MATH 5143 - Lecture ${ }_{24}$

MATH SI 43 - Lecture 24 $\Leftrightarrow L=0($ (mile leeds.)
Setup: L is a semisimple Lie algebra defined over an algebraical! dared, char. zero field F Assume $\operatorname{dim} L<\infty$, let $H \leq L$ be a (arton subalgebra, write $\Phi \subset A^{*}$ for corresponding root system so that $L=H \oplus \not \bigoplus \in \Phi$, choose a simple system $\Delta \subseteq \Phi$
If v is and L-module (meaning $[x, y] \cdot v=x \cdot y \cdot v-y \cdot x, v$) then a weightspace in V is any nonzero subspace of form $V_{\lambda}=[v \in V \mid h \cdot v=-1(h) v \forall h \in H]$ for $t \in H^{*}$ call t the weight

Last time fact Any finite-dim L-mocule is direct sum of its weight spaces

$$
+\left[0 f \text { weight } t \in H^{*}\right]
$$

A standard cyclic L-module is an L-module V generated by a maximal vector v^{+}(to be called the highest weight vector) with $\left\{\begin{array}{l}x \cdot v^{+}=0 \quad \forall \alpha \in \Delta \forall x \in L_{\alpha} \\ h \cdot v^{+}=f(h) v^{+} \forall h \in H\end{array}\right.$
Fact Every finite-dim L-module is standard cyclic Every standard cyclic L-module is direct sum of its weight
The suppose V is a standard cyclic L-module of weight ll then all weights μ for V have $\operatorname{dim} V_{\mu}<\infty$ and $\mu<\lambda$ and $\operatorname{dim} V_{f}=1$
 unique irreducible quotient, and all homomophtic images of V are also standard

Thm For each $t \in H^{*}$ there exists a unique isomorphism class of irreducible stamper cyclic L-modules $\mathrm{V}(4)$ of weight d. One explicit construction:

In this tensor product, we have $x b \otimes v^{+}=x \otimes b v^{+} \forall b \in U(B)$ Finally define $V(-1) \stackrel{\text { def }}{=}$ (unique irreducible quotient of $Z(-1)$)

Fact If V is any finitedim irreducible L-module then $V \cong V(H)$ for some $\lambda \in H^{*}$.

Call $\lambda \in H^{*}$ dominant if $\lambda\left(h_{\alpha}\right)>0 \forall \alpha \in \Delta$

Let \wedge be set ot integral $\lambda \in H^{*}$, let $1^{+} \subset \wedge$ be subset of dominant integral $i \in \Lambda$
integral if $\lambda(h \alpha) \in \mathbb{Z} \quad \forall \alpha \in \Delta$
dominant integral if $\lambda\left(h_{\alpha}\right) \in \mathbb{Z}_{\geq 0} \forall \alpha \in \Delta$

Here: $h_{\alpha} \stackrel{\text { def }}{=} \frac{2+\alpha}{x\left(t_{\alpha}, t_{\alpha}\right)}$ where $\begin{aligned} & x: L x L+F \text { is killing form } \\ & x(x, y)=+r a r e\end{aligned}$ $X(x, y)=+\operatorname{race}(a d x a d y)$ and $t_{\alpha} \in A$ is unique elem with $x(t \alpha, h)=\alpha(h) \quad \forall h \in A$

Thin Let $\lambda \in H^{*}$. Then the irreducible $(-$ module $V(t)$ is finite-dimensional if and only if $\lambda \in \Lambda^{+}$is dominant integral. Moreder, in this case the Well gray W of Φ permutes the set of weights in $V(t)$ and weights in same W-orbit all have weight spaces of same dimension.
Define $m_{\lambda}(\mu)^{\text {det }}=\operatorname{dim} V(\lambda)_{\mu}$ for $\mu \in H^{*}$.
There are various formulas / recureneses to explicitly compute these numbers, e.g. Frendenthal's formula (see Lecture \#23)

To make it easier to compute and manipulate the multiplicity function m_{λ}, we encode it as a formal cherader:

Let $\mathbb{Z}[\Lambda]$ be \mathbb{Z}-span of the symbol e^{-t} for $t \in \Lambda$ viewed as a ring with $e^{\lambda} e^{\mu}=e^{\lambda+\mu}$ and $1=e^{0}$.
The formal character of any findim. L-module V is

$$
c_{v} \stackrel{\text { del }}{=} \sum_{\text {fintesum }}^{\mu \in H^{*}} m_{1}(\mu) e^{\mu} \in \mathbb{Z}[\Lambda]
$$

w acts linearly on $\mathbb{Z}(1)$ by w. $e^{-t}=e^{w-t}$ and this action fixes Chi for any V. Prop $A n s f \in \mathbb{Z}(n)$ fixed bal woW has unique epponion Prop Ans $\in \mathbb{R}$ of formal character ch, def chives
as linear comb.

