Math 5143 -Lecture 6

From last time: assume L is finite dim Lie algebra / algebraically, cored
Cartan's Criterion: $L \subseteq g(v)$ is solvable if trace $(X Y)=0$

$$
\forall x \in(L, L), Y \in L
$$

Cor. If L is a Lie algebra such that

$$
\begin{array}{ll}
\text { trace }(\operatorname{ad} X \text { ad } Y)=0 & \forall x \in[L, L) \\
& v y \in L
\end{array}
$$

then L is solvable.
Pf Apply Carton's criterion to ad $L \subseteq g l(L)$
As $\operatorname{ad}[L, L]=[\operatorname{ad} L, a d L]$, we find that ad L is
Solvable. But Ger ad $=Z(L)$ is solvable so
L is solvable since $L / Z(L) \equiv a d L, ~ D$
(by levine in prev. lecture)

Killing form
Dee The bilinear form $X: L \times L \rightarrow L$ defined by

$$
x(X, Y) \stackrel{\text { deft }}{=} \text { trace }(a d X \operatorname{ad} Y) \text { for } X, Y \in L
$$

is called the killing form of L.

Prop x is symmetric: $\quad x(x, y)=x(y, x)$
\mathcal{X} is associative: $\mathcal{X}([x, y, z)=\mathcal{X}(x,[y, z])$
Cequivalent to prop. stated last time
To compute $x(c, y)$ need to pick a basis of L and wite down the
matrices of ad x and ad, deern't natter which basis yen chase

Lemming Let $I \subseteq L$ be an ideal.
Then the killing form X_{I} of I is the restriction of the k_{i} lling form $X=\mathcal{K}_{L}$ of L. Thus $\underbrace{x_{I}\left(x_{1}, y\right)}=\underbrace{k_{1}\left(x_{i}, y\right)} \forall X_{1}, \in I$
$r^{(\operatorname{dim} v<\infty)}$

$\underbrace{x_{I}\left(x_{1}, y\right)}_{$| rale of |
| :---: |
| aline |
| $I \rightarrow I$ |$}=\underbrace{k_{L}\left(X_{,}, y\right)}_{$| trace of |
| :---: |
| a liner me |
| $L \rightarrow L$ |$} V_{X, Y}, I$

Pf If $\phi: V \rightarrow W \subseteq V$ is a linear map
then $\operatorname{trace}_{V}(\phi)=\operatorname{trace}_{w}\left(\left.\phi\right|_{w}\right)$ because if $w_{1} w_{2}-w_{k}$ is a basis of w amd w_{k+1}, \ldots, w_{n} extends this to basis of V then the matrix of ϕ

is matrix of $\left.\phi\right|_{w}$ To prove lemma, apply this observation with $V=L$ and $w=I$.

The radical of [any symmetric bilinear form $] k: L a L+L$ is

$$
\begin{aligned}
& S=\{x \in L \mid x(x, r)=0 \forall \gamma \in L\} \\
& =\{Y \in L \backslash X(X, Y)=0 \forall\langle\in L\} \geq Z(L) \text { since } \\
& \text { ad } x=0 \quad v_{x}(2(2)
\end{aligned}
$$

The form X is non-degenerate if $S=0$.
This happens if $X(X, 0): L \rightarrow L$ is zero map of $X=0$
or $\left[x\left(x_{i}, x_{j}\right)\right]_{1 \leq i, j \leq n}$ is invertible for n xn matrix same /any basil $x_{1} x_{2} \cdots x_{n} \in L$

Ex suppose $L=8 l_{2}(\mathbb{F})=\mathbb{F}-\operatorname{span}[E, H, F]$
for $E=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], H=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], F=\left[\begin{array}{ll}0 & 0 \\ 10\end{array}\right]$
In this ordered basis we have ad $E=\left[\begin{array}{ccc}0 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$

$$
\left.\begin{array}{l}
{[C, E]=[H, H]=[F, F]=0} \\
{[E, H]=-2 E} \\
{[F, H]=2 F}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\text { ad } H=\left[\begin{array}{ccc}
2 & 0 \\
0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
\text { ad } F=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 0 & 0 \\
0 & 20
\end{array}\right]
\end{array} \begin{array}{c}
\text { assuming } \\
\text { char (H) }+2
\end{array}\right.
$$

