MATH 5143 - Lecture #23

Representation theory setup: L is a semisimple fix. dim. Lie algebra / F H = L is a Cartan subalgebra, I = H* is the root system, $\Delta = \{\alpha_1, \alpha_2, ..., \alpha_n\} \subset \overline{\Phi}$ is a chosen base, $\overline{\Phi}^{\dagger} = \{possitive roots\}$ and $W = Zralae \overline{Q} = Zralae \overline{Q} = Zralae \overline{Q} = GL(H^*)$ An L-module V is standard cyclic of weight JEH* if JO\$v*EV such that V = U(L)v and $Xv^{\dagger} = 0$ $\forall x \in \overline{P}^{\dagger} \forall x \in L_{A}$ $hv^{\dagger} = \lambda(h)v^{\dagger} \forall h \in \overline{H}$ ThmA If V and W are irreducible standard cyclic L-modules with same highert weight tell* then V = w Thm B If I f Ht then there exists an irreducible Standard cyclic L-module V(1) of highest weight 1.

Fact If V is any irreducible L-module with dim V < 00 then $V \cong V(1)$ for some $J(H)^*$. Pf If dim V <00 fhen Lie's the applied to Braction on V implies existence of a maximal vector of some weight 1. This vector must generate V by irreducibility, so V = V(H) by Thm A. D Goals for today : 1 Explain when V(1) is finite. dim. (and next week) ; 2) Determine weight maces V(1) = V(1) For each simple not died let Si = Sxi = L-xi @ IFhx; @ Lx: = SR2(IF) Then V(A) is a module for S; and a maximal vector for L is also maximal for S; The If $V \cong v(1)$ and $\dim V < \infty$ then $J(h_{\alpha_i}) \in \mathbb{Z}_{\geq 0} \quad \forall \alpha_i \in \Delta$ and if MEH* is and weight for V then M(ha:) EZ VX:ED pfshelch Follows from 5l2-repritheory as V decomposes as sum of findin irr. Si-modules.

Coll
$$4 \in H^*$$
 dominant if $4(h_{\alpha}) > 0$ $\forall \alpha \in \Delta$ (equiv. $\forall \alpha \in \overline{\Phi}^+$)
integral if $4(h_{\alpha}) \in \mathbb{Z}$ $\forall \alpha \in \Delta$ (equiv. $\forall \alpha \in \overline{\Phi}$)

Then $A \in H^{\ddagger}$ is dominant integral if $A(h_{\alpha}) \in \mathbb{Z}_{\geq 0}$ for $\in \Delta$ Let Λ be abelian group of integral weights and Λ^{\ddagger} the subset of dominant integral weights. Note that $\Lambda \supset \overline{\Phi}$. For an L-module V let $TT(V) \subseteq H^{\ddagger}$ be its sol of weights and define TT(H) = TT(V(H)). If $\dim V \mod$ then $T(H) \subset \Lambda$.

Next main than Suppose $A \in A^+$. Then V(A) has finite dimension and the Weyl group $W \in GL(H^+)$ parmutes TT(A) with dim V(A)_µ = dim V(A)_{σµ} $V \sigma \in W$. Cor the map $A \mapsto V(A)$ is a bijection from A^+ to isomorphism classes of irreducible findim L-modules. <u>Pf</u> combine main that with fact and that on prevs lide D (along with Than A) Pf sketch of main thin ELdi EL-di Some identifies in ULD: writing Xi = Xdi, Yi = Ydi, and has = [Xi, Yi] for di ED (a) [x_j, y_j^{kn}] = 0 When i ≠ j, k≥0 (b) $[h_{j_1} y_{j_1}^{k_{m}}] = -(k_{m}) \alpha_i(h_j) y_i^{k_{m}}$ (1=0) (c) $[x_{i}, y_{i}^{k+1}] = -(k+1)y_{i}^{k}(k-h_{i})$ $(k \ge \sigma)$ Straightformeria algebra by induction on k 20. Now we derive a series of claims. Claim (1) $y_i^{m_i+1}v^+ = 0$ where $m_i = J(h_i) \in \mathbb{Z}_{\geq 0}$, and $v^+ \in V = V(J)$ is a highest weight vector Pf Otherwise can use (a)-(c) to show that $y_i^{(m_it)}v^+$ is a second maximal vector of weight #1 which is impossible D

ZSL2(D) (laim 12) V contains a nonzero fin dim. $S_i = S_{\alpha_i}$ -module Pf Consider subspace spormed by vt, y; vt, y; vt, ... Thu is finite. due by claim (1). D Claim (3) VIS a sum of finite-dim S;-modules Pf Let V' be the sum of all S; -submodules of finite dim in V Then V' =0 by claim (2). Check that V'is an L-module, hence V'=V Since V irreducible. Juse (a) (b) (c) Claim (4) If $\phi: L \rightarrow gl(V)$ is reprisonment to L-module structure on V then $\phi(x_i)$ and $\phi(y_i)$ are both locally nilpotent (meaning nilpotent when restricted to a finite-dim subspace) Pf Each velv is in a finite rom of fin. Si-modules, on which \$(xi), \$(xi) act as nilpotent operators, by slz-repr theory. D

