MATH 5143 - Lecture 18

Math S 143 - Lecture 9
Last time: Partan matrix Classification of Coxeter diagrams $\}$ irreducible root Dynkin diagrams systems (and by extension all simple Lie algebras)
A root system in a real vector spare E with a symmetric, positive def. bilinear form, is a nonempty Finite set $\Phi \subset E \backslash\{0\}$ which spans E, which has $\mathbb{R e} \cap \Phi=\{ \pm \alpha\} \forall \alpha \in \Phi$, which has $r_{\alpha}(\Phi)=\Phi \forall \alpha \in \Phi$, and which has $2(\beta, \alpha) /(\alpha, \alpha) \in \mathbb{Z} \quad \forall \alpha, \beta \in \Phi$.

* (all the integers $2(\beta, \alpha) /(\alpha, \alpha)$ the Cartan numbers
* An isomorphism between root systems of Φ is a bijection preserving Carton numbers
* A root system is imeoducible if it cannot be partitioned into disjoint nonempty orthogonal subsets
key point: every root system has a unique decomposition as a disjoint union of irreducible subsystems (where a subset of Φ is viewed as a root system in the subspace of E that it spans)

The isomorphism classes of irreducible root systems belong to 7 families:

$$
\begin{aligned}
& A_{n}(n \geqslant 1), \quad B_{n}(n \geq 2), C_{n}(n \geqslant 3), D_{n}(n \geq 4) \\
& E_{6}, C_{7}, G_{8}, \quad F_{4}, \quad \text { and } C_{2}
\end{aligned}
$$

Last time: we saw constructions in types ABCD
Choose a simple sister / base Δ in a rootsptem Φ
order Δ as $\quad G$ recall this is a bops for \in such that

$$
\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{n} .
$$ we never need to mix signs of coefficients when expressing rotor in toms of Δ.

Then the Carton matrix of Φ is $\left[2\left(\alpha_{i}, \alpha_{j}\right) /\left(\alpha_{i}, \alpha_{j}\right)\right]_{1 s i, j \leq n}$

The Coxeter diagram of Φ is the graph with vertex set Δ and with $\frac{4\left(\alpha_{i}, \alpha_{j}\right)\left(\alpha_{j}, \alpha_{i}\right)}{\left(\alpha_{i}, \alpha_{i}\right)\left(\alpha_{j}, \alpha_{j}\right)}$ edger between α_{i} and α_{j} for each $\alpha_{i} \neq \alpha_{j}$ in Δ.
The Dynkin diagram of Φ is formed from the
Coxeter diagram by orienting edges $\alpha=\beta$ and $\alpha \equiv \beta$ to be $\alpha \nRightarrow \beta$ and $\alpha \nRightarrow \beta$ if $\|\alpha\|>\|\beta\|$. [Whenever a double or triple edge occurs, it is between roots of different lengths]

Thu The Carton matrix and Oymin diagram [up to arbitrary relabeling of indices/vertices] uniquely determine the isomorphism Class of \$. Also, Φ is irreducible of the $\begin{array}{r}\text { nankin } \\ \text { diagram is connected. }\end{array}$
The graphs that occur as Dynkin diagrams of irredxible root systems are precisely
A_{n} : 0-0-. 000

$$
B_{n}: 0-\infty=0
$$

$$
c_{n}: 0-0-0 \neq 0
$$

$$
D_{n}: 0-0 \cdot-\int_{0}^{0}
$$

$$
\begin{aligned}
& E_{n}: 0-0-0-\ldots \quad(n=6,7,8) \\
& F_{n}: 0-0 \rightarrow 0-0 \quad(n=4) \\
& G_{n}: 0 \nsupseteq 0(n=2)
\end{aligned}
$$

[n vertices 0 in each picture]

Back to semisimple Lie algebras suppose L is a finite-dimensional Lie algebra over an algebraically olared field \mathbb{F} of char. zero. Assume L is semisimple [so L is direct sum of simple Lie algeloras / has no solvable ideals] "consists ot all. L" has no proper nazeero ideals and semisimple elem" "ת is non abeliam"
Then: for any maximal feral subalgebia $H \subseteq L$ there is a (unique)
decompositas

$$
L=A \oplus \bigoplus_{\alpha \in \Phi} L_{\alpha} \text { for a certain subset } \Phi \subset H_{j}^{*}
$$

where $L_{\alpha} \stackrel{\text { deft }}{=}\{x \in L \backslash[h, x]=\alpha(h) x \quad \forall h \in \mathbb{H}\}$.

