MATH 5143 - Lecture 19

MATH S 143 - Lecture 19
Last time: we discussed enveloping algebras, universal envel alg., tensor algebras, symmetric algebras. For most of this discussion, IF is any field, L is any Lie algebra over \mathbb{F}, V is any H-vector space.
Recall motivation: the universal envel alg. $U(L)$ of L will $g^{i v e}$ an associative unital algebra whose repps are "the same" as L-repns, and from which we can construct all L-repns

Def An enveloping algebra (for L) is a pair
(A, ϕ) where A is an (associative untal) algebra,
$\phi: L+A$ is a linear map with $\phi([,-1)=\phi(x) \phi(y)-\phi()) \phi(x)$
A morphism $(A, \phi) \stackrel{f}{\rightarrow}(B, \psi)$ is an alg. morphism
$f: A+B$ such that $A \stackrel{f}{\rightarrow} B$ commutes.

$$
\phi_{L} \lambda_{\psi}
$$

Def. A universal enveloping algebra (for L) is an initial) object in the category of envel algebras. \rightarrow an object with a unique morphism to any other object.

How to construct such an initial abject (from last time): Let $T(L)=\mathbb{T} \oplus T^{\circ}(4)(L \otimes L) \oplus(L \otimes L(L)) \oplus \ldots$ be the tensor algebra of L (with product given by (\otimes)

Form J as the two-sided ideal of $T(L)$ generated by the set $\{x \otimes y-y \otimes x-[x, y] \mid x, y \in L\}$ intersection of all ideas containing the set
Now let $U(L) \stackrel{\text { def }}{=} T(L) / J$ and let $i: L \rightarrow U(L)$ be the linear map formed by composing

$$
L=T^{\prime}(L) \hookrightarrow T(L) \text { and } T(L) \xrightarrow{\pi} U(L)
$$

Main thin from last time $(u(L), i)$ is a universal enveloping algopra for L, and every other univ. envelop. alg for L is uniquely is omorphic to $(U(L), i)$

Ex If L is abelian then $J=\langle x \otimes v-y \otimes x| x, y(L\rangle$ and $u(L)=S(L)=$ the symmetric algebra on L

Goals for today: understand the structure of $U(L)$, show egg. that $i: L \rightarrow U(L)$ is injective.

$$
u(L) \stackrel{\text { deft }}{=} T(L) /\langle x(0 y-y(0)-[x, y]|x, y \in L\rangle
$$

Some related notation: $=J$
Let $T_{m} \stackrel{\text { def }}{=} \underset{k=0}{\oplus} T^{k}(L)=T^{0}(L) \oplus T^{\prime}(L) \oplus \ldots \oplus T^{m}(L)$ and $U_{-1}^{\text {def }}=0$ and $U_{m} \stackrel{\text { deft }}{=} \pi\left(T_{m}\right)$ where $\pi: T(L) \xrightarrow{\text { quotient }} U(L)$
clearly, $u_{m} \cdot u_{n} \subseteq u_{m+n}$ and $u_{m} \leq u_{m+1}$ so we con define a vector space $G^{m} \stackrel{\text { def }}{=} U_{m} / u_{m-1}$ and set $G(L) \stackrel{\text { det }}{=} \not \overbrace{m \geq 0} G^{m} \neq U(L)$. There is a welldefined associative bilinear map $6^{m} \times G^{n} \rightarrow 6^{m+n}$ so we can view $G(L)$ as a graded associative algebra.

There is also a surjective linear $\operatorname{map} T(L) \rightarrow G(L)=\oplus \underbrace{}_{m \geq 0} u_{m} / u_{m-1}$ given by sunning all of the maps

$$
\phi_{m}: T^{m}(L) \xrightarrow{\pi} u_{m} \xrightarrow{\text { quotient }} G^{m}=u_{m} / u_{m-1}
$$

This map is surjective because $\pi\left(T_{m} \backslash T_{m-1}\right)=U_{m} \backslash U_{m-1}$
Lemming The map $\phi=\bigoplus_{m=0} d_{m}$ is an algebra marphism $T(L) \rightarrow G(L)$ with $\phi(I)=0$ where $I=\langle x \otimes y-y \otimes x \mid x, y \in L\rangle$ so ϕ descends to an algebra morphism $S(L)=T(L) / I \rightarrow C(L)$

Pf Let $x=x, \otimes \ldots x_{m} \in T^{m}(L)$ and $y=y, \otimes .\left(y_{n} \in T^{\prime \prime}(L)\right.$ Then $\phi(x y)=\phi(x) \phi(y)$ so ϕ is an al gebra maphisn.

$$
\phi_{m+n}^{\prime \prime}(x y)=\phi_{m}(x) \phi_{n}(y)
$$

For and $x_{1} y \in L$ we have $\pi(x \otimes y-y \otimes x) \in U_{2}$ but $\pi\left(x \otimes y-y(\Delta x)=\pi([x, y]) \in U_{1}\right.$ so it follows that

$$
\phi(x \otimes y-y \otimes x) \in u_{1} / u_{1}=0 \text { so } I \subseteq \operatorname{ker} \phi, \boxtimes
$$

