MATH 5143-Lecture 10

Application of Weyl's thin to abstract Jordan decomposition
(square)
Any motrix/linear map $X \in g l(v)$ has a unique
Jordan decomposition $x=x_{s}+x_{n}$ where $x_{s} x_{n}=x_{n} x_{s}$
and $x_{s} \in g e(v)$ is semisimple $\equiv$ diagnoalizable and
$x_{n} \in g l(v)$ is nilpotent $\equiv$ strictly upper- $\Delta$ in some basis
The Assume $L$ is semisimple. Then each $x \in L$ has a unique (abstract) Jordan decomposition $x=x_{s}+x_{n}$
where $x_{5}, x_{n} \in L$ and for any reps $\phi: L \rightarrow g e(v)$ $\phi(x)=\phi\left(x_{f}\right)+\phi\left(x_{n}\right)$ is the usual Jordan decomposition.
Recall: farth(u) $\equiv$ injective $\equiv \operatorname{Ker} \phi=0$

Root space decomposition ns this will generalize the weight space decamp we jut Saw for $\mathrm{Sl}_{2}$-modules
Suppose $L$ is any $\binom{$ (ninte-dim }{ nonzero } semismple Lie algebra.
A subalgebra $T \leq L$ is toral if all of its elements are semisimple (that is, if $x \in T$ has abstract
Jordan decomposition $x=x_{s}+x_{n}$ then $x=x_{s}, x_{h}=0$ )
Equivalently: $x \in T$ iff $L$ has a basis consisting of eigenvectors for]
$a d x$
Lemma Any total subalgebra $T S L$ is abelian: $[X, Y]=0 \forall X, Y \in T$ Pf Assume $T \leq L$ is oral. Suffices to show $a d_{T} X \stackrel{\text { def }}{=}(a d x) \|_{T}$ is zero $\forall x \in T$. Since ad $X$ is diagoralizable, presomest, and $T$ is alg. closed, we just can prove that ad $X$ has me nonzero eigenvalues. (sines it is cry exercise to show that $T$ is spanned by eigenvectors for ad $p x$ )

Arguing by contradiction, suppose $[X, Y]=a Y$ for some $Y \in T, \quad 0 \neq a \in \mathbb{F}$.
Then $\left(a_{T} Y\right)(X)=[Y, X]=-[X, Y]=-a Y \neq 0$ is an eigenvector for $\operatorname{ad}, Y$ with eigenvalue zero

$$
\text { (since }\left(a d_{f} Y\right)(-a Y)=-a[Y, Y]=0 \text { ) }
$$

But $X$ is a linear combination of eigenvectors for ad $Y$ (since $Y \in T$ ) and also for $a d_{T} Y$ (since $X, Y \in T$ ) It we write $X=\sum_{\lambda \in \pi}^{\text {sm a }} \tilde{C}_{\lambda} X_{\lambda}$ where $\left[Y, X_{\lambda}\right]=\lambda X_{\lambda}$ then
 contradicting $(Y,[Y, X])=-a[Y, Y]=0$. Thus $[X, Y]=0$

Choose a maximal toral subalgebra $H \subseteq L$. $\downarrow \quad L$ (there is no other feral subalgebra $T \subseteq L$ not necessarily with $H \leqslant T$ ) unique choice

Ex If $L=\operatorname{sen}(\mathbb{H})$ then one chare for $H$ is the subalgebra of (tracelers) diagonal matrices.
$L$ is never abelian (since $L$ is semisimple, $Z(L)=0$ ) So any total subalgebra $T \leqslant L$ has $T \neq L$, and is never an ideal.
$H$ (ar maximal Horal subalgebra) is abelian so ad_ $H$ is a family of commuting diagonalizable/semismple linear maps $L \rightarrow L$. Therefore $a d_{L} H$ is simultoreandy diagonalizable, meaning there is a decomposition

$$
\begin{aligned}
& \text { alizable, meaning there is a then } L_{0}=\left\{x \in L \mid c_{0}, h\right)=0 \text { Uh tH\} ~ } \\
& =L_{L} \quad=C_{L}(H) \\
& \alpha \in H^{*} \sim_{\text {could be zero, must be zero for }} \\
& \text { all but finitely mons } \alpha
\end{aligned}
$$

where $H^{*}=($ linear maps $H \rightarrow \mathbb{F})$ and

$$
L_{\alpha}=\{X \in L \mid[h, x]=\alpha(h) X \text { for all } h \in H\}
$$

(1) If $L_{\alpha} \neq 0$ and $0 \neq \alpha \in H^{*}$ then $\alpha$ is called a root Let $\Phi$ be set of all roots: this is a finite subset of $H^{*} \backslash O$.
(2) We call $L=\underline{C_{L}(H)} \oplus \oplus \oplus \in \Phi$ a cartan/raot space decomposition of $L$.

