L upper $-\Delta$
(2) If L is milpotent, then L is solvable. But in this case L does not have to be strictly upper- Δ in basis from (1)
Ex $L=$ (all diagonal matrices) \leftarrow abelian Lie algebra
(3) we only showed that V must have basis that mates L strictly upper $-\Delta$ when L consists of all nilpotent elems, but L can be nilpatent as a Lie algebra without this (consider example)

Jordan - Chevalley decomposition (for just this topic char II may be
Let V be a finite-dim. Vector space nonzero)
We say that $x \in g(v)$ is semisimple
if X is diagonalizable (when F is not alg. claced,
 "semismple" mean that the roots of minimal pedyn. of eigenvectors for x of x are distinct)

Execrises:(1) If x and y commute and are both semisimple, then all linear combinations a $X+b Y(a, b \in \mathbb{F})$ are semisimple
(2) If X is semisimple and x preserves $W \leqslant V$, then $\left.X\right|_{w}$ is semisimple

Prop Consider some eloment $x \in g l(v)$
(a) There are unique elements $x_{s}, x_{n} \in g l(v)$ with x_{5} semismple, x_{n} nilpolent, $x_{8} x_{n}=x_{n} x_{5}$ and $x_{s}+x_{h}=x$. Call this the Jordan (Chevalles) decomposition of x
(idea: if $V=\mathbb{F}^{n}$ and the Jordan cononicol form of the matrix of x has blocks $\left[\begin{array}{ccc}a & 1 & 0 \\ a & a \\ 0 & \cdots & 1\end{array}\right]$ then the respectively.)
(b) There are poly romilals $p(T), q(T)$ in a variable T with no constant term $($ so $p(T), q(T) \in T \mathbb{F}[T])$ such that $X_{s}=p(x)$ and $x_{n}=q(x)$.
$\Rightarrow X_{s}$ and X_{n} commute with any $Y \in g l(v)$ that has $X Y=4 x$.
(c) If $A \subseteq B \subseteq V$ are subspaces with $X B \subseteq A$ then $X_{s} B \subseteq A$ and $X_{n} B \subseteq A$ (this part is immediate from (b))

Comit proof of this \rightarrow standard lInear algebra, we mas sketch argument in HW exercises)

Prop Suppose V has $\operatorname{dim} V<\infty$ and $x \in g l(v)$.
(a) If x is nipotent then so is $a d x \in g l(g l(v))$ (shown in lemma earlier today)
(b) If X is semisimple then so is ad X.

Pf If $v_{1}, v_{2}, \ldots, v_{n}$ is basis of v consisting of eigenvector for $x_{\text {, so }} x_{v_{i}}=a_{i} v_{i}$ for some $a_{i} \in \mathbb{F}$, and $e_{i j}$ is the corresponding bass of $g e(v)$ so that
$e_{i j}$ is the linear map with $v_{k} \mapsto \begin{cases}v i & \text { if } j=k \\ 0 & \text { if } j \neq k\end{cases}$ then $(a d x)\left(e_{i j}\right)=\left(a_{i}-a_{j}\right) e_{i j}$, since

$$
\begin{aligned}
(a d x)\left(e_{i j}\right)\left(v_{k}\right) & =\left[x, e_{i j}\right]\left(v_{k}\right) \\
& =\underbrace{x e_{i j}\left(v_{k}\right)}_{a_{i} e_{i j}\left(v_{k}\right)}-\underbrace{e_{i j}}_{=a_{j} e_{j j}\left(v_{k}\right)} \underbrace{x\left(v_{k}\right.}_{=k_{k} v_{k}} \\
& =\left(a_{i}-a_{j}\right) e_{i j}\left(v_{k}\right)
\end{aligned}
$$

Lemine Let $x \in g l(V)$ where $\operatorname{dim} V<\infty$. Suppose the Jordan decamp of x is $x=x_{s}+x_{n}$, then the Jordan decamp of $a d X$ is

$$
\operatorname{ad} x=a d x_{s}+a d x_{n}
$$

Pf $\left[a d x_{s}, a d x_{n}\right]=\operatorname{ad}\left[x_{s}, x_{n}\right]=0$ and we already saw that ad x_{s} is seminimple. ad x_{n} is nipotent

Next time: criteria for solvobility and semisimplicity