Prop If V and W are two finte-dim L-modules
then $\mathrm{ch}_{v \otimes w}=\mathrm{Ch}_{v} \mathrm{Ch}_{w}$
Today: Havish-Chandra's theorem and applications
Some technical proofs will just be outlined
Let \mathcal{Z} denote the center of the algebra $U(L)$:

$$
\mathcal{Z} \stackrel{\operatorname{det}}{=}\{x \in U(L) \mid x y=y \times \forall y \in L\}
$$

This is a commutative subalgebora, and each of $l-m$ module is also a $u(l)$-module and, by restriction, a z-madule.

Consider the standard (uclic L-modile

$$
z(\lambda)=u(\lambda) \otimes u(B) D_{\lambda}
$$

for some $-7 \in H^{*}$, now viewed as a Z-module.
If v^{+}is a maximal vector in $Z(A)$ and $z \in Z$

$$
\text { then } \begin{cases}h \cdot z \cdot v^{+}=z \cdot h \cdot v^{+}=\lambda(h) z \cdot v^{+} & \forall h f H \\ x \cdot z \cdot v^{+}=z \cdot x \cdot v^{+}=0 & \forall \alpha \in \Delta \\ x \in L_{\alpha}\end{cases}
$$

Thus $z \cdot v^{+}$is also a maximal vector of weight t. Therefore $z \cdot v^{+}$is a scalar multiple of v^{+}.
Define $x_{1}:^{\prime} z+\mathbb{I}$ to be map with $z \cdot v^{+}=x_{1}(z) v^{+} \forall z \in \mathcal{Z}$ Vet wine e nt depend an choice of v^{+}, as all maximal vedas in audi) are color
multiples of each other.

Fact X_{λ} is an algebra homomorphism

$$
\begin{aligned}
& \text { Pf } x_{+}\left(z_{1} z_{2}\right) v^{+}=z_{1}^{2} z_{2} \cdot v^{+}=z_{1} \cdot\left(z_{2} \cdot v^{+}\right) \\
& =x_{1}\left(z_{2}\right) z_{1} \cdot v^{+}=x_{1}\left(z_{1}\right) x\left(z_{2}\right) v^{+}, 0
\end{aligned}
$$

Call $x_{1}:(Z=$ centers U(L) $)+F$ the (central) character of $\lambda \in H^{*}[$ or of $Z(\lambda)]$

These central character x_{λ} may coincide for different λ^{\prime} ', and Harish-chandra's the will tell us precisely when this happens.

Fact If $z \in \mathcal{Z}$ and $u \in Z(-\lambda)$ is any vector then

$$
z \cdot u=x_{\lambda}(z) u .
$$

Pf Sine v^{+}generates $Z(A)$ and z commutes with all elements of L, the result follows. D

Cor The action of $z \in$ ' Z on any submodule of homomenphic image of $2(4)$ is bit the scalar $x_{1}(z)$

Def Two elements $\lambda, \mu \in H^{*}$ are linked (by $w \in W$) if $\lambda+\delta=\omega \cdot(\mu+\delta)$ where $\delta \stackrel{\operatorname{det}}{=} \frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha$
In this situation we write $\mu \sim \lambda$.
Given $\alpha \in \Phi^{+}$choose $e^{0} x_{\alpha} \in L_{\alpha}$. Then there exists a unique $y_{\alpha} \in L_{-\alpha}$ such that if $h_{\alpha} \frac{\operatorname{def}}{=}\left[x_{\alpha}, y_{\alpha}\right]$ then $\left\langle x_{\alpha}, y_{\alpha}, h_{\alpha}\right\rangle \cong s l_{2}(\pi)$

$$
\text { via } x_{\alpha} H\left[\left(:!7, y_{\alpha} H(1 \circ)\right.\right.
$$

Prop Let $\lambda \in \Lambda, \alpha \in \Delta, m=\langle\lambda, \alpha\rangle \in \mathbb{Z}$.

