Math SII2-Lecture \#12

Math 5112 - Lecture 12
Last time:
(1) character tables + applications, egg. to decomposing

$$
x_{i} x_{j}=\sum_{k} n_{i j}^{k} x_{k}
$$

(2) Froberius determinant of a firte grape G :
let xg for $\mathrm{g} \in G$ be commuting indetemninonts
where each $P_{\psi}(x) \in \mathbb{C}\left[x_{g} \mid g \in G\right]$ is irreducible, of degree $\psi(1)$, and these factors are pairwise non-prgaont
Pf Take $P_{\psi}(x)=\operatorname{det}\left(\left.L(x)\right|_{\mathbb{C}}[G] e_{\psi}\right)$
where $L(x)=\sum_{g \in G} x_{g} g \in \mathbb{C}[x][G]$
and $e_{\psi}=\frac{1}{|G|} \sum_{g \in G} \Psi(g) g^{-1} \in \mathbb{C}[G]$.

Today and neat few lectures:
[more topics related to reps of finite groups]

Bilinear forms If V is (fintedin) vector space (ar ©) then a bilinear form $(\because): V \times V \rightarrow C$ is the same thing as a linear map $L: V \rightarrow V^{*}$

$$
\begin{aligned}
& (\cdot, \cdot) \longmapsto L: \vee \stackrel{\text { def }}{H}(w H(v, w)) \\
& (v, w) \stackrel{\text { dep }}{=} L(v)(w) \ll L: V \rightarrow V^{*}
\end{aligned}
$$

If V is a representation of a finite grape G, then V^{*} is also a representation, and saying a form is G-invariont (meaning $\left(p_{v}(g) \times, \rho_{v}(g) y\right)=(x, y)$ $\forall x, y+V$
is equivalent to saying the associated map $V \rightarrow V^{*}$ is a maphnism of G-repns.

Saying a form is nondesenerate (meaning for each $x \in V \backslash 0$ there is $y \in V$ with $(x, y) \neq 0)$
is equivalent to saying the associated map $V \rightarrow V^{*}$ is an isomorphism.

Prop If V is an irreducible reps of a finite grown G, then a nonzero bilinear form $V \times V \rightarrow C$ must be nondesenenate and the vector space of all G-impariont bilinear forms on V ir zero or I-dimensional.

Pf schur's lemma: if V is irred then so is $V *$.
If $V \cong V^{*}$ as G-reps then $\operatorname{Hom}_{G}\left(V, V^{*}\right)$ is 1-dim, and dherwise it's zero.
Also, ant maphism of 6 -reps $V+V^{*}$ is either an isomorphism or zero, D deann regime V to be \downarrow a G-repn
Prop The space of bilinear forms on V is the direct sum of the subspaces of symmetric $((x, y)=(y, x))$ and skew-symmetric $((x, y)=-(y, x))$ forms on V.

If Any form (\because) is equal to

$$
\begin{align*}
& (\because)_{s, m}+(\because)_{s s} \quad \text { where } \\
& (v, w)_{s, y m}=\frac{1}{2}(v, w)+\frac{1}{2}(m, v) \\
& (v, w)_{s s}=\frac{1}{2}(v, w)-\frac{1}{2}(w, v) \tag{0}
\end{align*}
$$

any only the zero form is both symmetric and skew-symmetric

Cor If V is an irreducible G-rept where G is Finite, then exactly one of the fallowing holds:
(1) There is no G-iwariant nondegenerate form an
(2) There is a spmetric, Ginviariant, nondes form an
(3) There is a skew'synnimitic, G-imar,, nondeg. form on

Pt space of all G-imeriont forms on V is at mat one dimensional and decomposes into the direct sum of skew symmetric and symmetric forms. ID
Def.
\rightarrow If (1) holds, then we say V is complex type
If (2) holds, then we say V is real type
If (3) holds, then we say V is quaternionic type
 Mas explore mare on next HW

Let's state some conditions equivalent to (1,2),(3)

Assume \mathcal{V} is an irreducible repn of a finte grap G Everything is defined over 6 .
Prop V is of comples type iff any of the following equivalent propertier hold:
(a) $x_{v} \neq x_{v}{ }^{*}$
(c) x_{v} has values
(b) $V \neq V^{*}$ as G-repns in $\mathbb{C} \backslash \mathbb{R}$

Pf Existance of a nondes. G-invariont form an V is equiraleat to (b), which is equiv to (a), and $(0) \Leftrightarrow(c)$ because $x_{v} *(g)=x_{v}\left(g^{-1}\right)=\overline{x_{v}(g) . D}$

