Math 5143 -Lecture 5

Jordan - Chevalley decomposition (for just this topic char II may be
Let V be a finite-dim. Vector space nonzero)
We say that $x \in g(v)$ is semisimple
if X is diagonalizable (when F is not alg. claced,
 "semismple" mean that the roots of minimal pedyn. of eigenvectors for x of x are distinct)

Execrises:(1) If x and y commute and are both semisimple, then all linear combinations a $X+b Y(a, b \in \mathbb{F})$ are semisimple
(2) If X is semisimple and x preserves $W \leqslant V$, then $\left.X\right|_{w}$ is semisimple

Prop Consider some eloment $x \in g l(v)$
(a) There are unique elements $x_{s}, x_{n} \in g l(v)$ with x_{5} semismple, x_{n} nilpotent, $x_{5} x_{n}=x_{n} x_{5}$ and $x_{s}+x_{n}=x$. Call this the Jordan (chevalles) decomposition of x
(idea: if $V=\mathbb{F}^{n}$ and the Jordan cononicol form of the matrix of x has blocks $\left[\begin{array}{ccc}a & 1 & 0 \\ a & a \\ 0 & \cdots & 1\end{array}\right]$ then the respectively.)
(b) There are poly romilals $p(T), q(T)$ in a variable T with no constant term $($ so $p(T), q(T) \in T \mathbb{F}[T])$ such that $X_{s}=p(x)$ and $x_{n}=q(x)$.
$\Rightarrow X_{s}$ and X_{n} commute with any $Y \in g l(v)$ that has $X Y=4 x$.
(c) If $A \subseteq B \subseteq V$ are subspaces with $X B \subseteq A$ then $X_{s} B \subseteq A$ and $X_{n} B \subseteq A$ (this part is immediate from (b))

Comit proof of this \rightarrow standard linear algebra, we mas sketch argument in HW exercises)

Prop Suppose V has $\operatorname{dim} V<\infty$ and $x \in g l(v)$.
(a) If x is nipotent then so is $a d x \in g l(g l(v))$ (shown in lemma last week)
(b) If X is semisimple then so is ad X.

Pf If $v_{1}, v_{2}, \ldots, v_{n}$ is basis of v consisting of eigenvector for $x_{\text {, so }} x_{v_{i}}=a_{i} v_{i}$ for some $a_{i} \in \mathbb{F}$, and $e_{i j}$ is the corresponding bass of $g e(v)$ so that
$e_{i j}$ is the linear map with $v_{k} \mapsto \begin{cases}v i & \text { if } j=k \\ 0 & \text { if } j \neq k\end{cases}$ then $(a d x)\left(e_{i j}\right)=\left(a_{i}-a_{j}\right) e_{i j}$, since

$$
\begin{aligned}
(a d x)\left(e_{i j}\right)\left(v_{k}\right) & =\left[x, e_{i j}\right]\left(v_{k}\right) \\
& =\underbrace{x e_{i j}\left(v_{k}\right)}_{a_{i} e_{i j}\left(v_{k}\right)}-\underbrace{e_{i j}}_{=a_{j} e_{j j}\left(v_{k}\right)} \underbrace{x\left(v_{k}\right.}_{=k_{k} v_{k}} \\
& =\left(a_{i}-a_{j}\right) e_{i j}\left(v_{k}\right)
\end{aligned}
$$

Useful fact If $x \in L \leq g e(v)$ then the Jordan decomposition of ad gl(L) is just

$$
a d x=\underbrace{a d\left(x_{s}\right)}_{\text {stan semsminde }}+\underbrace{a d\left(x_{n}\right)}_{i+k n}
$$

where $X=x_{5}+x_{n}$ is the Jordan decamp. of X
Pf. Jacobi identity $\Rightarrow\left[\operatorname{ad}\left(x_{s}\right), \operatorname{ad}\left(x_{n}\right)\right]=\operatorname{ad}\left[x_{s}, x_{n}\right]=0$ so this holds by uniqueness of Jordan decomposition 0 Back to usual hypotheses: \mathbb{F} alg. cleared with char $(\mathbb{F})=0$
Today: Carton's Criterion for solvability: Let $L \subseteq g l(V)$ where $\operatorname{dim} V<\infty$. If trace $(X Y)=0$ for all $x \in[L, L], Y \in L$ then L is solvable.

Lemma Let $A \subseteq B$ be two subspaces of $g l(V)$ where $\operatorname{dim} V<\infty$. Define

$$
M=\{x \in g e(v) \backslash[x, B] \leq A\}
$$

and suppose $X \in M$ has trace $(X Y)=0 \quad \forall Y \in M$.
Then x is nilpotent (i.e. $x^{n}=0$ for $n \gg 0$) 므 write the Jordan decompol x as $x=x_{5}+x_{n}$. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be a basis for V such that $X_{s} v_{i}=a_{i} v_{i}$ for some $a_{i} \in \mathbb{F}$.

