MATH 5143 - Lecture \# 23

Representation theory setup: L is a semisimple fin. dim. Le algebra / if $A \subseteq L$ is a Cartan subalsebra, $\Phi \subset H^{*}$ is the root system, $\Delta=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\} \subset \Phi$ is a chosen base, $\Phi^{+}=\{$positive roots $\}$, and $W=\left\langle r_{\alpha} \mid \alpha \in \Phi\right\rangle=\left\langle r_{\alpha} \mid \alpha \in \Delta\right\rangle \subseteq G L\left(H^{*}\right)$

An L-module V is standard cyclic of weight $\lambda \in H^{*}$ if $\exists 0 \neq v^{+} \in V$ such that $V=U(L) v$ and $\begin{cases}x v^{+}=0 & \forall \alpha \in \Phi^{+} \\ h v^{+}=\lambda(\omega) v^{+} & \forall h \in H\end{cases}$

Thin If V and W are irreducible standard cyclic L-modules with same highest weight $t \in H^{*}$ then $V \cong W$
Tho B If $t \in H^{*}$ then there exists an irreducible standard cyclic L-module $V(\lambda)$ of highest weight λ.

Fact If V is any irreducible L-module with $\operatorname{dim} V<\infty$ then $V \cong V(\lambda)$ for some $\lambda(f)^{*}$.

Pf If $\operatorname{din} V<\infty$ then Lie's thin applied to B-action on V implies existence of a maximal vector of some weight λ. This vector must generate V by irreducibility, so $V \cong V(-)$ by The A. \square

Goals for today: (1) Explain when $V(1)$ is finite. dim.
(and next week): (2) Determine weight spaces $V(-))_{\mu} \leq V(-)$
For each simple root $\alpha_{i} \in \Delta$ let $S_{i}=S_{\alpha_{i}}=L_{-\alpha_{i}} \oplus \mathbb{F} h_{\alpha_{i}} \oplus L_{\alpha_{i}} \cong S l_{2}(f)$ Then $V(t)$ is a module for S_{i} and a maximal vector for L is also maximal for S_{i}
The If $V \cong V(t)$ and $\operatorname{dim} V<\infty$ then $\lambda\left(h_{\alpha_{i}}\right) \in \mathbb{Z}_{\geq 0} \forall \alpha_{i} \in \Delta$ and if $\mu \in H^{*}$ is any weight for V then $\mu\left(h_{\alpha_{i}}\right) \in \mathbb{Z} \forall \alpha_{i} \in \Delta$
Pfrketen Fallows from $s l_{2}$-rept theory as V decomposer ar sum of finding irs. S_{i} - modules.

Call $t \in \mathbb{H}^{*}\left\{\begin{array}{l}\text { dominant if } \lambda\left(h_{\alpha}\right)>0 \quad \forall \alpha \in \Delta \text { (equiv. } \forall \alpha \in \Phi^{+} \text {) } \\ \left.\text { integral if } \lambda\left(h_{\alpha}\right) \in \mathbb{Z} \quad \forall \alpha \in \Delta \text { (equiv. } \forall \alpha \in \Phi\right)\end{array}\right.$
Then $\lambda \in H^{*}$ is dominant integral if $f\left(h_{\alpha}\right) \in \mathbb{Z}_{\geq 0} \quad \forall \alpha \in \Delta$
Let Λ be abelian group of integral weights and Λ^{+}the subset of dominant integral weight. Note that $\Lambda \supset \Phi$.
For an L-module V let $T(V) \subseteq H^{*}$ be its set of weights and define $\pi(-)=\pi(V(-))$). If $\operatorname{dim} V<\infty$ then $\pi(\lambda) \subset \Lambda$.
Next manthim suppose $\lambda \in \Lambda^{+}$. Then $V(\lambda)$ has finite dimension and the Wert grape $W \in G\left(H^{+}\right)$permutes $\pi(A)$ with $\operatorname{dim} V(A)_{\mu}=\operatorname{dim} V(A) \sigma_{\mu} \forall \sigma \in W$.
Cor the map $H_{\mapsto} \rightarrow V(\lambda)$ is a bijection from Λ^{+}to somophisom olasses of irreducible finn. dim. L-modules. If combine main the with fact and the on prev sided (along with Thin A)

