MATH 5143 - Lecture 19

Last time: me discussed enveloping algebras, universal envel. alg., tensor algebras, symmetric algebras. For most of this discussion, IF is any field, L is any Lie algebra over TF, V is any H-vector space.

Recall motivation: the universal enveloals. U(L) of L will give an associative unital algebra whose reports are "the same" as L-reports, and from which we can construct "the same" as L-reports, and from which we can construct all L-reports

Def An enveloping algebra (for L) is a pair (A, A) where A is an (associative unital) algebra, $\phi: L \rightarrow A$ is a linear map with $\phi([x_1,y_1]) = \phi(x)\phi(y) - \phi(y)\phi(x)$ $\forall x_1,y_1 \in L$ A morphism (A, ϕ) + (B, γ) is an alg. morphism f: A + B such that A + B commutes. $\phi^{*} \downarrow \psi$ Def. A universal enveloping algebra (for L) is an initial object in the category of envel algebras. an object with a unique morphism to any other object.

How to construct such an initial abject (from last time): $T^{\circ}(L) = FF \oplus L \oplus (L \otimes L) \oplus (L \otimes L) \oplus ...$ be the tensor algebra of L (with product given by @) form J as the two-sided ideal of T(L) generated by the set { x@1-y@x-[x,y] x,yel} intersection of all ideals containing the set Now let U(L) def T(L)/J and let i: L+U(L) be the linear map formed by compasing $L = T'(L) \longrightarrow T(L)$ and $T(L) \xrightarrow{\pi} \mathcal{U}(L)$

Ex If L is abelian then $J = \langle x \otimes y - y \otimes x | x | y \in L \rangle$ and u(L) = S(L) = the symmetric algebra on LGoals for today: understand the structure of U(L), show e.g. that i: L+U(L) is injective.

Main the from last time (U(L), i) is a universal enveloping algebra for L, and every other univ. envelop. alg. for L is uniquely is omorphic to (U(L), i) $\mathcal{U}(L) \stackrel{\text{def}}{=} T(L) / \langle \chi Q \gamma - \gamma Q \gamma - [\chi, \eta] | \chi, \eta \in L \rangle$ = 1 Some related notation: Let $T_{\mathbf{n}} \stackrel{\text{def}}{=} \stackrel{\mathbf{n}}{\oplus} T^{k}(\mathbf{L}) = T^{0}(\mathbf{L}) \oplus T^{1}(\mathbf{L}) \oplus \cdots \oplus T^{n}(\mathbf{L})$ and def $M_{-}=0$ and $U_{m} \stackrel{\text{def}}{=} TT(T_{m})$ where $T:T(L) \stackrel{\text{quotient}}{\longrightarrow} U(L)$ Clearly $\mathcal{U}_{m} \cdot \mathcal{U}_{n} \subseteq \mathcal{U}_{m+n}$ and $\mathcal{U}_{m} \subseteq \mathcal{U}_{m+1}$ so we can define a vector space $G^m \stackrel{\text{def}}{=} U_m / U_{m-1}$ and Set $G(L) \stackrel{\text{def}}{=} \bigoplus_{m \ge 0} G^m \neq U(L)$. There is a well-defined associative bilinear map $G^m \times G^n \rightarrow G^{m+n}$ so we can view G(L) as a graded associative algebra. There is also a surjective lineor map $T(L) \rightarrow G(L) = \bigoplus U_m / M_{m-1}$ given by summing all of the maps $\Phi_m: T^m(L) \xrightarrow{TT} U_m \xrightarrow{quotient} G^m = U_m / U_{m-1}$ This map is surjective because $T(T_m \setminus T_{m-1}) = U_m \setminus U_{m-1}$ Lemma The map $\phi = \bigoplus_{m \ge 0} \phi_m$ is an algebra marphism $T(L) \rightarrow G(L)$ with $\phi(I) = 0$ where $I = \langle x \otimes y - y \otimes x | x, y \in I \rangle$ so & descends to an algebra morphism S(L) = T(L)/I -> G(L)

Pf Let $X = X, \otimes ... \otimes Xm \in T^{m}(L)$ and $y = y, \otimes ... \otimes y_{n} \in T^{n}(L)$ Then $\phi(x_1) = \phi(x)\phi(x)$ so ϕ is an algebra morphism. $\phi(xy) = \phi_n(x)\phi_n(y)$ For any xixel we have TI(XQY-YQX) ∈ U2 but $\pi(x\otimes_1 - y\otimes_2) = \pi([x_1y_1]) \in \mathcal{U}_1$ so it follows that $\phi(x_0) - 1_{(x_1)} \in U_1/U_1 = 0$ so ISker ϕ . This lemma leads to the following fundamental result: Thm [PBW thm] The algebra morphism w: S(L) ->G(L) induced by ϕ is an isomorphism. Detailed proof is in the textbook ... (skip in lecture)