The vector space H^{*} has a nondegenerate symmetric form dual to the restriction to H of the killing form

$$
x(x, y) \stackrel{\text { def }}{=} \text { trace }(\operatorname{ad} x \text { ad ty) for } x, y \in L \text {. }
$$

The set Φ is a root sustom in H^{*}.
Thu L is simple of Φ ir irreducible.
Also, two semisimple Lie algebras are isomorphic it and only if their root systems are isomorphic.
one thing we haven't seen (for exceptional types): for each irreducible root system there does exist a simple Lie algebra with that root sy stem as its Φ.

Digression - Cartan subalgebras
Quick overviev, no proofs
Def A cartan subalgebra of a L Lie algebra L is a nilpotent subalgebra $H \subseteq L$ with $H=N_{L}(H)$. Here $N_{L}(H) \stackrel{\text { det }}{=}[X \in L \backslash[X, h] \in H \quad \forall L \in H]$

Thim If L is semisinde and defined over an als clofed Field F with char $(A)=0$, then a subolgebra $H \subseteq L$ is a maximal tran subalgelora iff H is a Cartan subalg. If chav(II) >0, then there ave difforent, however.

Def A Botel subolgebra of a Lie algebra L is a maximal solvable subalgeboro

The If B_{1} and B_{2} are two Boned subaloperas of a Lie algebra L, then there is an automophaion $f \in A u t(L)$ with $f\left(B_{1}\right)=B_{2}$. Moreover, the same fact holds if B_{1} and B_{2} are two carton subalgebras.
Ex If $L=s l_{n}(\pi)$ then two Bowl subalgebras are $B_{1}=$ upper A-matrices and $B_{2}=10 w e r-\Delta$ matrices. we have $f\left(B_{1}\right)=B_{2}$ for $f(x)=-x^{\top}$.
Textbook proves stronger fact that $f \in A u t(L)$ con be chosen in a sulgrap $\varepsilon(L) \leq A v+l l)$ generated by exp (add) far x $\in L$ that ore strongly ad-nipdent in a certain sense.

Related important fact:
Cor In a general Lie algebra, all Carton subalgebras H are isamophic.

New topic today:
universal enveloping algebras.

The following constructions pertain to arbitrary Lie algebras over any field IF. The main idea is to construct from a Lie algebra L an associative unital algebra $U(L)$ "as freely as possible" subject to the commutation relations of L. That is, we wont to build the "most general possible" algebra U(L) $\supseteq L$ that has

$$
X \cdot Y-Y \cdot x=[X, Y] \quad \forall X, Y \in L
$$

An associative unital algebra is just a vector space A with an associative bilinear multiplication operation and a compatible unit $1 \in A$

Deft An enveloping algebra of a given Lie algebra L is a pair (A, ϕ) where A is an associative unital algebra and $\phi: L \rightarrow A$ is a linear map, such that

$$
\phi([x, Y])=\phi(x) \phi(Y)-\phi(Y) \phi(X) \quad \forall x Y \in L .
$$

Ex If $L \leq g e(V)$ for a vector space V then $g e(v)$ is an envelop ins algebra wot to obvious melwion $\phi: L a g e(v)$ A morphism of enveloping algebras $f:\left(A_{1}, \phi_{1}\right)+\left(A_{2}, \phi_{2}\right)$ is an algebra homomaphtion $f: A_{1} \rightarrow A_{2}$ sech that $A_{1} \xrightarrow{f} A_{2}$ commutes $\phi_{1} \tau_{L} \vec{\phi}_{2}$
a linear map sending units to muts commuting with multi triplication

Def A universal enveloping algebra of L is
an initial object in the category of enveloping algebras for L : that is, an enveloping algebra (u, i) such that if (A, ϕ) is any enveloping algebra for L then there is a unique morphism $(u, i) \rightarrow(A, \phi)$
Prop If $\left(u_{1}, i_{1}\right)$ and $\left(u_{2}, i_{2}\right)$ are both universal enveloping algebras for L then there is a unique isomorphism $\left(u_{1}, i\right) \xrightarrow{\sim}\left(u_{2}, i_{2}\right)$ PE $B 1$ def., there arr unique morhisms 4 morph $\frac{1}{\text { an alpo with a two cried inverse, ie. }}$

 oof =id D

So there is at most one universal enveloping algebra of L (up to unique isomorphism). More involved:

Thu Any Lie algebra L has a universal emvebping algebra. [This is always infinitedimensional if $L \neq 0$].

