Math 5143-Lecture 5

.

Jordon - Chevalle, decomposition (for just this topic Char IF maj be Let V be a finite-dim. Vector space nonzero) We say that X Egl(V) is semisimple. if X is diagonalizable (when IF is not alg. clased, "semisimple" means that recoming V has a basis of eigenvectors for X the roots of minimal polyn. of x are distinct)

Exercises: (1) If X and Y commute and are both semisimple, then all linear combinations a X+ bY (a, b ∈ FF) are semisimple (2) If X is semisimple and X preserves W ∈ V, then X | w is semisimple

Prop Consider some element
$$X \in gl(V)$$

(a) There are unique elements $X_s, X_n \in gl(V)$
with X_s semisimple, X_n nilpolent, $X_sX_n = X_nX_s$
and $X_s + X_n = X$. Call this the Jordan (Chevaller)
decomposition of X

(b) There are polyromials p(T), q(T) in a variable T with no constant term (so p(T), q(T) E T FF[T]) Such that $X_s = p(X)$ and $X_n = q(X)$. => Xs and Xn commute with any YEgl(v) that has XY = YX. (c) If A S B S V are subspaces with XBEA then XSBEA and XBEA. (this part is immediate from (b))

lomit proof of this ~ standard linear algebra, we may sketch argument in the exercises

Prop Suppose V has dim V <05 and X ∈ ge(V). (a) If X is nilpotent then so is ad X Egllgl(v)) (shawn in lemma last week) (b) If X is semisimple then so is ad X. Pf If V, Vr, -, Vr is basis of V consisting of cigementars for X_1 , so $X_{V_1} = a_1 V_1$ for some $a_1 \in \mathbb{F}_1$, and eij is the corresponding basis of gl(V) so that

eij is the linear map with
$$v_k \mapsto \begin{cases} v_i & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases}$$

then $(ad x)(e_{ij}) = (a_i - a_j)e_{ij}$. Since
 $(ad x)(e_{ij})(v_k) = [x_i e_{ij}](v_k)$
 $= xe_{ij}(v_k) - e_{ij}x(v_k)$
 $= a_i e_{ij}(v_k) - e_{ij}x(v_k)$
 $= a_j e_{ij}(v_k)$

Useful fact If XEL = ge(v) then the Jordon decomposition of adx egl(L) is just $ad x = ad(x_s) + ad(x_n)$ still semisimple still nilpotent where X = Xs + Xn is the Jordon decomp. of X Pf. Jacobi identity ⇒ [ad(Xs), ad(Xn)] = ad(Xs, Xn] = 0 so this holds by uniqueness of Jordan decomposition 0 Back to usual hypotheses: IF alg. clored with char (IF) = 0 Todas i Cartans criterian for solvability: Let L ⊆ gl(v) where dim V<00. If trace (XY)=0 for all XE[L,L], YEL then L is solvable.

Let A = B be two subspaces of gl(V) Lemma where dimV<00. Define $M = \{ x \in ge(v) \mid [x, B] \in A \}$ and suppose XEM has trace(XY)=0 YYEM. Then X is nilpotent (i.e. X" =0 for n>>0) Pf write the Jordan decompol X as $X = X_s + X_n$. Let v, v, v, v, w, be a basis for V such that X, Vi = Q, Vi for some a; E.F.

Define
$$E = (Q - rpan\{a_1, a_2, ..., a_n\} \subseteq F$$
 retional
We want to show that $X_S = 0$ as then $X = X_n$ is nilpotent.
This holds if and only if $Q_1 = a_2 = ... = a_n = 0$ (c) $E = 0$.
Let $E^* = \{Q_{-linear} maps E + Q_{-linear}\}$.
Since dim $E \le n < \infty$, it holds that dim $Q_{-}E^+ = dim Q_{-}E^+$
So it suffices to show that $E^* = 0$.
Suppose $f \in E^*$. Let $Y \in g(V)$ have matrix $\begin{bmatrix} f(a_1) \\ f(A_2) \\ f(A_3) \end{bmatrix}$
in basis $v_1 v_2 v_3 \dots v_n$ for V .
 $g(V)$
Then $Yv_1 = f(q_1)v_1$ $\forall i$, If $e_{ij}: v_1 \mapsto \{0, j+k\}$
then $(abX_s)e_{ij} = (a_i - a_j)e_{ij}$ and $(adY)e_{ij} = (f(a_1) - f(a_j))e_{ij}$.