We have $L=C_{L}(H) \oplus \oplus_{\alpha \in \Phi} L_{\alpha}, L_{\alpha}=\{x \in L \mid(h, \alpha)=\alpha(h) \times V h \in H\}$
Prop For all $\alpha, \beta \in H^{*},\left[L_{\alpha}, L_{\beta}\right] \subseteq L_{\alpha+\beta}$
Pf Jacobi identity for $h \in H, x \in L_{\alpha}, y \in L_{\beta}$ implies that

$$
\begin{aligned}
{[h,[X, Y]] } & =-(X,[y, h]]-[Y,[h, X]] \\
& =[X,[h, y]]+[(h, X], Y]=(\alpha(h)+\beta(h)][X, Y] \square \\
\text { so }[X, Y] & \in L \alpha \neq \beta
\end{aligned}
$$

Prop If $x \in L_{\alpha}$ and $0 \neq \alpha \in H^{*}$ then $\operatorname{ad} X$ is nilpotent Pf $(\operatorname{ad} x)^{n}(Y) \in L_{n \alpha+\beta}$ for any $Y \in L_{\beta}$, and if $n \gg 0$ then $L_{n \alpha+\beta}=0$ since $\operatorname{dim} L<\infty$. Since $L=\underset{\beta \in H^{*}}{\bigoplus} L_{\beta}$ it follows that $(a d x)^{n}=0$ for $n \gg 0.0$

Prop If $\alpha, \beta \in H^{*}$ with $\alpha+\beta \neq 0$ and $\lambda^{\text {(which is }}$ nondegeremate) $X(x, y) \stackrel{\text { deft }}{=}$ trace ( $a \partial \alpha \mathrm{ad} \gamma$ ) denotes the Killing form of $L$ then $X(X, Y)=0 \forall X \in L_{\alpha}, Y \in L_{\beta}$. Thus $L_{\alpha}$ and $L_{\beta}$ are orthogonal wot $k$ if $\alpha+\beta \neq 0$.

Pf Since $\alpha \neq \beta \neq 0$, there is $h \in H$ with $(\alpha+\beta)(h) \neq 0$. Let $x \in L_{\alpha}, y \in L_{\beta}$. Then by associativity of $x$

$$
\begin{aligned}
& x([h, x], y)=-x([x, h), y) \stackrel{\downarrow}{=}=-x(x,[h, y]) \\
& n \\
& \alpha(h) x(x, y)=-\beta(h) x(x, y) \\
& \Rightarrow(\alpha+\beta)(h) x(x, y)=0 \Rightarrow x(x, y)=0.0
\end{aligned}
$$

Cor Killing form $k$ of $L$ restricts to a nondegenerote form on $L_{0}=C_{L}(H)=\{x \in L \mid[x, h]=0\}$
Pf Let $0 \neq x \in$ Lo.
Since $X(x, y)=0$ for all $y \in \underset{\alpha \in \Phi}{\bigoplus} L_{\alpha}$ by prev.
prep., we must have $x(x, y) \neq 0$ for some $Y \in L_{0}$ since otherise $K: L X L+\pi$ would be degenerate with $K(x, 0)=0 \in L^{*}$.

Easy fact from linear algebra: If $x, y \in g(v)$ with $\operatorname{din} V<\infty$ and $X Y=Y X$ and $Y$ is nilpolent, then $X Y$ is also nilpotent (since $(X Y)^{n}=x^{n} Y^{n}$ ) and trace $(X Y)=\operatorname{trace}(Y)=0$.