Pf sketch of main thin $\in L_{\alpha i} \in L-\alpha_{i}$
Some identities in $U(L)$: wring $X_{i}=X_{\alpha_{i}}, Y_{i}=Y_{\alpha_{i}}$, and $h_{\alpha i}=\left[X_{i}, Y_{i}\right]$ for $\alpha_{i} \in \Delta$
(a) $\left[x_{j}, y_{i}^{k+1}\right]=0$ when $i \neq j, k \geq 0$
(b) $\left[h_{j}, y_{i}^{k+1}\right]=-(k+1) \alpha_{i}\left(h_{j}\right) y_{i}^{k+1} \quad(k \geqslant 0)$
(c) $\left[x_{i}, y_{i}^{k+1}\right]=-(k+1) y_{i}^{k}\left(k-h_{i}\right) \quad(k \geq c)$
straightforward algebra by induction an $k \geq 0$.
Now we derive a series of claims.
Claim (1) $y_{i}^{m_{i}+1} v^{+}=0$ where $m_{i}=\lambda\left(h_{i}\right) \in \mathbb{Z} \geq 0$, and $v^{+} \in V=V(-)$ is a Pf otherwise can use (a)-(c) to show that $y_{i}^{m_{i}+1} v^{+}$ is a second maximal vector of weight $\neq \lambda$ which is impossible D

Clain12) V contains a nonzero findim. $S_{i}=\delta_{\alpha_{i}}$-module Pf Consider subspace spermed by $v^{+}, y_{i} v^{+}, y_{i}^{2} v^{+}, \ldots$ This is finite dim by claim (1). 10

Claim (3) V is a sum of finite-dim δ_{i}-modules Pf Let V^{\prime} be the sum of all s_{i}-submodules of finite. dim in V Then $V^{\prime} \neq 0$ by claim (2). Check that V^{\prime} is an L-motile, hence $V^{\prime}=V$
\rightarrow use (a) (b) (c) since v irreducible D

Claim (u) If $\phi: L \rightarrow g l(V)$ is reps corvepp. to L-module structure on V then $\phi\left(x_{i}\right)$ and $\phi\left(y_{i}\right)$ are both locally nilpotent (meaning nilpotent when restricted to a finite-dim subspace)
Pf each $v \in V$ is in a finite sumo of $\mathrm{f}_{\mathrm{m}}^{\mathrm{m}}$. si-modules, on which $\phi\left(x_{i}\right), \phi\left(y_{i}\right)$ act as nilpotent operators, by $s l_{2}$-reps theory.

Claim (s) Define $\sigma_{i} \stackrel{\text { def }}{=} \exp \left(x_{i}\right) \exp \left(-y_{i}\right) \exp \left(x_{i}\right)$. This is an automorphism of V (as a vector space)
Pf Just need te check that σ_{i} is well-defined, but this follows from prev claim. O
Claim (6) If μ is a weight of V then $\sigma_{i}\left(V_{\mu}\right)=V_{\nu}$ for $V \stackrel{\text { def }}{=} r_{\alpha_{i}}(\mu)$ with $r_{\alpha} \in W$ the usual reflection. by structure them for standard cycle modes
Pf Follows from $s l_{2}$-rep theory since V_{μ} is $\tilde{f i n}_{\text {in dim }} s_{i}$-summed, see $\$ 7.2$ in textbook for explicit argument.
Claim (7) If $\mu \in \pi(V)=\pi(A)$ and $w \in W$ then $\omega(\mu) \in \pi(H)$ and $\operatorname{dim} V_{w}(\mu)=\operatorname{dim} V_{\mu}$
Pf Immediate from Claim (6) as $W=\left\langle r_{\alpha_{i}} \mid \alpha_{i} \in \Delta\right\rangle$ o

Claim (8) $\pi(\lambda)$ is finite
Pf $\pi(-)$ is a subset of the set of W-conjugates of all dominant integral $\mu \in A^{*}$ with $\mu \leq \lambda$ by claim (7) and structure thin of stammers cyclic modules. Results in chaplor $1 B$ of textbook imply this set is finite. \square

C(ain 19) $\operatorname{dim} v<\infty$ since $\pi(v)=\pi(-1)$ is finite and each $\mu\left(\pi(t)\right.$ has $\operatorname{dim} V_{\mu}<\infty \quad D$

