MATH 5143 - Lecture 18

Math 5143 - Lecture 9

Cartan matrix Classification of Last time: Coster Jingrams irreducible root Omkin diagrams Systems (and by extension all simple Lie algebras) A root system in a real vector space E with a symmetric, positive def. bilinear form, is a nonempty finite set DCELSO3 which spans E, which has and which has 2(B,a)/(d,a) EZ Va, BEQ.

* Call the integers 2(B, x)/(2, 2) the Cartan numbers * An isomorphism between root systems of Φ is a bijection preserving Cartan numbers * A root system is imeducible if it cannot be partitioned into disjoint nonempty orthogonal subsets kes point: every root system has a unique decomposition as a disjoint union of imeducible subsystems (where a subset of $\overline{\Phi}$ is viewed as a root system in the subsporce of E that it spans)

The isomorphism classes of irreducible root systems belong to 7 families: $A_n(n\geq 1)$, $B_n(n\geq 2)$, $C_n(n\geq 3)$, $D_n(n\geq 4)$ Et, E7, 68, Fu, and G2 Last time: we saw constructions in types ABCD Choose a simple system (base Δ in a rootsystem $\overline{\Phi}$ Grecall this is a bosis for E such that Order \triangle as we never need to mix signs of coefficients a, dz dz .- dn . when expressing not in terms of 2. Then the Carton matrix of $\overline{\Phi}$ is $[2(\alpha_i, \alpha_j)/(\alpha_j, \alpha_j)]_{sijj \leq n}$

The Cozeter diagram of & is the graph with vortex set Δ and with $4(\alpha_{i},\alpha_{j})(\alpha_{0},\alpha_{i})$ edges $(\alpha_{i},\alpha_{i})(\alpha_{0},\alpha_{i})$ between α_i and α_j for each $\alpha_i \neq \alpha_j$ in Δ . The Dynkin diagram of I is formed from the Coxeter diagram by orienting edges $\alpha = \beta$ and $\alpha \equiv \beta$ to be $\alpha \Rightarrow \beta$ and $\alpha \Rightarrow \beta$ if $||\alpha|| > ||\beta||$. [whenever a double or triple edge occurs, it is between roots of different lengths]

The Cartan Matrix and Bynkin diagram [40 to anbitrony relabelling of indices / ventices] unique], determine the isomorphism class of $\overline{\Phi}$. Also, $\overline{\Phi}$ is irreducible iff the Dynkin diagram is connected. The graphs that occur as Dynkin diagrams of irreducible not systems are precisely $E_n: 0 - 0 - 0 - 0 - 0 - 0 = 6,7,8)$ An: 0-0-.0-0 Bn: 0-0-.-0≠0 $F_{n}: 0 \to 0 \to 0 (n = 4)$ Ch: 0-0--0=0 $G_n: \bigoplus (h=2)$ Dn: 00000 (n vortices 0 in each picture)

Back to semisimple Lie algebras suppose L is a finite - dimensional Lie algebra over an algebra cally clased Field IF of char. zoro. Assume L is semisimple [so L is direct sum of simple Lie algebras / has no solvable ideals] "consists of all Lihas no proper nonzero ideals and semisimple elems" is non abelian" Then: for any maximal toral subalgebra $H \subseteq L$ there is a (unique) decomposition $L = H \bigoplus \bigoplus L_{\infty}$ for a certain subset $\bigoplus CH^*$, $d \in \bigoplus$ where $L_{x} \stackrel{\text{def}}{=} \{x \in L \mid [h, x] = \alpha(h) \mid x \mid \forall h \in H \}$

The vector space H* has a nondegenerate symmetric form dual to the restriction to the of the killing form X(X,Y) = frace (ad X ord Y) for X, YEL. The set of is a root system in H*. Thus Lis simple iff & ir irreducible. Also, two semisimple Lie algebras are iromorphic ff and only if their root system are itomorphic. one thing we haven't seen (for exceptional types): for each irreducible root system there does exist a simple Lie algebra with that root system as its $\overline{\Phi}$.

If char(F) >0, then these are different, however.

Quick evervier, no proofs Def A Cartan subalgebra of a Lie algebra Lis a nilpotent subalgebra HEL with H = NL (H). Here NL(H) = [XEL][X,h] EH VLEH] This IF L is semisingle and defined over an alg-closed field IF with char (IF) =0, then a subalgebra H EL is a maximal tomal subalgebra iff H is a Carlan subalg.

Digression - Cartan subalgebras

Def A Borel subalgebra of a Lie algebra L is a maximal solvable subalgebra

Thm If B, and Bz are two Borel subalgebras of a Lie agebra L, then there is an automorphism f (Aut(L) with f(B)=B2. Moreover, the same fact holds if B1 and B2 are two Cartan subalgebras. Ex If L = Sl_n(IF) then two Borel subalgebras are B1 = uppor A-matrices and B2 = lower-s matrices. We have $f(B_1) = B_2$ for $f(x) = -x^{T}$. Textbook proves stronger fact that f E Aut (L) (on be chosen in a subgroup E(L) SAVILL) generated by expladx) for XEL that are strongly ad-nilpotent in a certain sense.

The following constructions portain to arbitrary Lie algebras over any field IF. The main idea is to construct from a Lie algebra L an associative unital algebra ZN(L) as freels as passible subject to the commutation relations of L. That is, we want to build the "most general possible algebra 21(4) 21 that has $X \cdot Y - Y \cdot X = [X,Y] \forall X,Y \in L.$ An associative unital algebra is just a vector space A with an associative bilinear multiplication operation and a compatible unit 1EA.

