MATH 5143 - Lecture # 22

L Lie algebra (asroc.)alg. but noncommutative T(L) tensor algebra S(L) Symmetric algebra (arroc) alg. that is commutative N(L) univ. enveloping algebra (assoc.) alg. also Not commutative What's true : the associated graded algebra of U(L) is = S(L) in U(L) we have $xy = Yx + [x,y] \neq yx$ des 2 des 2 degs kes point: multiplication of homogeneous tensors in U(L) IGNORING LOWER ORDER TERMS is commutative

Clarifications about universal enveloping algebras

MATH SIU3 - Lecture 22

Representation theory setup: Lis a semisimple fix. dim. Lie algebra / F H ⊆ L is a Cartan subalgebra, Q ⊂ H* is the root system, $\Delta = \{\alpha_1, \alpha_2, \dots, \alpha_n\} \subset \overline{\Phi}$ is a chosen base, $\overline{\Phi}^{\dagger} = \{possitive roots\}$ and $W = 2r_{\alpha} | \alpha \in \overline{Q} > = 2r_{\alpha} | \alpha \in \overline{Q} > \subseteq GL(H^*)$ First key observation: Any finite-dim L-module V decomposes as a direct sum of weight spaces $V = \bigoplus V_1$ where $V_1 \stackrel{\text{def}}{=} \{v_E V \mid h \cdot v = J(h) v \forall h \in A\}$ Call JEHt a weight of V if V, to and call V, a weight space. we make some definitions if $\dim V = \infty$ but in that case the sum of weight spaces $\bigoplus V_1$ which is always direct may be $\subsetneq V$. $\downarrow_{\in H^*}$

I dea : to avoid pethologies with arbitrary infinite - din L-modules, we Consider standard cyclic modules.

A maximal vector in an arbitrary L-module V is a nonzero element V^{\dagger} in some weight space of V with $Xv^{\dagger} = O \quad \forall X \in L_{X} \quad \forall \alpha \in \Delta$

Lie's theorem (applied to the Borel algebra $B = HB \oplus L_{x}$ acting or V) ensures that V has a maximal vector whenever dim V < as

Oef A standard cyclic module for L is an L-module V with a maximal vector v⁺ such that V = U(L)·v⁺. In this situation, the maximal vector v⁺ will belong to V₁ for some 16 H[#] and we say V has highest weight 1 and we call v⁺ is a highest weight vector Then (structure then for standard cyclic modules) For each $\beta \in \overline{\Phi}^{\dagger}$ choose $\chi_{\beta} \in L_{\beta}$, $\gamma_{\beta} \in L_{-\beta}$ such that $[\chi_{\beta}, \gamma_{\beta}] = h_{\beta} \in H$ write $\lambda > \mu$ for $\lambda, \mu \in H^{+}$ if $1 - \mu \in \mathbb{Z}_{\geq 0}$ -span for $\in \Delta$?

Suppose V is standard cyclic L-module with maximal vector $v \in V_1$ (a) If $\Phi^+ = \{\beta_{i_1}, \beta_{2_1}, \beta_{3_2}, \dots, 7\}$ then V is spanned by vectors of the form $\gamma_{\beta_{i_1}}, \gamma_{\beta_{i_2}}, \gamma_{\beta_{i_3}}, \dots, \gamma_{\beta_{i_K}}, v$ where $1 \leq i_1 \leq i_2 \leq i_3 \leq \dots \leq i_k$

(b) All weights µ for V have µ < 1 and dim Vµ < 00 and dim V₁ = 1.
(c) Any submodule of V is a direct sum of its weight spaces
(d) V is indecomposable with unique maximal proper submodule and unique irreducible quotient
(e) Every homomorphic image of V is standard cyclic of some weight t

Todas: first, two more thms about standard cyclic modules ThmA If V and W are irreducible standard cyclic L-modules with same highert weight tell* then V = w Thm B If I f Ht then there exists an irreducible Standard cyclic L-module V(1) of highest weight 1. PfotThmA. Let x = VOW = {v+w | v \in V, w \in W}. This is an L-module and if uteV and wteW are higher weight vectors then $x^{\dagger} \stackrel{\text{def}}{=} v^{\dagger} + w^{\dagger} \in X$ is a maximal vector also of weight f. Let Y be the submodule of X generated by xt. This is standard cyclic by def. But V = Y/kerTT, and W = Y/kerTT2 where TI, : Y+V and TI2: Y+W are the dovious surjective homomorphisms. This means V and W are both isomorphic to the unique irreducible quotient of Y. D