$$
h_{\alpha} \mapsto(0.1)
$$

If $m \geq 0$ then $y_{\alpha}^{m+1} \otimes_{u(B)} \nu^{+} \in Z(\lambda)$ is a maximal vector of Weight $\lambda-(m+1) \alpha$. $\left[\text { Here, } v^{+} \in D_{1} \text { so } 1 \otimes_{u(8)}\right)^{+}$ generates $z(-t)]$

Pf Formulas last time tell us that:
For $\alpha \neq \beta$ in $\Delta:\left[x_{\beta} y_{\alpha}^{m+1}\right]=0 \Rightarrow x_{\beta} \cdot v_{\alpha}^{m+1}(\alpha v^{+}=y_{\alpha}^{m+1} \underbrace{x_{\beta} v^{+}}_{=0}=0$
For and $\alpha, \beta \in \Delta:\left[h_{\beta}, y_{\alpha}^{m+1}\right]=-(m+1) \alpha\left(h_{\beta}\right) y_{\alpha}^{m+1}=t\left(h_{\beta}\right)$

$$
\begin{aligned}
& \Rightarrow h_{\beta} \cdot y_{\alpha}^{m+1} \otimes v^{+}=-(m+1) a\left(h_{\beta}\right) y_{\alpha}^{m+1} \otimes v^{+}+y_{\alpha}^{m+1} \otimes h_{\beta} v^{+} \\
& \text {If } 1 \text { and } \mu \text { are linked }_{n} r_{\alpha} \in w \text { then } x_{\lambda}-\nu_{r}
\end{aligned}=(\lambda-(m+1) \alpha)\left(h_{\beta}\right) y_{\alpha}^{m+1} \otimes v^{+} \Sigma
$$

Cor If $\quad \lambda \in \Lambda, \alpha \in \Delta, \mu=r_{\alpha} \cdot(\lambda+\delta)-\delta$ where $r_{\alpha} \in W$ then $x_{\lambda}=x_{\mu} \quad\left(\delta=\frac{1}{2} \sum_{\beta \in \phi^{+}}^{\beta}\right)$
Pf r_{α} send il $\alpha r-\alpha$ and permutes $\phi^{+} \backslash(\alpha)$, so $r_{\alpha} \delta-\delta=-\alpha$ and $\mu=r_{\alpha} \lambda-\alpha=\lambda-(\langle\lambda, \alpha\rangle+1) \alpha$, we always have $\langle\lambda, \alpha\rangle \in \mathbb{Z}$.

If $\langle\lambda, \alpha\rangle \in \mathbb{Z}_{z_{0}}$ then preview prep shows that
$Z(\lambda)$ has maximal vector of weight μ.
As $z \in Z$ acts on this vector by the scalar
 rector of wi μ
generates a homamophic If $\langle\lambda, \alpha\rangle<0$ then image of $Z(\mu)$

$$
\langle\mu, \alpha\rangle=\langle\lambda, \alpha\rangle-2(\langle\lambda, \alpha\rangle+1)=-\langle\lambda, \alpha\rangle-2
$$

is ≥ 0 so we can apply proposition
with μ in place of λ to deduce the same conclusion.

Because $\omega=\left\langle r_{\alpha} \mid a \in \Delta\right\rangle$ we can conclude:
Cor (Easy direction of Harish-Chandra's the)
If $\lambda \sim \mu$ where $\lambda \in \Lambda$ then $x_{\lambda}=x_{\mu}$.
Thin (Harlsh-Chandra's the) Let $\lambda, \mu \in H^{*}$.
Then $x_{1}=x_{\mu}$ if and only if $\quad-\sim \mu$
means $\alpha+\delta$ and $\mu+\delta$ are in the same W-orbit

Outline of proof of Harish-Cmandin the
First part: alvedy know that $\downarrow \sim \mu \Rightarrow x_{1}=x_{\mu}$ when $t \in 1$ we wont to extend this to a statement allowing any $f \in H^{*}$ *

Construct PBW bases of $U(L)$ and $U(H)$ from the basis $\left\{h_{\alpha} \mid \alpha \in \Delta\right\} \Delta\left[x_{\alpha}, y_{\alpha} \mid \alpha \in \Phi^{+}\right\}$for $L_{\text {, under ans }}$ order putting all $y_{\alpha}^{\prime} s$ first, then the ha's, then the x_{α} 's. Then we can define a linear map $\xi: \mathcal{U}(L) \rightarrow U(H)$ sending each PBW basis elem in U(A) to itself, every other PBW basis elem to 0 .
 it follows that $x_{\lambda}(z)=\lambda(\xi(z)) \quad \forall z \in z$