Claim (S) Define $\sigma_i \stackrel{\text{def}}{=} \exp(x_i) \exp(-y_i) \exp(x_i)$. This is an automorphism of V (as a vector space) Pf Just need to check that o; is well-defined, but this follows from prev claim. D Claim (6) If μ is a weight of V then $\sigma_i(V_{\mu}) = V_{\nu}$ for $v = r_{\alpha_i}(\mu)$ with $r_{\alpha} \in W$ the usual reflection. by structure thm for standard cyclic modules Pf Follows from Slz-repr theory since Vp is fin-dim Si-submod, see §7.2 in textbook for explicit argument. [] Claim (7) If METT(V) = TT(-1) and we've then w() ETT(-1) and dim Vulp) = dim Vp pf Immediate from Claim (6) as W=< vx; | x: ED>]

D

Claim (9) $\dim V < \infty$ since TT(V) = TT(Y) is finite and each $\mu \in TT(Y)$ has $\dim V_{\mu} < \infty$

Claim (8) TT(-1) is finite <u>Pf</u> TT(-1) is a subset of the set of W-canjugates of all dominant integral metht with meth by claim (7) and structure this of standard cyclic modules. Results in Chapter 13 of textbook imply this set is finite. J

Multiplicity formula Fix
$$A \in A^+$$
. Then $V(A)$ is findin involved.
For $\mu \in H^+$ let $m_A(\mu) \stackrel{del}{=} \dim V(A)\mu \in \mathbb{Z}_{\geq 0}$
This is zero if $\mu \notin \text{TI}(A)$. Call $m_A(\mu)$ the multiplicity of μ in $V(A)$.
If $\mu \in H^+$ and $\mu \notin A$ then $\mu \notin \text{TI}(A)$ so $m_A(\mu) = 0$.
Thus (Freudenthal's formula) If $\mu \in A$ and $\delta = \frac{1}{2} \sum_{\alpha \in Q^+} d_{\alpha}$
 $\left(A + \delta, A + \delta\right) - (\mu + \delta, \mu + \delta) m_A(\mu) = 2 \sum_{\alpha \in Q^+} \sum_{i=1}^{\infty} m_A(\mu + i\alpha) (\mu + i\alpha, \alpha)$
and this formula provides an effective algorithm to compute $m_A(\mu)$.
key point (nontrolal, see § 32 of techbook): if $A \mp \mu$ then $\|A + \delta\|^2 \neq \|\mu + \delta\|^2$
minor point (tervice): $m_A(A) = 1$

into a ring by setting $e^{\lambda}e^{\mu} = e^{-\lambda + \mu}$, there $\Lambda = \lambda^{*}$ is the infinite set of integral weights, including $0 \in \Lambda$. Def If $\lambda \in \Lambda^{+}$ then the formal character of $V \stackrel{\text{\tiny eff}}{=} V(\lambda)$ is $ch_{V} = ch_{\lambda} \stackrel{\text{\tiny eff}}{=} \sum_{\mu \in T(\Lambda)} m_{\lambda}(\mu)e^{\mu} \in \mathbb{Z}[\Lambda]$.

 $V \cong V(\lambda_1) \oplus V(\lambda_2) \oplus \dots \oplus V(\lambda_k)$ with each $\lambda_1 \in \Lambda^+$ and we set $ch_v = \sum_{i=1}^{\infty} ch_{\lambda_i}$

If v is arb. finite din. L-module then V has unique decomp.

Notation let $Z[\Lambda]$ be the free Z-module with baris given by symbols [e¹] [(Λ] and make this additive group into a ring by setting e¹eⁿ = e⁻¹⁺¹. Here $\Lambda \subset H^{*}$ is the

its isomorphism class,

Formal charactors want to assign to each fin. dim L-module. a vector (similar to character of a group repr.) that identifies

Ex If
$$L = sl_2(H)$$
 then $ch_1 = e^{t} + e^{t-\alpha} + e^{t-2\alpha} + \dots + e^{t-n\alpha}$
where $m = \langle \lambda_1 \alpha \rangle$ [here $\alpha = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$, $\lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$, $n = \lambda_1 - \lambda_2$]

Weyl group W adds a Z[A] by $w \cdot (Z C_{\mu} e^{\mu}) = Z C_{\mu} e^{\mu(\mu)}$ where $C_{\mu} \in \mathbb{Z}$ $\mu \in \Lambda$

Cor chy is fixed by every vew. If my (H) = my (w(y)) Yweld. Prop If f E 7(TA) is fixed by all weW then f has unique expansion as a finite linear combination of formal characteus chy for LEAT.

Pf idea: write
$$f = \sum c_1 e^{\lambda}$$
 with $c_1 f Z$
 $\lambda f \Lambda$

all but finitely many Cy's must be zero. Find a maximal $\lambda \in \Lambda^+$ with $C_{\lambda} \neq 0$, form $g = f - C_{\lambda} ch_{\lambda}$, and orgue that you may conclude by induction that g has derned expansion. D head more to deduce uniqueness (exercise) Prop Suppose V and W are both finite. dim. L-modules Then Chvow = chychw, [Perall how VOW is an L-module: X · (VOW) = XNOW + VOXU for VEV Pf Straightforward exercise. D