To prove Thin B we must explain how to construct standard cickic modules Induced modules Begin with a 1-dim vector space D1 = Fispon {v+} **Spanned by some vector** v^+ . Let $1 \in H^*$ and $B = B(\Delta) \stackrel{\text{def}}{=} H \bigoplus \bigoplus L_{\alpha} \subset L$. The Borel subalgebra B acts on Dy linearly by h.v+ det -1(h)v+ and Xv+ def for het, ace of XeLa This makes D₁ into a module for B and for U(B) Def Let Z(1) = U(L) Qu(B) D This a general construction of a U(L)-module: U(L) + Dy left u(u)-mod left u(B)-mod right ULB)-mod Concretely, Z(1) is vector space spanned by the tensors XOY (XEULL), YED2) subject to relations $C(x_0) = (x_0) = x_0(x_0)$ (x+x')@1 = x@1 + + '@1 xb@y = x oby for xEU(L), bEU(B), yED, xQ(x+1) = xQ1 + xQ1'

The way L acts on Z(1) is $A \cdot (x \otimes y) \stackrel{\text{def}}{=} (A \times) \otimes y (w / higher + weight vector$ / (@v+) Claim Z(-1) is a standard Cyclic L-module of weight -1. Pf Every y E Dy is a scalar multiple of vt so every tensor XQIEZ(1) is equal to 2. (IOV+) where 2 E UIL) is a scelar multiple of x. For XELL for all we have XEB 50 $x \cdot (10v^{\dagger}) = x0v^{\dagger} = 100 xv^{\dagger} = 100 = 0$ Also for h (A < B we have $h \cdot (100^{1}) = h00^{1} = 10 h0^{1} = 10 h(100^{1})$

Let
$$N^{-} = \bigoplus_{k \neq i} L_{k}$$
. The relation $x b \oplus v^{+} = x \oplus bv^{+} \forall b \in B$, since $L = V \oplus B$,
 $a \in -\overline{e}^{+}$
implies that if $\overline{\Phi}^{+} = \{\beta_{1}, \beta_{2}, \beta_{3}, \dots \}$ and $\{y_{i} = y_{\beta_{i}}, spans L_{-\beta_{i}}\}$ then
 $\{y_{i_{1}}, y_{i_{2}}, \dots, y_{i_{k}} \otimes v^{+}\}$ $k \ge 0$ and $i_{1} \le i_{2} \le \dots \le I_{k}\}$
is a basis for $Z(A)$, via the PBW theorem.
Prop $Z(A) \cong U(L) / I(A)$ as $U(L) - modules$, where
 $I(A)$ is left ideal generated in $W(L)$ by the elements
 $\{x_{i_{1}}, x_{i_{2}}, x_{3}, \dots, T\} \cup \{h_{a} - A(h_{a}) \cdot A\}$ $a \in \overline{\Phi}\}$
Pf These generators annihilate $1 \otimes v^{+}$ so there is a surjective morphism
 $U(L) / I(A) \rightarrow Z(A)$ which is injective using PBW theorem. \square

Thm (Thm B) Define V(I) for 1(H* to be the unique irreducible quotient of the Standard Ciclic module Z(-1) Then V(1) is standard credic of weight 1 and irreducible. Note: V(1) still might be infinite-dimensional Pf Since Z(1) is standard cyclic, and since V(1) as a quotient is a homomorphic image of ZGD, every thing follows from Structure theoren for standard cyclic modules. D In some sonse, hardert part of thm is showing Z(+) =0 (but we will not discuss this ; sure in detail, follows from PBW thm) Two new goals: () Explain when V(1) is finite. dim. 2) Determine weight spaces V(1) = V(1) Fact If V is any irreducible L-module with dim V < 00 then $V \cong V(1)$ for some $J(H)^*$. Pf If dim v <00 then Lie's the applied to Braction on V implies existence of a maximal vector of some weight 1. This vector must generate V by irreducibility, so V = V(+) by Thm A. D