Math 5143 - Lectures $11+12$

Last time: $S l_{2}(\mathbb{F})=\mathbb{F} \cdot \operatorname{span}\left\{h=\left[\begin{array}{cc}1 & 0 \\ 0-1\end{array}\right], y=\left[\begin{array}{l}0 \\ 10 \\ 10\end{array}\right], x=\left[\begin{array}{l}0 \\ 00\end{array}\right]\right\}$ (A) alg. clawed field of char zero)
irreducible
Classification thin for finite dim. $s l_{2}(f)$ - repass
For each integer $m \geq 0$ there is a Unique isomaphism class of irreducible $s l_{2}(F)$-modules V with $\operatorname{dim} V=m+1$,
This irreducible module has a basis $v_{0} v_{1} v_{2} \ldots v_{m}$
such that

$$
\begin{aligned}
& h v_{i}=(m-2 i) v_{i} \\
& y v_{i}=(i+1) v_{i+1} \quad\left(v_{m+1}=0\right)
\end{aligned}
$$

$$
\begin{aligned}
& y v_{i}=(i+1) v_{i+1} \quad\left(v_{m+1}=0\right) \quad \text { (of weight } m \text {) } \\
& x v_{i}=(m-i+1) v_{i-1} \quad l v_{-1}=0
\end{aligned}
$$

The vector V_{0} (or any nonzero scalar multiple) is a highest weight vector weight vectors \leftrightarrow eigenvector for h, weights \leftrightarrow eigenvalues for h

Important picture of irred $s e_{2}(\mathbb{F})$-module:

$$
V=V_{m} \oplus V_{m-2} \oplus \ldots \oplus V_{-m+2} \oplus V_{-m}
$$

(where $V_{m-2 i} \stackrel{\text { def }}{=} \mathbb{F} v_{i}$)

$$
\begin{aligned}
& \text { withe eigenante for } h
\end{aligned}
$$

with eigenmher $m, m-2, \ldots, m$

Root space decomposition L Let L be a nonzero, finite dim semisimple Lie alg.

A subalgebra $H \subseteq L$ is toral if every $x \in H$ has $x=x_{s}$ and $x_{n}=0$, where $x=x_{s}+x_{n}$ is the abstract Jordan decamp. of $x: x_{s}, x_{n} \in L$ are the unique elems with $\left\{\begin{array}{l}x=x_{s}+x_{n} \\ \operatorname{ad} x_{s} \\ \text { diagonalizable } L+L \\ \operatorname{ad} x_{n} \\ \text { nilpotent } \\ {\left[\operatorname{ad} x_{s}\right.}\end{array} \operatorname{ad} x_{n}\right]=0$.
Ie, every element of H is semisimple.

The (3) Any toral subalgebra H is abelian $([A, H]=0)$
(b) Any maximal toral subalgebra H is self-centralizing

$$
\left(H=C_{L}(H) \stackrel{\text { def }}{=}\{x \in L \mid(x, h)=0 \quad \forall h \in A\}\right)
$$

(C) The killing form of L, given $b_{y} x(x, y)=\operatorname{trace}(a d x a d y)$, restricts to a nondegenerate form on H if H is maximal tonal subalgebra
Gwen a maximal terai subalgelora $H \subseteq L$, the corresponding root space decomposition is $L=H \oplus \bigoplus_{\alpha \in \Phi} L_{\alpha}$ where Φ is a finite subset of $H^{*}, \quad L_{\alpha} \stackrel{\text { def }}{=}\{x \in L \mid[h, x]=\alpha(h) \times \forall h 6 H\}$ $O \nsubseteq \Phi$ since $H=L_{0}$. Existence of this decamp is consequence of © Call $L \alpha$ a root space and $\alpha \in \Phi$ a root

Ex Suppose $L=s \ell_{3}(H)=3 \times 3$ traceless matrices For a maximal foal subalgebra, take $H=\left\{\left.\left[\begin{array}{ccc}a & 0 & 0 \\ b_{0} & b^{\circ} \\ 0 & c\end{array}\right] \right\rvert\, a+b+c=0\right\}$
Let $\varepsilon_{i}: H \rightarrow \mathbb{H}$ by $\varepsilon_{i}(M)=M_{i i}$ (diagonal entry in row i)
Each $\varepsilon_{i} \in H^{*}$, but $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ are not a basis as $\operatorname{dim} H^{*}=2$.