Now define andher Lie algebra homomorphism $\eta_{:} H \rightarrow U(H)$ with $\eta\left(h_{\alpha}\right)=h_{\alpha}-1 \forall \alpha \in \Delta$. This extends to an algebra automorphism $\eta: U(H) \rightarrow u(t)$. Define

$$
\psi: \mathcal{L} \xrightarrow{\xi} U(H) \stackrel{n}{\longrightarrow} U(H)(\psi=\eta \circ \xi)
$$

We can write $\delta=\sum_{\alpha \in \Delta} \lambda_{\alpha}$ as sum over fundamental weights t_{α} which have $\lambda_{\alpha}(h \beta)=\left\{\begin{array}{ll}1 & \alpha=\beta \\ 0 & \alpha \neq \beta\end{array}\right.$ for $\alpha, \beta \in \Delta$. Then we have

$$
\begin{aligned}
& (-1+\delta)\left(h_{\alpha}-1\right)=(\underbrace{(1+\delta)\left(h_{\alpha}\right)}_{1\left(h_{\alpha}\right)+1}-\underbrace{(1+\delta)(1)}_{=1}=\lambda\left(h_{\alpha}\right) \\
& \text { so }(1+\delta)(\psi(z))=\lambda(\xi(2)) \forall z \epsilon^{-Z},+\epsilon H^{*} \\
& \quad \Rightarrow(1+\delta)(\psi(z))=x_{\lambda}(z) \forall z \in Z,+\epsilon H^{*}
\end{aligned}
$$

Now check that $\psi(z)$ is W-invariant (using the east case of theorem and properties of w-orbits in Λ) and use this to conclude that if $\lambda \sim \mu$ then $(\lambda+\delta)(\psi(z))=(\mu+\delta)(\psi(2))$ and hence that $x_{\mu}=x_{\mu}$, (for any $\left.\lambda_{1, \mu \in} A^{*}\right)$.

The other half of the theovem remains:
if $x_{\lambda}=x_{\mu}$ then need to show that $\lambda \sim \mu$.
This requires a more indued argument \rightarrow see $\oint 23.3$ of textbook.

Applications of Harish-Chandra thin
We want to introduce formal characters for $Z(t)$ and similar modules Let \mathcal{A} be the vector space of all formal \mathbb{Z}-linear combinations

$$
\sum_{\lambda \in H^{*}} c_{\lambda} e^{\lambda} \quad\left(c_{\lambda} \in \mathbb{Z}, e^{\lambda} \text { is a symbol }\right)
$$

which are finitely supported in the sense that there are finitely many $\lambda_{1}, \lambda_{1}, \lambda_{3}, \cdots, d_{k} \in H^{*}$ such that $c_{\lambda} \neq 0 \Rightarrow \lambda \leq \lambda_{i}$ for some i where $\lambda \varepsilon \mu$ means Then the formal character $\left(h_{z(1)} \stackrel{\operatorname{def}}{=} \sum_{\mu \in H^{*}} \operatorname{dim}^{2} z()_{\mu} e^{r} \mu-\lambda \in \mathbb{Z}_{\geq 0}-\operatorname{sen}\{\alpha \in \Delta\}\right.$ belongs to X.

Fact \mathcal{H} is closed under usual multiplication extending ring structure on $\mathbb{Z}[\Lambda]$. (sue $\left.\lambda_{i} \leqslant \mu_{i} \Rightarrow \lambda_{1}+t_{2}+\ldots \leqslant \mu_{i} \mu_{2}+\cdots\right)$

We now have a well-defined notion of formaloharader

$$
\text { Chr } \stackrel{\text { deft }}{=} \sum_{\mu \in \beta^{*}} \operatorname{dim}_{\mu} V_{\mu} e^{\mu} \in \exists
$$

for any standard cyclic L-module V.
Let $p(t)$ for $\lambda \in H^{*}$ be $\mathbb{H}^{\text {of }}$ functions $k: \Phi^{+}+\mathbb{Z}_{\geq 0}$ such that $\lambda+\sum^{k(\alpha) \alpha=0}$ clearly $P(A)=0$ unless $\alpha \in \Phi^{+}$ $(-H) \in \mathbb{Z}_{\geq 0-\operatorname{pan}\{ }\{\alpha \in \Delta\}$
Call p the Kostant (partition) function and identify $p \leftrightarrow \sum_{\lambda \in H^{*}} p(t) e^{-1} \in X$