We are more interested in the consequences of the PBW thm. Cor. Let W be a subspace of T^m(L). Suppose the quotient mop T^(L) -> S^(L) sends W isomorphically onto $S^{m}(L)$, Then $N_{m} = N_{m-1} \oplus T(W)$. What is sm(L)? This just the image of Tm(L) under the quotient map $T(L) \rightarrow S(L)$, we have $S(L) = \bigoplus_{m \ge 0} S^{m}(L)$ Pf, Consider the diagram T^m(L) - Un - G^m = U_m/U_{n-1} The lemma and PBW thin quotient sn(L) w imply that this dragram commutes, ss as wis an isomorphism, the bettom two maps must send w isomorphically onto GM. [Note: Un-is kernel of Un+GM.] D

Cor The map i: L -> T(L) -> U(L) is injective. Pf If we take W = T'(L) = L then the quotient map T(L) - S(L) sends in iomorphically onto S'(L) = T'(L) So prev. corollary implies that $\pi(L) \oplus U_0 = i(L) \oplus H = U_1$ So i (L) is complementary to Up in U, and i is injectived Con If (U,i) is any universal enveloping algebra for L then i is injective. Pf (Because all Univ. env. alg. are ≅) D

Cor Suppose X, Lz, Lz, - is an ordered bar: 1 for L. Then a basis for ULL) is provided by all elements (*) $X_{i_1}X_{i_2}X_{i_3}\cdots X_{i_m} \stackrel{\text{def}}{=} \pi(x_{i_1}\otimes x_{i_2}\otimes \cdots \otimes x_{i_m})$ where meo and issize-sin. (In this setting the case m=0 contributes the unit 1.) Call the set of elems (*) the PBW basis of U(L)

Pf Let W be the subspace of T^m(L) spanned by the PBW basis elements of degree m. Then wis mapped is morphically and 5° (L) and 50 the corollary above implies that TI(W) is complementary to un-1 in un. By induction on m, it follows that the PBW basis spans ULL) and is linearly independent D $E_{X_1} \cdot X_2 = X_1 \cdot X_2$ but

$$x_2 \cdot x_1 = x_1 \cdot x_2 + [x_2, x_1] = x_1 x_2 + \sum_{i=1}^{n} a_i x_i$$
 for some aif i
 $\in L = \mathbb{H}$ -span $\{x_1, x_2, \dots\}$

Cor Suppose H is a subalgebra of L with an ordered basis (h, h, -) that can be extended to a basis of L by adding (X, X2, ...). Then the inclusion HC+L extends to an injective algebra morphism U(H) ~ U(L) and U(L) is a free U(H)-module with basis given by the PBW basis elements only involving x1, x2, x3, Pf Clear from the description of the PBN basis &

Free Lie algebras ~ analogous to free groups

Suppose an Lie algebra L is generated by 9 set X, meaning $X \subset L$ and there is no proper Lie subalgebra containing X.

Def L is free on X if for any mop $\phi: X+M$ where M is a Lie algebra, there exists a unique Lie alg. morphism $\psi: L+M$ such that Lie alg. morphism $\psi: L+M$ such that $\chi \phi M$ commutes.

Usual universal property arguments show that any two Lie algebras that are free on isomorphic sets (same size sets) are *isomorphic* Given a set X, how to form a free Lie alg. on X? O Let V be a rector space with X as basis. 2) Form tensor algebra T(V) viewed as a Lie algebra with $[q_1b] = ab - ba$. 3 Let L be the Lie subalgebra of T(V) generated by X. Claim This gres a free Lie algebra L on X.

Pf Suppose of: X-7 Mis a map with M a Lie algebra. First extend & to a linear map V + M C U(M). Then (anonically extend this to algebra morphism T(U) - N(M) and restrict this to a Lie algebra Marphirm. [Some details left to Def If Lis free on X and R Check] I is the ideal of L generated by some elements [filje] then we call $L/R = \langle X | f_j = 0 \forall j \in J \rangle$ the Lie algebra generated by X with relations f; =0.