Multiplicity formula Fix $\lambda \in \Lambda^{+}$. Then $V(A)$ is fin dim irreducible. For $\mu \in H^{*}$ let $m_{\lambda}(\mu) \stackrel{\text { del }}{=} \operatorname{dim} \nu(\lambda) \mu \in \mathbb{Z} \geq 0$
This is zero if $\mu \$ \pi(\lambda)$. Call $\left.m_{\lambda} \mid \mu\right)$ the multiplicity of μ in $v(A)$. If $\mu \in H^{*}$ and $\mu \notin \Lambda$ then $\mu \Phi \pi(\lambda)$ so $m_{1}(\mu)=0$.
The (Freucentina)'s formula) If $\mu \in \Lambda$ and $\delta=\frac{1}{2} \sum_{\alpha \in \Phi^{+}}^{\alpha}$ then

$$
((\lambda+\delta, \lambda+\delta)-(\mu+\delta, \mu+\delta)) m_{\lambda}(\mu)=2 \sum_{\alpha \in \Phi^{+}} \sum_{i=1}^{\infty} m_{\lambda}(\mu+i \alpha)(\mu+\alpha, \alpha)
$$

and this formula provides an effective algarthon to compute $m_{\lambda}(\mu)$.
Key point (nontrivial, see δn of text book): it $-7 \neq \mu$ then $\|\lambda+\delta\|^{2} \neq\|\mu+\delta\|^{2}$ minor point (trial): $m_{\lambda}(\lambda)=1$
so can divide both sides by this number

Formal characters wart to assign to each fin. dim L-module a vector (similar to charader of a group reps) that identifies its isomorphism class.

Notation let $\mathbb{Z}[1]$ be the free \mathbb{Z}-module with boris given bs symbols $\left[e^{\lambda} \mid f(\Lambda)\right]$ and make this additive group into a ring by setting $e^{\lambda} e^{\mu}=e^{-\lambda+\mu}$. Here $\Lambda \subset H^{*}$ is the infinite set of integral weights, including $0 \in \Lambda$.
Def If $\lambda \in \Lambda^{+}$then the formal character of $V \cong V(\lambda)$ is $c_{V}=c_{1} \stackrel{\operatorname{del}}{=} \sum_{\mu \in T(A)} m_{\lambda}(\mu) e^{\mu} \in \mathbb{Z}[\Lambda]$.
If V is arb. finite dim. L-module then V has unique de comp.
$\left.V \cong V\left(\lambda_{1}\right) \oplus V\left(t_{2}\right) \oplus \ldots \odot V C_{k}\right)$ with each $\lambda_{i} \Lambda^{+}$and we set oh $v=\sum_{i=1}^{k} c_{\lambda_{1}}$

Ex If $L=s l_{2}(\mathbb{H})$ then $C h_{1}=e^{\lambda}+e^{-1-\alpha}+e^{1-2 \alpha}+\ldots+e^{t-m \alpha}$ whore $m=\langle\lambda, \alpha\rangle\left[\right.$ Here $\left.\alpha=\left[\begin{array}{l}1 \\ 1\end{array}\right], \lambda=\left[\begin{array}{l}1 \\ \lambda_{2}\end{array}\right), m=\lambda_{1}-\lambda_{2}\right]$

Weal grape W acts a $\mathbb{Z}[\Lambda]$ by

$$
w \cdot\left(\sum_{\mu \in \Lambda} c_{\mu} e^{r}\right)=\sum_{\mu \in \Lambda} c_{\mu} e^{w(\mu)} \text { where } c_{\mu} \in \mathbb{Z}
$$

Cor chr is fixed by every wed. If $m_{\lambda}(\mu)=m_{\lambda}(w(\mu)) V_{\text {well }}$.
Prop If $f \in \mathbb{T}[\Lambda]$ is feed by all well then f has unique expansion as a finite linear combination of formal characters oh y for $\lambda \in \Lambda^{+}$.

Pf idea: write $f=\sum_{\lambda \in \Lambda} c_{\lambda} e^{\lambda}$ with $c_{\lambda} \in \mathbb{Z}$
all but finitely mans C_{λ} 's must be zero. Find a maximal $\lambda \in \Lambda^{+}$with $c_{\lambda} \neq 0$, form $g=f-c_{\lambda} c_{\lambda}$, and argue that jar mas conclude by induction that g has desired expansion. 0
geod move to deduce uniqueness (exercise)
Prop suppose V and W are both finite dim. L-males Then Chow $=$ chr chm. (Recall how VOW is an L-madule:
Pf straightforward erective. O