$$
[E, F]=H
$$

So we have $\left.\left[x\left(x_{i}, x_{j}\right)\right]_{1 \leq i, j \leqslant 3}=\left[\begin{array}{lll}0 & 0 & 4 \\ 0 & 8 & 0 \\ 4 & 0 & 0\end{array}\right] \begin{array}{l}\text { which } \\ \text { is } \\ \text { invertible }\end{array}\right]$ $\left(x_{1}=C_{1} x_{2}=H, x_{3}=F\right)$ so killing form of $\delta l_{2}(F)$ is nondegan.

Suppose L is a Lie algebra.
Recall that L is semisimple if it has no nonzero solvable ideas, ie., its radiclideal $R a d(L)=\binom{$ umive maxima }{ solvable idol } is zero.

Thin L is semisimple if and only if the killing form x is non degenerate.

Thus to check if L is semisimple, just need to pick a basis $x_{1}, k_{2}, \ldots, x_{n}$ for L and check if matrix $\left[K\left(x_{i}, x_{i}\right)\right]$ sisssn has nonzero determinant

Pf (that Rad L $=0$ if radical) S of x is zero)
The radial S of killing form is an ideal $d L$
(check this using associativity of x)
In fact, ad _S is a solvable ideal of ad L
by Carton's criterion:

$$
\begin{aligned}
\operatorname{trace}(\operatorname{ad} x \operatorname{ad} y)=x(x, y)=0 & \forall x \in S \geqslant[5, S) \\
& \forall y \in L Z S
\end{aligned}
$$

The center Z(S) is abelion, hence solvable.
As ad LS $\cong S / Z(s)$ we conclude that S is solvalde.
Thus if Rad $L=0$ then $S=0$ as $S \subseteq \operatorname{RadL}$.

Want now to show that $S=0$ implies that Rad l $=0$ It suffices to check that it $I \subseteq L$ is any a pelion ideal then I CS. This is because if I is a nonzero solvable ideal, then $I^{(n)}$ is abeliom for n suan that $I^{(n)} \neq 0=I^{(n+1)}$ (so if there are ne nonzero abelion ideals, there are also no nonzero solvable ideals) Assume I is omabelian ideal. If $x \in I, Y \in L$ then adxadY is a map $L \xrightarrow{\text { ad }} L \xrightarrow{\text { add }} I$ so $(\mathrm{ad} X \mathrm{adY})^{2}$ is a $\operatorname{map} L \rightarrow[I, I]=0$.
Thus adx ady is nilpotent so it must have zero trace. meaning that $x(x, y)=0 \Longrightarrow$ Iabelian $\subseteq S$

Simple ideals $+($ semisimple \equiv sum-of-simple $)$

A Lie algebra L is a directsum of ideals $I_{1}, I_{2}, \ldots, I_{n}$ if $L=I_{1} \oplus I_{2} \oplus \ldots \oplus I_{n}$. (as vector spaces)

This would mean that each $x \in L$ has a unique expression as $x=x_{1}+x_{2}+\cdots+x_{n}$
with $x_{j} \in I_{j}$. Uniqueness here implies that $I_{j} \cap I_{k}=O \forall_{j} \neq k$
since each I_{j} is an ideal, we must also have $\left[I_{j}, I_{k}\right]=0$ $\forall j \neq k$.

The Suppose L is a semisimple Lie algebra. [As usual, dimL<oi] Then there exist ideals $L_{1}, L_{2}, \ldots, L_{n} \subseteq L$ such that
(1) each L_{i} is simple
(2) $L=L_{1} \oplus L_{2} \oplus \ldots \in L_{n}$
(3) and simple ideal of L is equal to some L_{i}
(4) the killing form of L_{i} is just the restriction of the killing form of L [earlier Lemme already checked this]

Pf Let I be any ideal of L. Write k fo killing form and define $I^{\perp}=\{X \in L \mid X(X, Y)=0 \quad \forall Y \in I\}$.
First claim to show is that
(a) I^{\perp} is animal \&
(b) $L=I \oplus I^{\perp}$.
(a) To see that I^{\perp} is an ideal, let $x \in L, Y \in I^{\perp}, Z \in I$.