Prop V is of real type iff in some basis of V, the matrices of $\rho(g)$ for all $g \in G$ have all real entries (in other words, v is realzade aver \mathbb{R})
[This implies that x_{v} has all real values if V is realize]
Pf sketch Assume V is realizable over \mathbb{R}.
Let $v_{1}, v_{2}, \ldots, v_{n}$ be basis with

$$
\rho(g) v_{i} \in \mathbb{R}-\operatorname{span}\left[v_{1}, v_{2}, \ldots, v_{n}\right] \quad \forall g \in G, 1 \leq i \leq h .
$$

To get a nondgenenate, Genu. sym form on V
let $\langle\because\rangle$ be positive def form with

$$
\left\langle v_{i}, v_{j}\right\rangle= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

then let $(x, y)=\sum_{g \in G}\left\langle p_{v}(g) x, p_{v}(g), y\right\rangle$
Since $\langle,$.$\rangle is symmetric, positive definite$
same is true of (\because)
$($ meaning $\langle x, x\rangle \geq 0$ with equality :f $x=0$ which is clearly G-inuariont.

Converse (that existence of such a form implies that V is realizable) is some more involved linear algebra \leadsto see need homenow D

Prop V is of quateminaic type iff x_{v} has all real values but V is not of real type.
Pf Latter conditions just mean that V is neither complex. nor real the, so must be the only remaining type a

Frobenius - Schur indicator of V

$$
\text { Let } \varepsilon(v)=\varepsilon\left(x_{v}\right) \stackrel{\text { del }}{=}\left\{\begin{array}{cccc}
1 & \text { if } & v \text { is real type } \\
0 & \text { it } & v \text { is complex type } \\
-1 & \text { if } v \text { isqualenioi } \\
\text { type }
\end{array}\right.
$$

Ex If $\mathbb{1}$ is trivial character $G \rightarrow[1]$ then $\varepsilon(\mathbb{1})=1$
If $G=\mathbb{l} \ln \mathbb{Z}$ and son: $m \mapsto(G)^{m}\binom{$ when $n}{$ even } then $\varepsilon(s g n)=1$ but all $\psi \in \operatorname{Irr}(\mathbb{R} / \mathbb{R}) \backslash\left[\mathbb{1}, s_{s n}\right]$
have $\varepsilon(\psi)=0$, since $\psi(m)=J^{m}$ for some $n^{\text {th }}$ root of 1 in \mathbb{C}.
If $G=$ Sn symmetric group then $\mathcal{E}(\psi)=1 \quad \forall \psi \in \operatorname{Ir}(G)$
If $G=Q_{8}$ (see HW4) then there is a 2-dirr. repn V with $\varepsilon(V)=-1$.

Thin $\varepsilon(x)=\frac{1}{161} \sum_{g \in G} x\left(g^{2}\right)$ for any $x \in \operatorname{Ir}(G)$

$$
\begin{aligned}
& \operatorname{Cor} \#\left[g \in G \mid g^{2}=1\right]=\sum_{x \in \operatorname{Ir}(G)} x(1) \varepsilon(x) \\
& \text { call these the } \\
& \text { involutions of } G \\
& \text { Pf of cor } \left.\#\left[g \in G \mid g^{2}=1\right]=\sum_{g \in G} \frac{1}{16} \sum_{x \in \operatorname{Ir}(G)} x\left(g^{2}\right) x(1)\right] \\
& =\sum_{x \in \operatorname{In}(0)} x(1) \frac{1}{16)} \sum_{g \in G} x\left(g^{2}\right)=\sum_{\substack{p \in \operatorname{Irr}(G)}} x(1) \varepsilon(x) \square
\end{aligned}
$$

Pf of thin Let V be irred G-rem with character X_{V}. If $A: V \rightarrow V$ is any linear map with eigemalves $\lambda_{1} \lambda_{3} \ldots, \lambda_{n}$ (repealed with multiple.) then (by basic linear algebra)

$$
\begin{aligned}
& \operatorname{trace}\left(\left.A \otimes A\right|_{S^{2} v}\right)=\sum_{i \leq j} t_{i} t_{j} \\
& \operatorname{trace}\left(A \otimes A \mid \Lambda^{2} v\right)=\sum_{i<j} \lambda_{i} t_{j} \\
& \text { so } \operatorname{trace}\left(A \otimes A \mid \delta_{\delta^{2} v}\right)-\operatorname{trace}\left(\left.A \otimes A\right|_{\Lambda^{2} v}\right)=\sum_{i} \lambda_{i}^{2} \\
& =\operatorname{trace}\left(A^{2}\right)
\end{aligned}
$$