Also let $q=\prod_{\alpha \in \Phi^{+}}\left(e^{\alpha / 2}-e^{-\alpha / 2}\right)$ call this the Weyl function

Finally set $f_{\alpha}=e^{0}+e^{-\alpha}+e^{-2 \alpha}+\cdots \in \mathcal{H}$ for $\alpha \in \Phi^{+}$.
Lemma A
(a) $p=\prod_{\alpha \in \Phi^{+}} f_{\alpha}$
(b) $\left(e^{0}-e^{-\alpha}\right) f_{\alpha}=e^{0}$
cc) $q=e^{\delta} \prod_{\alpha \in \Phi^{+}}\left(e^{0}-e^{-\alpha}\right)$ where $\delta=\frac{1}{2} \sum_{\alpha \in \phi^{+}} \alpha$

Pf (a) holds by defer, (b) is basic algebra (c) is clear.

Lemma B For ant wsW it hold e that $w q=\operatorname{sgn}(w) q$
facts linearly on $3 x$ by w. $e^{1}=e^{w_{1}}$
Pf Suffices to show $r_{\alpha} q=-q$ for any $\alpha \in \Delta$.
Gary enough:

$$
\begin{aligned}
r_{\alpha} q & =r_{\alpha}\left(e^{\alpha / 2}-e^{-\alpha / 2}\right) r_{\alpha}(\underbrace{\prod_{\beta \in \Phi^{+} \backslash \alpha /}\left(e^{\beta / 2}-e^{-\beta / 2}\right)}_{\text {Fixed by } r_{\alpha}}) \\
& =-q \cdot D \frac{\alpha}{2}
\end{aligned}
$$

Lem C $q p e^{-\delta}=e^{0}=1$

$$
\text { Pf } \begin{aligned}
q p e^{-\delta} & =\prod_{\alpha \in \phi^{+}}\left(e^{0}-e^{-\alpha}\right) \cdot e^{\delta} \cdot p \cdot e^{-\delta}=\prod_{\alpha \in \phi^{+}}\left(e^{0}-\alpha^{-\alpha}\right) p \\
& \left.=\prod_{\alpha \in \phi^{+}}\left(e^{0}-e^{-\alpha}\right) f_{\alpha}\right)=\prod_{\alpha \in \phi^{+}} e^{0}=e^{c}=1 \text { (using }
\end{aligned}
$$

Lemma D ch $z_{(-1)}=\sum_{\mu \in H^{*}} p(\mu-1) e^{\mu}=e^{-t} p$
Pf Straightforward from properties of $Z(H) D \sum_{M \in H^{+}} p\left(\mu e^{h}\right.$ (see fo. 20.5 in text bod)

Lemma $E \quad q \operatorname{ch}_{z(t)}=e^{\lambda+\delta}$
Pf $q p e^{-\delta}=e^{0}=1$ and $c h_{2(1)}=e^{-t} p$
So $q\left(h_{z(1)}=e^{\lambda+\delta} q p e_{\text {Lemma } c}^{-\delta}=e^{\lambda+\delta} \quad D\right.$

Want to express $\mathrm{Ch}_{f}=\mathrm{Ch}_{V(\lambda)}$ as linear comb of $\mathrm{Ch}_{2(\mu)}{ }^{\prime}$ s.
Define M_{λ} (for $t \in H^{*}$) to be the family of L-modules V such that (1) V is direct sum of its weight spores
(2) Z-action on V is by S scalar $x_{\lambda}(z)$
(3) $\mathrm{Ch}_{v} \in \mathcal{X}$
M_{λ} is closed under taking submodules, homomanphic images, direct sums, contains each standard cydic macule.
Cor (ot Harish-Chandra thin) $\quad M_{\lambda}=M_{\mu}$ iff $\quad t \sim \mu$

Lemme suppose $0 \neq V \in M \perp$. Then V has a maximal vector. Pf Since chr $\in \notin$, for each weight μ of V, and each $\alpha \in \Phi^{+}$there is a maximal $k \in \mathbb{Z} \geq 0$ with $\mu+k a x$ still a weight. So we can find a weight μ for V such that $\mu+\alpha$ is not a weight $\forall \alpha \in \Phi^{+}$, and then any nonzero vector in the corresponding weight space is maximal