Define $E=\mathbb{Q}-\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subseteq \mathbb{F} \quad \begin{aligned} & \text { rational } \\ & \text { vector }\end{aligned}$ vector pare

We wont to show that $x_{s}=0$ as then $x=x_{r}$ is nilpotent.
This holds if and only if $a_{1}=a_{2}=\ldots=a_{n}=0 \Leftrightarrow E=0$
Let $E^{*}=\{\mathbb{Q}$-linear maps $E \rightarrow \mathbb{R}\}$.
since $\operatorname{dim}_{Q} E \leq n<\infty$, it holds that $\operatorname{dim}_{Q^{\prime}} \epsilon^{*}=\operatorname{dim}_{Q_{Q}} E$ So it suffices to shaw that $E^{*}=0$.
Suppose $f \in E^{*}$. Let $Y \in g l(V)$ have matrix $\left[\begin{array}{llll}f\left(a_{1}\right) & & \\ & f\left(a_{2}\right) & \\ & \ddots & \\ & & f\left(a_{n}\right)\end{array}\right]$ in basis $v_{1} v_{2} v_{3} \ldots v_{n}$ for V. $e^{g(v)} \quad v_{i} i=k$
Then $Y v_{i}=f\left(a_{i}\right) v_{i} \forall i$. If $e_{i j}^{e}: v_{k} \mapsto \begin{cases}v_{i} & j=k \\ 0 & j \neq k\end{cases}$ then $\left(a d x_{f}\right) e_{i j}=\left(a_{i}-a_{j}\right) e_{i j}$ and $(a d Y) e_{i j}=\left(f\left(a_{i}\right)-f\left(a_{j}\right)\right) e_{i j}$.

Claim: we con find a poly nominal $r(T) \in \mathbb{Q}[T]$ such that $r\left(a_{i}-a_{j}\right)=f\left(a_{i}\right)-f\left(a_{j}\right)=f\left(a_{i}-a_{j}\right) \forall i_{i j}$ clear by polynomial interpolation
[The polynomial $r(T)$ is some poses throunghal the points]

$$
(x, y)=\left(a_{x}-a_{j}, f\left(a_{i}-a_{j}\right)\right) \quad V_{i} i_{j}
$$

We must have $r(0)=f(0)=f\left(a_{i}-a_{i}\right)=0$
so $r(T)$ has no constant term, $r(T) \in T Q[T]$
Also, we have ad $Y=r\left(a d X_{\delta}\right)$ since both sides give same remit toppled to each $e_{i j}$
Finely by earlier facts, ad x s is semisimple part of ad x so ad $x_{s}=p(a d x)$ for some pobtromia) without constant term

We assume $(\operatorname{ad} x)(B) \subseteq A$ so

$$
(\operatorname{ad} Y)(B)=r\left(\operatorname{ad} X_{s}\right)(B)=r(p(\operatorname{ad} X))(B) \subseteq A
$$

This implies that $Y \in M=\{z \in g e(v) \mid[z, B) \subseteq A\}$.
Hence b_{y} assumption $\operatorname{trace}(x Y)=0$.

Thus $0=f(0)=f(\operatorname{trace}(x y))=\sum_{i=1}^{n} f\left(a_{i}\right)^{2} \begin{aligned} & \text { which com only hold } \\ & \text { it } f=0 \text {. Thus } \epsilon^{*}=0\end{aligned}$

Prop If $x, y, Z \in g(V), \operatorname{dim} V<\infty$, then

Now can prove:
Carton's criterion Let $L \leq g l(V)$ where $\operatorname{dim} V<\infty$. If trace $(X Y)=0$ for all $X \in[L, L], Y \in L$ then L is solvable.

Pf To show L is solvable, enough to check that $[L, L]$ is nilpotent, and for this it sift ices to check that every $\quad x \in[L, L]$ is nilpotent as an element of $g(v)$. (this will imply that ad x is nibotent, so we con use finger's than) Let $A=[L, L] \subseteq B=L$ and $M=\{x \in g \ell(v) \mid[x, L) \subseteq[L, L]\}$ Suppose $x \in[L, L]$ and note that $[L, L] \subseteq M$. If we con show that trace $(X Y)=0$ for all $Y \in M$ then lemma implies that is nispotent. We assume trace $(X Y)=0$ for all $Y \in L$. Note that $L \subseteq M$. But X is a linen comb. of celoms $\left[X_{1}, X_{2}\right]$ for $X_{i} \in L$ and if $Y \in M$ then $\operatorname{trace}\left(\left[x_{1}, x_{2}\right] y\right)=\operatorname{trace}\left(x_{1}\left[x_{2}, y\right]\right)=\operatorname{trace}(\underbrace{\left.\left[x_{2}, y\right] x_{1}\right)}{ }^{\text {by }}=0$ $T_{\text {by prep. }}$ by properties of trace $\overline{\mathcal{E}}\left[4,{ }^{2}\right]$ by def of M

