Instructions: Complete the following exercises. Solutions will be graded on clarity as well as correctness. Feel free to discuss the problems with other students, but be sure to acknowledge your collaborators in your solutions, and to write up your final solutions by yourself.

Due on Tuesday, March 5.

Let A be an algebra defined over a field \mathbf{k}.

1. Show that if $W \subset V$ are finite-dimensional representations of A, then the characters of V, W, and V / W satisfy $\chi_{V}=\chi_{W}+\chi_{V / W}$.
2. Suppose $\mathbf{k}=\mathbb{R}$ and A is the algebra of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x+1)=f(x)$ for all x. The product for this algebra is point-wise multiplication and the unit element is $f(x)=1$.

Let M be the A-module of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x+1)=-f(x)$ for all x.
Show that A and M are indecomposable, non-isomorphic A-modules.
Show, however, that $A \oplus A \cong M \oplus M$ as A-modules.
(Thus the Krull-Schmidt theorem fails for modules of infinite dimension.)
3. Show that if m and n are positive integers then $\operatorname{Mat}_{m}(\mathbf{k}) \otimes \operatorname{Mat}_{n}(\mathbf{k}) \cong \operatorname{Mat}_{m n}(\mathbf{k})$ as algebras.

In Exercises 4, 5, 6, and 7, assume $\mathbf{k}=\mathbb{C}$ and let V a finite-dimensional complex vector space with a symmetric bilinear form $(\cdot, \cdot): V \times V \rightarrow \mathbb{C}$. This form is said to be nondegenerate if for each $0 \neq v \in V$ there exists $w \in V$ with $(v, w) \neq 0$.
4. Show that the following are equivalent:
(a) The form (\cdot, \cdot) is nondegenerate.
(b) For each $v \in V$ the map $v \mapsto(v, \cdot)$ is an isomorphism of vector spaces $V \rightarrow V^{*}$.
(c) If $v_{1}, v_{2}, \ldots, v_{n}$ is a basis for V then the matrix $\left[\left(v_{i}, v_{j}\right)\right]_{1 \leq i, j \leq n}$ is invertible.

The Clifford algebra $\operatorname{Cliff}(V)$ is the quotient of the tensor algebra $T V$ by the ideal $\langle v \otimes v-(v, v) 1: v \in V\rangle$.
5. Show that if $v_{1}, v_{2}, \ldots, v_{n}$ is a basis for V and $a_{i j}=\left(v_{i}, v_{j}\right)$ then $\operatorname{Cliff}(V)$ is isomorphic to the algebra generated by $v_{1}, v_{2}, \ldots, v_{n}$ subject to the relations $v_{i} v_{j}+v_{j} v_{i}=2 a_{i j}$ and $v_{i}^{2}=a_{i i}$ for all $1 \leq i, j \leq n$ with $i \neq j$.
6. Suppose (\cdot, \cdot) is nondegenerate. Show that $\operatorname{Cliff}(V)$ is semisimple. Show that if $\operatorname{dim}(V)=2 n$ is even, then $\operatorname{Cliff}(V)$ has exactly one isomorphism class of irreducible representations, and that if $\operatorname{dim}(V)=2 n+1$, then Cliff (V) has exactly two isomorphism classes of irreducible representations. Show in both cases that all irreducible representations of $\operatorname{Cliff}(V)$ have dimension 2^{n}.
7. Show that $\operatorname{Cliff}(V)$ is not semisimple if (\cdot, \cdot) is degenerate.

What is $\operatorname{Cliff}(V) / \operatorname{Rad}(\operatorname{Cliff}(V))$ when (\cdot, \cdot) is degenerate?

In Exercises $8,9,10$, and 11 , suppose $\left(V, \rho_{V}\right)$ and $\left(W, \rho_{W}\right)$ are two representations of A.
Here A is an algebra defined over an algebraically closed field \mathbf{k}.
Let U be the vector space $V \oplus W=\{(v, w): v \in V, w \in W\}$
Suppose $f: A \rightarrow \operatorname{Hom}_{\mathbf{k}}(W, V)$ is a linear map. Define $\rho_{f}: A \rightarrow \operatorname{End}(U)$ to be the map with

$$
\left.\rho_{f}(a)(v, w)=\left(\rho_{V}(a)(v)+f(a)(w), \rho_{W}(a)(w)\right)\right) \quad \text { for } a \in A, v \in V, w \in W
$$

8. Find a necessary and sufficient condition on $f(a)$ under which $\left(U, \rho_{f}\right)$ is a representation of A.

We denote the set of maps f satisfying this condition by $Z^{1}(W, V)$.
This set is a vector space, and its elements are called (1-)cocycles. When $f \in Z^{1}(W, V)$, observe that $\left(U, \rho_{f}\right)$ has a subrepresentation isomorphic to $\left(V, \rho_{V}\right)$ and a quotient isomorphic to $\left(W, \rho_{W}\right)$.
9. Let $F: W \rightarrow V$ be a linear map.

Define the coboundary of F to be the function $d F: A \rightarrow \operatorname{Hom}_{\mathbf{k}}(W, V)$ with the formula

$$
d F(a)=\rho_{V}(a) \circ F-F \circ \rho_{W}(a) \quad \text { for } a \in A
$$

Show that $d F \in Z^{1}(W, V)$.
Check that $d F=0$ if and only if F is a morphism of representations $\left(W, \rho_{W}\right) \rightarrow\left(V, \rho_{V}\right)$.
Let $B^{1}(W, V)$ be the subspace of coboundaries in $Z^{1}(W, V)$ and define $\operatorname{Ext}^{1}(W, V)=Z^{1}(W, V) / B^{1}(W, V)$.
10. Fix $f, g \in Z^{1}(W, V)$ and consider the A-representations $\left(U, \rho_{f}\right)$ and $\left(U, \rho_{g}\right)$.

Show that if $f-g \in B^{1}(W, V)$ then $\left(U, \rho_{f}\right)$ and $\left(U, \rho_{g}\right)$ are isomorphic.
11. Continue the notation of the previous exercise.

Further assume that V and W are finite dimensional and irreducible.
Show that $\left(U, \rho_{f}\right)$ and $\left(U, \rho_{g}\right)$ are isomorphic if and only if f and g represent elements of Ext ${ }^{1}(W, V)$ that are scalar multiples of each other.
12. Assume $\mathbf{k}=\mathbb{C}$ and $A=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{C}^{n}$.
Suppose V_{a} and V_{b} are 1-dimensional A-representations in which x_{i} acts as a_{i} and b_{i}, respectively.
Find $\operatorname{Ext}^{1}\left(V_{a}, V_{b}\right)$ and classify the 2-dimensional representations of A.