Clain: We can find a polynomial r(T) & Q(T) Such that $r(q_i - q_j) = f(q_i) - f(q_j) = f(q_i - q_j)$ $\forall i, j$ clear by polynomial interpolation $r(q_i) = f(q_i - q_j)$ $\forall i, j \in Q$ The polynomial interpolation $r(q_i) = f(q_i) - f(q_j) = f(q_i - q_j)$ $\forall i, j \in Q$ is some polynomial that $f(q_i) = f(q_i) - f(q_j) = f(q_i - q_j)$ $\forall i, j \in Q$ The polynomial interpolation $r(q_i) = f(q_i) - f(q_j) = f(q_i - q_j)$ $\forall i, j \in Q$ The polynomial interpolation $r(q_i) = f(q_i) - f(q_j) = f(q_i - q_j)$ $\forall i, j \in Q$ is some polynomial that $f(q_i) = f(q_i) - f(q_i) = f(q_i - q_j)$ $\forall i, j \in Q$ The polynomial $r(q_i) = f(q_i) - f(q_i) = f(q_i) - f(q_i)$ $f(q_i) = f(q_i - q_j)$ $f(q_i) = f(q_i) - f(q_i)$ $f(q_i) = f(q_i)$ $f(q_i) = f(q_i) - f(q_i)$ $f(q_i) = f(q_i) - f(q_i)$ $f(q_i) = f(q_i)$ f $(x_1y) = (q_1 - q_2, fla_1 - a_1)$ Y_{i_1} (x) We must have r(0) = f(0) = f(a; -a;) = 0So r(T) has no constant term, r(T) E T Q ET] Also, we have ady = r (ad Xs) since both sides give some result opplied to each eij Findly by earlier facts, ad Xs is semisimple part of ad X so ad Xs = pladx) for some potromial without constant term.

Le asrume
$$(ad X)(B) \leq A$$
 so
 $(ad Y)(B) = r(ad X_s)(B) \leq r(p(ad X))(B) \leq A$
This implies that $Y \in M = \{z \in gl(v) \mid [z, B] \leq A\}$.
Hence by assumption trace $(XY) = O$.
But trace $(XY) = Za; f(a_i) \in E = Q - rpan[a_i a_{i-1} - c_{i-1}] = Q$.
But trace $(XY) = [a_i = [f(a_i)] + [a_{i-1} - f(a_{i-1})] + [a_{i-1} - c_{i-1}] = Q$.
Thus $O = f(O) = f(trace(XY)) = \sum_{i=1}^{n} f(a_i)^2$ which can only hold
if $f = O$. Thus $C^{2} = Q$.

Prop If
$$X,Y,Z \in g(U)$$
, din $V < \infty$, then
trace $([X,Y]Z) = trace (X[Y]Z])$
PF = trace $(XYZ) - trace (X[Y]Z)$ = trace $(XYZ) - trace (XZY)$
Now can prove:
Cartom's criterion Let $L \leq g(V)$ where dim $V < \infty$.
IF trace $(XY) = 0$ for all $X \in [L,L]$, $Y \in L$ then
L is solvable.

Pf To show L is rolvable, enough to check that [L,L] is nilpotent, and for this it suffices to check that every $\chi \in (L,L)$ is nilpotent as an element of gR(v). (this will imply that ad X is nilpotent, so we can use Englistim Let $A = [L, L] \subseteq B = L$ and $M = [X \in gl(V)] [X, L] \leq [L, L]$ Suppose XE[L,L] and note that [L,L] < M. If we can show that trace (XY)=0 for all YEM then Icmma implies that is nilpotent. We assume trace (X) = 0 for all YEL. Note that LSM. But X is a linear comb. by assumption of clems [X1, X2] for X: EL and if YEM then trace $([X_1, X_2]Y) =$ trace $(X_1, [X_2, Y]) =$ trace $([X_1, Y]X_1) = O$ by prop. by properties of trace $([X_1, Y]X_1) = O$