L_{α} is defined for any $\alpha \in H^{*}$
but may be zero
we have $\Phi=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i, j \leq 3, i \neq j\right\}$

Recall we have a root space decamp
$L=H \oplus \oplus_{\alpha \in \Phi} L \alpha$ for finite set $\Phi \subset H^{*} \backslash 0$ with $L_{\alpha}=\{x \in L \mid[h, x]=\alpha(h) x \forall h \in H]$
Because $\left.x\right|_{H \times H}$ is nondegenerate, for each $\alpha \in H^{*}$, there is a unique element $t_{\alpha} \in H$ such that $\alpha(h)=x\left(t_{\alpha}, h\right) \forall h \in H$ orthogonality properties of Φ (this set is det'd by H)
(a) $H^{*}=$ othemise, there is some $0 \neq h \in H$ with $\alpha(h)=0 \forall \alpha \pm \Phi$
(b) If $\alpha \in \Phi$ then $-\alpha \in \Phi$ and then $\left[h, L_{\alpha}\right]=\alpha(h) L_{\alpha}=0 \quad \forall \alpha \in \Phi$ and also $[h, H]=0 \Rightarrow[h, L]=0 \Rightarrow 0 \neq h \in Z(L)=0$ [contradiction]
$B y$ a prop last time, $K\left(L_{2}, L_{\beta}\right)=0$ if $\alpha, \beta \in \Phi$ and $\alpha+\beta \neq 0$, and $K\left(L_{\alpha}, H\right)=0$. So it $\alpha \in \Phi,-\alpha \notin \Phi$ then it would follow that $K(L, L)=0$, contradicting nondegeneracy of X,
(C) If $\alpha \in \Phi, x \in L_{\alpha}, y \in L_{-\alpha}$ then $[x, y]=X(x, y) t_{\alpha}$

$$
\begin{aligned}
& \text { If } h \in H \text { then } x(h,[\alpha, y))=k((h, \alpha), y)=\alpha(h) x(x, y)=x\left(t_{\alpha}, h\right) k(x, y) \\
&= k(h, k(x, y)+\alpha) \Rightarrow
\end{aligned}
$$

$$
\text { hon degeneracy of }\left.x\right|_{A \times A}
$$

Ex If $L=s \ell_{3}(\pi)$ where every root has form $\alpha=\varepsilon_{i}-\varepsilon_{j}(i \neq j)$ and every root space is $L_{\varepsilon_{i}}-\varepsilon_{j}=\mathbb{F} E_{i j}^{\curvearrowleft}$ matrix with 1 in postal (int)
0 elsewhere
it follow that $t_{\varepsilon_{i}-\varepsilon_{j}}=\frac{1}{K\left(E_{i j}, E_{j i}\right)}\left[E_{i j}, E_{j 3}\right]=\underbrace{\frac{1}{4}}_{\uparrow}\left(E_{i i}-E_{j j}\right)$
This works if $L=s l_{n}(\mathbb{F})$ for ans n.
follow from
Computations like in HW2
More properties of root space decomposition:
(d) If $\alpha \in \Phi$ then $\left[L_{\alpha}, L_{-\alpha}\right]=\pi-$ span $\{+\alpha\} \neq 0$

Just need to shaw $\left[L_{\alpha}, L_{-\alpha}\right] \neq 0$ given (0). If $0 \neq x \in L_{\alpha}$ and $k\left(x, L_{-\alpha}\right)=0$ then $X(x, L)=0$, which is impossible as x is nondegenerate
(e) $\alpha\left(t_{\alpha}\right)$ (which by definition is $x\left(t_{\alpha}, t_{\alpha}\right)$ is nonzero for all $\alpha \in \Phi$ $L\left[\alpha(h)=k\left(t_{\alpha, h}\right) \forall h \in H\right]$

Pf we con find $x \in L_{\alpha}, Y \in L_{-\alpha}$ with $[x, Y]=t_{\alpha}$ by (0) If $\alpha\left(t_{\alpha}\right)=0$ then $\left[t_{\alpha}, x\right]=\left[t_{\alpha}, y\right]=0$.

$$
=\underbrace{\sim}_{\alpha\left(t_{\alpha}\right) x} \underbrace{p^{a s} t_{\alpha} \in H}_{(-\alpha)\left(t_{\alpha}\right) Y}
$$

In this case $a d t_{\alpha}$ is nilpotent and semisimple so ad t $=0$

$$
\downarrow
$$

$$
\Rightarrow 0 \neq \dagger_{\alpha} \in \tau(L)=0
$$

ad t, ad $\mathrm{P}_{\text {, ad t }}$ a contradiction
generate a solvable subalgebra of gel)
so by Lie's the there is a basis for L with add and ady upper- Δ, and then

$$
a d t_{\alpha}=\alpha \partial[x, y]=[\operatorname{ad} x, \alpha \partial y] \text { is stripy } \begin{gathered}
\text { upper- }
\end{gathered}
$$