Thin Suppose $H$ is a maximal tonal subalgebra of a semisimple Lie algebra $L$ with $\operatorname{dim} L<\alpha$. Then

$$
H=C_{L}(H)=\{x \in L \mid[x, h]=0 \forall h \in H\}
$$

So the cortan decamp of $L$ wot $H$ is just

$$
L=H \bigoplus \bigoplus_{\alpha \in \Phi} L_{\alpha}
$$

Pf. Let $C=C_{L}(H)$. We proceed with a series of dims:
Claim) If $x \in C$ then $x_{s} \in C$ and $x_{h} \in C$

$$
\text { the parts of the Jordan decamp } x=x_{s}+x_{n}
$$

Pf If $x \in C$ then $a d x$ maps $H \rightarrow 0$. Since $(\operatorname{ad} x)_{s}$ and $(a d x)_{n}$ are polynomials in $a d x$ with zero constant term, they also map $H \rightarrow 0$. But $(\operatorname{ad} x)_{s}=a d\left(x_{s}\right)$ and $(\operatorname{ad} x)_{n}=\operatorname{ad}\left(x_{r}\right)$ so this means that $x_{s}, x_{n} \in C$. D

Claim 2 If $x=x_{s} \in C$ then $x \in H$ Pf suppose $x=x_{s} \in C$. Then $H+\mathbb{F} x$ is a total subalgebra so must be equal to $H$, so $x \in H, D$ (by maximility of $H$ )

Claim $\left.X\right|_{H \times H}$ is nondegenerate $\left[\begin{array}{c}\text { Note: we have already show } \\ \text { hal }\left.X\right|_{\text {exC }}\end{array}\right]$
Pf. Suppose $K(h, H)=0$ for some $h \in H$. Want to show that $h=0$. Consider some $x \in C$.
By claims I and 2, we have $x_{n} \in C$ and $x_{s} \in H \leq C$.
So $x(h, x)=x\left(h, x_{n}\right)=\operatorname{trace}\left(\operatorname{ad} h \operatorname{ad} x_{n}\right)=0$ therefore $\mathcal{X}(h, c)=0$. But this contradicts
linear algebra fad
ash and ad, as as $H \subseteq C$, unless $h=0$ as desired y

Claim $4 C$ is nipotent, ie, $\operatorname{sd}_{C} x$ is nitpotent $\forall x \in C$
Pf If $x=x_{s} \in C$ then $x \in H$ so adc $x=0$ (Which is cleemy nipotent)
If $x=x_{n} \in C$ then $a_{c} x_{n}$ is nitpotent by defmition.
For general $x=x_{s}+x_{n} \in C$, we have $x_{n}, x_{s} \in C$ and $a_{c} x_{s}$ commuter with $a d_{c} x_{n}$, so $\operatorname{ad} x=\operatorname{ad} x_{s}+a d x_{n}$ is nipatent. I

Claims $H \cap[C, C]=0$

Since $\left.X\right|_{\mathrm{AXX}}$ is mendegenerame, this means no nonzero $X \in A$ is in $[C, C]$.

Claim 6 $C$ is abelian, meaning $[c, C]=0$.
Pf Suppose $[C, C] \neq 0$. This is a nonzero ideal of $C$, which is nilpotent by claim 4 . So, by theorem proved to show Engel's thin, ad $C$ acts on $[C, C]$ as nilpotent linear transforms, which in some basis are all strictly upper- $\Delta$ matrices. In other words, there is some $0 \neq z \in[[, c]$ with $[x, z]=0$ for all $x \in C$. This element is evidently in $[C, C] \cap z(C)$. It coming be seminmple as then we wall have $0 \neq z=z_{s} \in H \cap[C, C]=0$. Thus (as $Z \neq 0$ ) we must have $0 \neq z_{n} \in C$. But ad $z_{n}$ is polmomial in ad $Z$ wo constant tenn, so $Z_{n} \in Z(c)$. Bul then $x\left(Z_{n}, c\right)=0$ contradicting that $\left.x\right|_{c x c}$ is nondegenenate. $D$

Finally Claim? $C=H$ element it are ad-ripoderent

If If $C \neq H$ then there exits a nilpotent nonzero element $0 \neq x=x_{n} \in C$. But ar $z(C)=C$ by claim 6 , the argument just given implies that

$$
X(x, C) \stackrel{\varepsilon^{\text {ad }} x}{=0} \quad \text { nilpotent, commutes with all ad }
$$

contradicting $x_{c \times c}$ is nondegenerate.