The proof requires a short digression on tensor algebras.

Let V be a finite-dimensional vectorspace over a field I I. Define $T^{0} V=\pi$

$$
T^{3} V=V e v a v
$$

$$
T^{\prime} V=V
$$

$$
\begin{array}{ll}
T & \quad \vdots \\
T^{2} V=V \otimes V & T^{n} V=V \otimes V \otimes \cdots V \text { (n factors) }
\end{array}
$$

Let $T(V)=\bigoplus_{n \geq 0} T^{n} V$. This a vector space whose element p are finite liver combinations of tensors $v, \otimes v_{2} \otimes \ldots, v_{n}$ for any $n \geqslant 0$, we make $T(V)$ into an associative unital algebra with unit $1 \in \mathbb{F}=T^{0} \vee \subset T(V)$ by setting

$$
\left(v_{1} \otimes-\otimes v_{k}\right)\left(w_{1} \otimes \ldots w_{j}\right) \stackrel{\text { def }}{=} v_{1} \otimes \ldots v_{k} \otimes w_{1} \otimes \cdots w_{1}
$$

and extending by linearity, for $v_{i}, w_{j} \in V$. The resulting structure is the tensor algebra of V.

Some properties of the tensor algebra $T(V)$:

* associative *graded as $T^{m} V \times T^{n} V \rightarrow T^{m+n} V$
* infinite-dim * generated as an algebra by any basis of V

The tensor algebra of V is characterized by this unviensal property: for any associative unital algebra A and ans linear $\operatorname{map} \phi: V \rightarrow A$, there is a unique algebra mophtion $\psi: T(V) \rightarrow A$ such that the diagram

Let I be the two -sided ideal in T(V) by the set $\{x \otimes y-y \otimes x \mid x, y \in V\}$
generated the intestetion of all tro-rided palp contain ing therese elnath

The symmetric algebra of V is the quatient $S(v) \stackrel{\text { def }}{=} T(v) / I$ This is a commutate wine algebra with the same universal property as $T(v)$ but restricted to commutative algebras.
If $x_{1}, x_{2}, \ldots, x_{n}$ is a basis for v then $S(v)$ is isomorphic to the pol/memial algebra $\mathbb{F}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ in n commuting variables. The tension algebra $T(v)$ is similarly isomorphic to the free associative algebra $\mathbb{F}\left\langle x_{1}, x_{2}, \cdots, R_{n}\right\rangle$ of polynomials in in noncommuting variables

Proof of existence of universal enveloping algebras (for Lie algboriaL)
Let J be the two-sided ideal in $T(L)$ generated by the set $\{\underbrace{x \otimes y}_{\in T^{2} L}-\underbrace{y \otimes x}_{\in T^{2} L}-\underbrace{[x, y]}_{\in T^{\prime} L} \mid x, y \in L\}$.
Next we set $U(L) \stackrel{\text { def }}{=} T(L) / J$. Also define $\pi: T(L) \rightarrow U(L)$ to be the quotient mop and define $i: L \rightarrow U(L)$ to be the composition $L \longrightarrow T(L) \xrightarrow{\pi} U(L)$. since $J \leq \oplus{ }_{n \rightarrow 0} T^{n} L$ the quotient $U(L)$ is nonzero and contains $T^{\circ} L=\mathbb{F}$

It is not yet clear whether or not i is infective (this will tum out to be true but is not part of any deft) To show that $(\mathcal{U}(L), i)$ is a universal enveloping algebra: suppose (A, j) is some enveloping algebra for L.
The universal property of $T(L)$ gives us a unique algebra homomorphism $\phi^{\prime}: T(L) \rightarrow A$ such that the diagram

commutes.

But all elements $x \otimes y-y \otimes x-[x, y]$ for $x, y \in L$ ane in $\operatorname{Ker}\left(\phi^{\prime}\right)$, since $\phi^{\prime}(x \otimes y)=\phi^{\prime}(x) \phi^{\prime}(y)$ as ϕ^{\prime} is algebra ham. Thus $J \leq \operatorname{ker}\left(\phi^{\prime}\right)$ so ϕ ' descends to the derived manque maphim $(u(L), i) \rightarrow(A, \phi)$. $\bar{\square}$

Ex. Suppose L is abelian so that $[x, r]=0 \forall x, y+c$. Then $J=I$ and $U(L)=S(L)$ is the symmetric algebra of L.

Next: algebra structure of U(L) and the Poincare-Birkhoff-W.1t theorem describing a basis for $U(L)$