Then $x([X, Y), Z)=-x([Y, X), Z)=-k(Y,[X, Z])=0$

of k

So we caclude (as Z is arbitrary) that $[X, Y] \in I^{\perp}$.
(b) because L is semisimple, its center $Z(L)$ is zero, so ad: $L \rightarrow g e(L)$ is injective.
Cartan's criterion applied to $I \cap I^{\perp} \cong \operatorname{ad}\left(I \cap I^{\perp}\right) \subseteq g(L)$ implies that $I \cap I^{\perp}$ is solvable: $\forall x \in\left[I \cap I^{\perp}, I \cap I^{\perp}\right], \forall y \in I \cap I^{\perp}$ we have So $I n I^{2}=0$ as Rad $=0$ Conclude that $L=I \oplus I^{\perp}$
(since dim $=\operatorname{dim} I+\operatorname{din} I^{L}$)

So our claims (a) and (b) both hold.
Now we proceed by induction(on $\operatorname{dim} L$).
If L has no proper ideals then L is simple.
Otherouste we can find a minimal proper nazzers ides $L_{1} \subseteq L$.
$\left[\begin{array}{llll}\text { Any ideal of } L_{1} & \text { is an idea) of } L=L_{1} \oplus L_{1}^{\perp} & ([x, M]=0 & \forall x \in L_{1} \\ \forall y\left(L_{1}^{\perp}\right)\end{array}\right)$
so L, must be simple itself.
$\left[\begin{array}{l}\text { Likewise } L_{1} \perp \text { must be semisimple since and of its (sodvolite) } \\ \text { ideals are (solvable) ideals of } L \text {. }\end{array}\right.$
Thus by induction we can write $L_{i}^{1}=L_{2} \oplus \ldots \oplus L_{n}$ for simple ideals L_{i} and then $L=L, \oplus L_{i} \oplus-\oplus L_{n}$. This proves (1)+(2), (4) already known.
we still have to prove that if I is any simpleidell of L then $I=L_{\text {i }}$ for some $i \in\{1,2,-n\}$.
To prove this, we doserve that $[I, L]=\operatorname{sean}\left[\left[x, Y| |_{Y \in L} \mid\right\}\right.$ is also an ideal of L since it $X \in L, Y \in I, Z \in L$ then

If $[I, L]=0$ then $I \leq Z(L) \stackrel{\downarrow}{=} 0$
As $I \neq 0$ is simple, we must have $I=[I, L]$ But $[I, L]=\oplus\left[I, L_{j}\right]=I$ means that $\left[I, L_{j}\right]$ must be zero for all but are j and $I=L_{j} . \square$

Our original definition of semisinde was the property of having no nonzero solv able ideas. Now we have a more intuitive characterization:

Cor L is semisimple if and only L is a direct sum of simple Lie algebras.

Pf "only if" direction: previous theorem
"if" direction: if $L=L, \Theta L \odot \ldots L_{n}$ with L i simple
then the radical of the killing form X of L is

$$
\begin{aligned}
& \text { hen the radical of the killing farm } \\
& \bigoplus_{i=1}^{n} \operatorname{Rad}(\underbrace{X L_{i} \times L_{i}}_{\text {killing form of }}) \text { so this direct jun is } 2 e r 0
\end{aligned}
$$

Cor If L is semisimple then $L=[L, L]$, and all ideals and homomerphic images of L arealso semismple.
Pf If $L=\bigoplus_{i} L_{i}$, each L_{i} simple, then $\left[L_{i}, L_{i}\right]=L_{i} \forall i$ and $\left[L_{i}, L_{j}\right]=0 \forall i \neq j$ so $[L, L]=\underset{i j}{\oplus}\left[L_{i}, L_{j}\right]=\underset{i}{\oplus} L_{i}=L$.
If $I S L$ is an ideal then I is semisimple as and of its solvable ideals are also ideals of L.
Final claim about hamomophic images: exercise.