This lemma leads to the following fundamental result:
Thin [pEw hm] The algebra manphism $\omega: S(L) \rightarrow G(L)$ induced by ϕ is an isamomphison. Detailed prot is in the textbook ...(skip in lecture)
we are more interested in the consequences of the PBW tho.
Cor. Let W be a subspace of $T^{m}(L)$. Suppose the quotient map $T^{m}(L) \rightarrow S^{m}(L)$ sends W isomerphically onto $S^{m}(L)$. Then $u_{m}=u_{m-1} \oplus \pi(w)$.
$\left[\begin{array}{l}\text { what is } S^{m}(L) \text { ? This just the image of } T^{m}(L) \text { under the } \\ \text { quotient map } T(L) \rightarrow S(L) \text {. We have } S(L)=\bigoplus_{m \geq 0} S^{m}(L)\end{array}\right]$
Pf. Consider the diagram $T^{m}(L) \xrightarrow{\prime \prime} U_{m} \xrightarrow{\text { qudtent }} G^{m}=u_{m} / U_{m-1}$
The lemme and PBW thin imply that this diagram commutes,
so as w is an isomorphism, the bottom two maps must send W isomorphically onto G^{m}. [Note: U_{m-1} is kernel of $U_{m} \rightarrow 0^{m}$] D

Cor The map $i: L \longleftrightarrow T(L) \xrightarrow{\pi} U(L)$ is infective. Pf If we take $W=T^{\prime}(L)=L$ then the quotient map $T(L) \rightarrow S(L)$ sends W isomonphically onto $S^{\prime}(L)=T^{\prime}(L)$ so pres. corollary implies the $\pi(L) \oplus U_{0}=i(L) \oplus F=U_{1}$ so $i(L)$ is complementary to U_{0} in U_{1} and i ir injectived
cor If (U, i) is any universal enveloping algebra for L then i is injective.
Pf (Because all Univ.env. alg. are \cong)

Cor Suppose $x_{1}, x_{2}, x_{3}, \ldots$ is an ordered basis for L Then a basis for U(L) is provided by all elements
(*) $x_{i 1} x_{i 2} x_{i_{3}} \cdots x_{i_{m}} \stackrel{\text { def }}{=} \pi\left(x_{i 1} \otimes x_{i 2} \otimes \cdots\left(\Delta x_{i m}\right)\right.$ where $m \geq 0$ and $i_{1} \leq i_{2} \leq n \leq i m$.
[In this setting the case $m=0$ contributes the unit 1.]
Call the set of celoms ($*$) the PBW basis of U(L)

Pf Let W be the subspace of $T^{m}(L)$ spanned by the PBW basis elements of degree m. Then w is mapped is omophically onto $S^{m}(L)$ and so the corollary above implies that $\pi(W)$ is complementary to u_{m-1} in u_{m}. By induct on on m, it follows that the PBW basis spans $U(L)$ and is linearly independent D

Ex. $x_{1} \cdot x_{2}=x_{1} x_{2}$ but

Cor Suppose H is a subalgebra of L with an ordered basis $\left(h_{1}, h_{2}, \ldots\right.$) that can be extended to a basis of L by adding $\left(x_{1}, x_{2}, \ldots\right)$. Then the inclusion $H \hookrightarrow L$ extends to an infective algebra morphism $U(H) \hookrightarrow U(L)$ and $U(L)$ is a free $U(H)$-module with basis given by the PBW bass elements only involving $x_{1}, x_{2}, x_{3}, \ldots$.
Pf Clear from the Description of the PBW basis \square

Free Lie algebras \rightarrow analogass to free groups

Suppose arr Lie algebra L is generated by 9 set X, meaning $X \subset L$ and there is ne proper Lie subalgebria containing x.
Def L is free on X if for any map $\phi: X>M$ where M is a Lie algebra, there exists a unique Lie alg. morphism $4: L+M$ such that

$$
\underset{L_{L}}{x} M \text { commutes. }
$$

USual universal property arguments show that any two Lie algebras that are free on isomorphic sets are isomorphic
(same size sets)
Given a set x, how to form a free Lie alg. on x ?
(1) Let V be a vector space with x as basis.
(2) Form tensor algebra $T(V)$ viewed as a Lie algebra with $[a, b]=a b-b a$.
(3) Let L be the Lie subalgebra of $T(V)$ generated by x.

Claim This grues a free Lie algebra L an X.

Pf Suppose $\phi: X \rightarrow M$ is a map with M a Lie algebra. First extend ϕ to a linear map $V \rightarrow M \subset U(M)$. Then (anonicalls extend this to algebra mopphism $T(V) \rightarrow U(M)$, and restrict this to a Lie algelora mophhirm. [some details reft to
Def If L is free on X and $R \quad$ check $] D$ is the ideal of L generated by some elements $\left\{f_{j} \mid j \in I\right]$ then we call| $L \mid R=\left\langle x \mid f_{j}=0 \forall_{j} \in I\right\rangle$ the Lie algebra generated by x with relations $f_{j}=0$