Det An enveloping algebra of a given Lie algebra L is a pair (A, A) where A is an associative unital algebra and $\phi: L \rightarrow A$ is a linear map. such that $\varphi([x,y]) = \varphi(x)\phi(y) - \phi(y)\phi(x) \forall x y \in L.$ Ex If L S gl(V) for a vector space V then gl(v) is an enveloping algebra with to obvious inclusion of: Lage(v) A morphism of enveloping algebras $f: (A_1, \phi_1) \rightarrow (A_2, \phi_2)$ is an algebra homomorphism f: A, +A such that $A_1 \xrightarrow{f} A_2$ commutes a linear map sending units to units a linear map sending units to units Commuting with multiplication

Def A universal enveloping algebra of L is an initial object in the category of enveloping algebras for L: that is, an enveloping algebra (11, i) such that if (A, ϕ) is any enveloping algebra for L then there is a unique morphism $(u, i) \rightarrow (A, \phi)$ Prop If (U, i) and (U, i) are both universal enveloping algebras for L then there is a unique isomorphism $(u_1,i_1) \xrightarrow{\sim} (u_2,i_2)$ Pf By def., there are unique morphisms $f:(u_1,i_1) \rightarrow (u_2,i_2)$ and $g:(u_2,i_2) \rightarrow (u_1,i_1)$. There are unique morphisms $f:(u_1,i_1) \rightarrow (u_2,i_2)$ and $g:(u_2,i_2) \rightarrow (u_1,i_1)$. There are unique morphisms $f:(u_1,i_1) \rightarrow (u_2,i_2)$ and $g:(u_2,i_2) \rightarrow (u_1,i_1)$. But the identity morphism is the only morphism $(u_j, i_j) \rightarrow (u_j, i_j)$. So fog = id D

So there is at most one universal enveloping algobro of L. (up to unique isomorphism). More involved:

The Any Lie algebra L has a universal enveloping algebra. [This is always infinite-dimensional if $L \neq 0$].

The proof requires a short digression on tensor algebras.

Let V be a finite-dimensional vector space over a field IF. Define $T^{\circ}V = H$ T3V=VQVQV T'Y = VTNV = VOVO...OV (n foctors) $T^2V = V \otimes V$ Let $T(V) = \bigoplus T^{n}V$. This a vector space whose element for any in 30, are finite linear combinations of tensors v. @v. @v. any Viev We make T(V) into an apposightve unital algebra with unit 1 E # = TOV < T(V) by setting $(v_1 \otimes \cdots \otimes v_k)(w_1 \otimes \cdots \otimes w_k) \stackrel{\text{def}}{=} v_1 \otimes \cdots \otimes v_k \otimes w_1 \otimes \cdots \otimes w_k$ and extending by linearity, for vi, w; EV. The resulting structure is the tensor algebra of V.

Some properties of the tensor algebra T(V): * associative * graded as T"V×T"v+T""v * infinite-dim * generated as an algebra by any basis of V The fersor algebra of V is characterized by this universal property: for any associative unital algebra A and any linear map $\phi: V \rightarrow A$, there is a unique algebra morphism 1: T(V) -> A such that the diagram V inclusion T(V) ¢ X Y commutes.

Let I be the two-rided ideal in T(V) generated
by the set {
$$x \otimes y - y \otimes x$$
 | $x_1 y \in V$ } the intersection of
all two-rided ideal
The symmetric algebra of V is the quotient $S(V) \stackrel{\text{def}}{=} T(V)/I$
This is a commutative algebra with the same universal property as $T(V)$
but restricted to commutative algebra.
If $x_1, x_1 - y = x_n$ is a basis for V then $S(V)$ is isomorphic to
the polynomial algebra $F[X_1, X_2, ..., X_n]$ in a commuting variables.
The tensor algebra $T(V)$ is similarly isomorphic to the free associative
algebra $F(X_1, X_2, ..., X_n)$ of polynomials in a non-commuting variables.

Proof of existence of universal criveleping algebras (for Lie algebra L)

the set
$$\{x \otimes y - y \otimes x - [x, Y] \mid x, Y \in L\}$$

 $\epsilon T^{2}L$ $\epsilon T^{2}L$ $\epsilon T^{1}L$

Next we set $U(L) \stackrel{\text{def}}{=} T(L) / J$. Also define $TT : T(L) \rightarrow U(L)$ to be the quotient map and define $i : L \rightarrow U(L)$ to be the composition $L \stackrel{T}{\longrightarrow} T(L) \stackrel{T}{\longrightarrow} U(L)$. Since $J \stackrel{\text{def}}{\longrightarrow} T^{*}L$ the quotient U(L) is renzero and contains $T^{*}L = H$

It is not yet clear whether or not i is injective (this will turn and to be true but is not part of any defs) To show that (U(L), i) is a universal enveloping algebra: suppose (A, j) is some enveloping algebra for L. The universal property of T(L) gives us a unique algebra homomorphism of: T(L) + A such that the diagram

But all elements $x \otimes y - y \otimes x - [x, y]$ for $x, y \in L$ and in $Ker(\phi')$, since $\phi'(x \otimes y) = \phi'(x) \phi'(y)$ as ϕ' is algebra hom. Thus $J \leq ker(\phi')$ so ϕ' descends to the desired unique morphism $(u(L), i) \rightarrow (A, \phi)$. D Ex. Suppose L is abelian so that $[x,y] = 0 \forall x_1 t \in L$. Then J = I and U(L) = S(L) is the Symmetric algebra of L.

Next:

algebra structure of ULL and the Poincaré-Birkhoff-Witt theorem describing a basis for ULL