(f) If $\alpha \in \Phi$ and $x_{\alpha} \in L_{\alpha}$ is nonzero then there ir some $Y_{\alpha} \in L_{-\alpha}$ such that \mathbb{H}-span $\left\{X_{\alpha}, Y_{\alpha}, H_{\alpha}\right\} \cong s l_{2}(H)$
via the obvias map $x_{\alpha} \mapsto\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
where $H_{\alpha} \stackrel{\text { def }}{=}\left[x_{\alpha} y_{\alpha}\right]$
$Y_{\alpha} H$ [$\left.\begin{array}{c}i c \\ i c\end{array}\right]$
$H_{\alpha} H\left[\begin{array}{c}10 \\ 0-1\end{array}\right]$
Pt Define Y_{α} such that $x\left(x_{\alpha}, Y_{\alpha}\right)=\frac{2}{x\left(t_{\alpha}, t_{\alpha}\right)}$ and then do some Checking.
(9) In setup of (f) the element $H_{\alpha} \stackrel{\text { deft }}{=}\left[x_{\alpha}, y_{\alpha}\right)$ has $H_{\alpha}=\frac{2+\alpha}{x(+\alpha,+\alpha)}=-H_{-\alpha}$.
Pf is straight formed 0

We centime our setup: $L=H \oplus \oplus_{\alpha \in \Phi} L_{\alpha}\left\{\begin{array}{l}L_{\alpha}=\left[x\left|(h, x)=\alpha\left(h_{0}\right) x\right|\right. \\ \Phi \subset H^{*} \backslash O \\ \text { Integral it properties of } \Phi \\ H \text { maximal tonal } \\ \alpha \in H^{*} \text { belongs to if } \\ \left(0 \neq \alpha, L_{\alpha} \neq 0\right)\end{array}\right.$
(b) If $\alpha \in \Phi$ then $\mathbb{F} \alpha \cap \Phi=\{-\alpha, \alpha\}$

Pf Let $\alpha \in \Phi$. Let $S_{\alpha}=\operatorname{Arpman}\left\{x_{\alpha}, r_{\alpha}, H_{\alpha}=\left[x_{\alpha}, Y_{\alpha}\right]\right\} \cong s l_{2}(\mathbb{F})$ where $0 \neq x_{\alpha} \in L \alpha, \sigma \neq Y_{\alpha} \in L-\alpha$.
Let $M=\underset{c}{\oplus} L_{C \alpha} \oplus H=H \oplus L_{\alpha} \oplus L_{-\alpha} \oplus$ (posilidy other root spocet) ($0 \# c \in$ Hand $c a \in \Phi$)
M is an S_{α}-module with weights are 0 and $2 C$ since (eigemalves od H_{α})
$c \alpha\left(H_{\alpha}\right)=c \cdot \alpha\left(\frac{2+\alpha}{\alpha\left(t_{\alpha}\right)}\right)=2 c$ by previous props.
\Rightarrow we must have $c \in \frac{1}{2} \mathbb{Z}$ since all $s l_{2}$-weights are integers.

Every irreducible S_{α}-rabmatule of M of even highest weight contributes one dimension to the zero weight space of M (which is just H)
But $S_{\alpha} \subseteq M$ is irreducible and

$$
H=\underbrace{\operatorname{ker}(\alpha)} \oplus \overbrace{\mathcal{F} H_{\alpha}} \rightarrow 0 \text {-weight space in } s_{\alpha}
$$

S_{α} acts as zeroon this subspace, which has $d i m=\operatorname{dim} H-1$
Since we already have $L_{\alpha,} L_{-\alpha} \subseteq S_{\alpha}$ it must hold that $L_{c \alpha}=0$ if C is an even integer with $C \neq-2,0,2$ Conclude that $\alpha \in \Phi$ then $2 \alpha \$ \Phi$. Hence we cannot have $\alpha, \frac{1}{2} \alpha \in \Phi$ so if $\alpha \in \Phi$ then $\frac{1}{2} \alpha \notin \Phi$. This mons that 1 cont occur as a weight for $M \Rightarrow M=H+S_{\alpha}=\operatorname{ker}(\alpha) \oplus \pi H_{\alpha} \oplus \pi x_{\alpha} \oplus \pi Y_{\alpha}$ So $\operatorname{dim} L_{\alpha}=1 D$