For $\lambda \in H^{*}$. let $\theta(\lambda)=\left\{\mu \in H^{*} \mid \mu<\lambda\right.$ and $\left.\mu \sim \lambda\right\}$.
Prop Let $\lambda\left(f^{* *}\right.$. (a) $Z(\lambda)$ has a composition series.
(b) Each composition factor of $Z(A)$ is $\cong V(\mu)$ for same $\mu \in \theta(C)$
(c) $V(t)$ occurs as exactly ane composition factor.

Pf (a) Nothing to prove if $Z(t)$ is irreducible. (then $Z(t)=V(t))$ Otherwise $Z(A)$ has a proper nonzero submovle $V \in M_{-}$.
since $\operatorname{dim} Z(1)_{\lambda}=1$, λ is not a weight of V. so by lemina, V has maximal vector, of some weight $\mu \leftarrow \lambda$.
V contains homomepanic image ω of $Z(\mu)$, so $x_{\lambda}=x_{\mu} \geqslant \lambda_{\mu} \mu$ $\Rightarrow \mu \in \theta(-)$. Continue inductively, repeating same argument applied to W and $\tau(1) / w$
(b) Each comp. factor is in M_{λ} so has a maximal vector and is irredvible, so must be standard cyclic, heave $\cong V(\mu)$ fo some $\mu \in O(l)$
(c) Clear since $\operatorname{dim} Z(-1)_{\lambda}=1$.

Cor Let $\lambda \in H^{*}$. Then $c_{\nu(H)}=\sum_{\mu \in \theta(1)} C_{\mu} C_{z(\mu)}$ for some coeffs $C_{\mu} \in \mathbb{Z}$ with $C_{\lambda}=1$.
Pf Prop says we can write $C h_{z(A)}=\mathrm{Ch}_{v(1)}+\sum_{\mu \in \Theta(1)} d_{\mu}\left(h_{v(\mu)}\right.$ where $d \mu \in \mathbb{Z} \geq 0$. Thus $c h_{v(1)}=C_{2(1)}-\sum_{\mu \in \theta(t)} d_{\mu} c h_{v(\mu)}$ and expanding the RAS recursively gives desired formula.

The (Kostan't's formula) Let $\lambda \in \Lambda^{+}$then

$$
m_{\lambda}(\mu)=\sum_{\substack{\omega \in W \\ \text { potentially nous toms }}} \operatorname{sgn}(\omega) p(\mu+\delta-\omega(\lambda+\delta))
$$

tell us that $\left\{\begin{array}{l}q c h_{\lambda}=\sum_{\mu \in O C D)} c_{\mu} e^{\mu+\delta} \text { and } \\ w\left(q c_{\lambda}\right)=w(q) w\left(c_{1}\right)=\operatorname{sgn}(w) q \text { oh } \quad \forall w(W) .\end{array}\right.$
But also $w\left(\sum_{\mu \in \Theta(\lambda)} c_{\mu} e^{\mu+\delta}\right)=\sum_{\mu \in \Theta(\lambda)} c_{\mu} e^{\omega(\mu+\delta)}$ since $w+\omega$ permutes $\theta(H)$ while $C_{\lambda}=1$, deduce that $C_{\mu}=\operatorname{sgn}(\omega)$ if $\omega^{-1}(\mu+\theta)$ $=t+\delta$

$$
\begin{aligned}
& \text { So } q c h_{\lambda}=\sum_{w \in w} \operatorname{sgn}(w) e^{w(1+\delta)} \\
& \text { B. Lamina } C, \quad C h_{\lambda}=q p e^{-\delta}{C h_{\lambda}}^{\prime} \\
& =p e^{-\delta}\left(\sum_{w \in w} \operatorname{sgn}(w) e^{w(\lambda+\delta)}\right) \\
& \text { Cor } q=\sum_{w \in \omega} \operatorname{sgn}(\omega) e^{\omega \delta}=p \sum_{\omega \in \omega} \operatorname{sgn}(\omega) e^{w(\lambda+\delta)-\delta} \\
& \text { Pf Take } 1=0.0=\sum_{\omega \in \omega} \operatorname{sgn}(\omega) p e^{w(1+\delta)-\delta} \Delta
\end{aligned}
$$