\Rightarrow If $g \in G$ then

$$
x_{v}\left(g^{2}\right)=x_{s^{2} v}(g)-x_{\Lambda^{2} v}(g)
$$

Set $\pi=\frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}[G]$.
Then $x_{v}(\pi)=\operatorname{dim} v^{G}$
saw this

$$
=\left[x_{x} V \mid P_{V}(g) x=x \quad \forall g \in \sigma\right]
$$

last week

$$
\text { Thus } \begin{aligned}
\left.\frac{1}{16} \sum_{g \in G} x_{v} 1 g^{2}\right) & =\frac{1}{16 \mid} \sum_{q_{\in G}\left(x_{s^{2}}(9)-x_{\Lambda^{2}}(g)\right.}(9) \\
& =x_{s^{2} v}(\pi)-x_{\Lambda^{2} v}(\pi)
\end{aligned}
$$

$$
\begin{aligned}
& \text { To see claim, note: } \\
& \left(S^{2} v\right)^{G} \Leftrightarrow \text { symmetric G-invor. } \\
& \text { bilinear forms on } V
\end{aligned}
$$

$$
\begin{aligned}
& \text { if levis is } \\
& \text { basis of } V \\
& \text { Similarly, } \\
& \left(\Lambda^{2} v\right)^{G} \leftrightarrow \text { skew-sym G-imvor. } \\
& \text { linear fam on } V \\
& \text { thus either } \\
& \operatorname{dim}\left(S^{2} V\right)^{6}=1=\varepsilon(V) \\
& \operatorname{dim}\left(\Lambda^{2} v\right)^{6}=0 \\
& \text { or } \\
& \operatorname{din}\left(s^{2} v\right)^{6}=0 \\
& \left.\operatorname{dim}\left(\Omega^{2} v\right)^{6}=1=-\varepsilon V\right) \\
& \text { or } \\
& \operatorname{dim}\left(s^{2} v\right)^{6}=0=\varepsilon(v) \\
& \operatorname{dir}\left(n^{2}\right)^{6}=0
\end{aligned}
$$

by same correspondence

Algebraic numbers
Deft $z \in \mathbb{C}$ is an algebraic number if it is a root of a polynomial in $\mathbb{Z}[x]$
$z \in \mathbb{C}$ is an algebraic integer it it is a root of a manic polynomial in $\mathbb{Z}(2)$
L means leading tern is $1: x^{n}+\binom{$ lover degree }{ terms }
Prop. $z \in \mathbb{C}$ is on algebraic number (integer) iff 2 is an eigenvalue of a square matrix with rational (integer) entries.

Pf Observe that any manic polynomial

$$
p(2)=x^{n}+c_{n-1} x^{n-1}+\cdots+c_{2} x^{2}+c_{1} x+c_{0}
$$

is characteristic polynomial of matrix

$$
\left[\begin{array}{cccc}
0 & 00 & \cdots & -c_{0} \\
1 & 0 & -c_{1} \\
1 & 0 & -c_{2} \\
& \ddots & -c_{3} \\
0 & & 1 & \vdots \\
0 & & c_{n-1}
\end{array}\right]
$$

Let \mathbb{Q} be set of algebraic numbers Let \mathbb{A} be set of algebraic integers.

Prop \bar{Q} is a field and A is a ring.
(suberin of O)
(suberin of C)
Pf If $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ has eigenvalue 1 with eigenvector v and $B \in M_{\text {at }} \mathrm{mm}(\mathbb{C})$ has eigenvalue r with engenectorw then

$$
v \otimes w \text { is eigenvector of }\left\{\begin{array}{l}
A \otimes I_{m} \pm I_{n} \otimes B \text { wleymanalive } \quad \lambda_{\mu} \\
A \otimes B \text { wlergmalue } t_{\mu}
\end{array}\right.
$$

Thus and A are rings.
To see that \bar{Q} is a field note that it z is a nonzero root of $p(x) \in \mathbb{C} \cdot]$ of degree n then y / z is a root of $x^{n} p\left(\frac{1}{x}\right) \in \mathbb{Z}[x] \quad \Delta$

Prop. $\mathbb{A} \cap \mathbb{Q}=\mathbb{Z}$
Pf Suppose Z is root of $f(x)=x^{n}+C_{n-1} x^{m-1}+C_{C}+c_{0}$ and $z=p / q \in \mathbb{Q}$ where $p, q \in \mathbb{Z}$ mil god $(p, q)=1$.
Then $0=f(z)=f(p / q)=\frac{p^{n}+q^{k}}{q^{n}}$ for some $k \in \mathbb{Z}$.
$\Rightarrow p^{n}=-q k \in q \mathbb{Z}$ contradicting $g c(p q)=1$ unless $q= \pm 1$ in which case $z \in \mathbb{Z} \cdot D$

Nett time: character values for a finite group are al gebraic in e gers.

