Math 5112 - Lecture ${ }^{\#} 18$

Math sil2-Lecture \# 18

Last time:
(1) Let V be a finite dim. reproof a grep G (defined over ©)
The complesitication of V is

$$
\begin{aligned}
& V \cong \mathbb{C}-\operatorname{span}\left\{1 \otimes_{\mathbb{R}} V-i \otimes_{\mathbb{R}} i V \mid \in V\right] \subset V_{\mathbb{C}} \\
& \bar{V} \cong \mathbb{C}-\operatorname{span}\left\{1 \otimes_{\mathbb{R}^{V}}+i \otimes_{\mathbb{R}^{i}} \mid V \in V\right\} \subset V_{\mathbb{C}}
\end{aligned}
$$

(2) Frobenius character + hook length dim formulas (for irred repose of symmetric grep / \mathbb{C})

Let $P_{m}(x)=x_{1}^{m}+x_{2}^{m}+\ldots+x_{N}^{m}$ for each $m=1,2,3, \ldots$ Let $P_{\mu}(x)=\prod_{i=1}^{l(\mu)} P_{\mu_{i}}(x)$ for a partition $\mu=\left(\mu_{1} i \mu_{2} \geq \ldots\right)$ Called the power sum symmetric polynomials.

Fix λ in and $N \geq \boldsymbol{\ell}(-\lambda)=\#$ of nonzero parts of λ (apartition)

Thin The value of the irreducible character x_{1} of S_{n} at any permutation of cycle type $\mu-n$ is the coefficient of the monomial

$$
\prod_{j=1}^{N} x_{j}^{\lambda_{j}+N-j}
$$

in the polynomial $\prod_{1 \leq i<j \leq N}\left(x_{i}-x_{j}\right) \cdot p_{\mu}(x)$ $1 \leq i<j \leq N$

Thm Given Jan let $h_{i j}(t)$ be the hooklength of position (ii) in the Yang diagram of t.

Then

$$
x_{f}(1)=\operatorname{din} V_{-1}=\frac{n!}{\prod_{(i, j)} h_{i j}(\lambda)}
$$

Today: Schur-Weyl duality
(A fundamental relationship bet ween irred repps of symmetric grapes and general linear grams.)

Below, all algebras \& repps are defined over an alg. closed feed
Them Let E be a finite dimension vector space.
Let A and B be subalgebras of $E n \partial(E)=\left\{\operatorname{linem}_{\text {max }} E+t\right\}$
Assume A is semisimple and $B=\left\{b \in \epsilon_{n d}(\epsilon) \mid a b=b a \forall a c A\right\}$
(In other words we assume $B=\operatorname{End}_{A}(E)$)

$$
=\left\{\begin{array}{l}
\text { enbabonomprimu of } \\
\text { ar an } A \text { Ar ep. }
\end{array}\right\}
$$

(1) $A=\{a \in(\cap)(\epsilon) \mid a b=b a \forall b \in B\}=6 \cap d_{B}(\epsilon)$ In this situation we say that A and B are commuting algebras of each other.
(2) B is also semisimple
(3) E is a reps of $A \otimes B$ for the linear action $a \otimes b: 8 \longmapsto a(b(e))=b(a(e))$ for $\underset{b \in B}{a \in A}$ et.
(this makes a reps because $\left.\left(a_{1} \otimes b_{1}\right)\left(a_{2} \otimes b_{2}\right)=a_{1} a_{2} \otimes b_{1} b_{2}\right)$
There are irreducible A-repps $\left\{V_{i}\right\}_{i \in I}$ and ifreduelble B-repns $\left\{W_{i}\right\}_{i \in I}$ such that $\in \stackrel{\cong}{\cong} \bigoplus_{i \in I} v_{i} \otimes W_{i}$
(4) Each irreducible repn of A (respectively, B) is is omarphic to V_{i} (respectively, W_{i}) for a unique i kI

Thus, the map $V_{i} \leftrightarrow W$; for iI gives a bijection between the isomorphism classes of irreducible A - and B-reins Call this map the correspondence defined by \in.

Pf Since A is semisimple, $E \cong \underset{i \in I}{\oplus} V_{i} \otimes W_{i}$ where $\left\{V_{i}\right\}_{i \in I}$ represent all distract isomorphism classes of fred Arepns and $W_{i} \stackrel{\text { def }}{=} \operatorname{Hom}_{A}\left(V_{i}, E\right)$, and $A \cong \oplus \Theta_{i \in I} E_{n d}\left(V_{i}\right)$

Once we make these identifications, Scour's lemma tells us that B (which is assumed to be the commuting algebra of A in $\left(\operatorname{Hnd}_{d}(f)\right)$ is $\cong \bigoplus_{i \in I} \epsilon_{n d}\left(w_{i}\right)$.

This implies that B is semisimple.
Schuss lemma then implies A is the commuting algebra of B in End (E).

The remaining assertions are now clear from writing

$$
\left.A=\bigoplus_{i \in I} \operatorname{tr}\right)\left(v_{i}\right), \quad E=\bigoplus_{i \in I} V_{i} \otimes w_{i}, \quad B=\bigoplus_{i \in I} \epsilon_{n} \partial\left(w_{i}\right) .
$$

Application: assume the ambient field is \mathbb{C}
Choose a finte-dim. \mathbb{C}-vector space V and let $n \in\left\{1,2,3, \ldots\right.$. Set $E=v^{8 n}=v \otimes \cdots \otimes v$

Let A be the image of $C\left[S_{n}\right]$ in $f_{n} d(\epsilon)$ where the action of $\sigma \in S_{n}$ on \in is by permuting tensor factor $\sigma: v_{1} \otimes v_{2} \otimes \ldots \otimes v_{n} \mapsto v_{\sigma^{\prime \prime}(\omega)} \otimes v_{\sigma^{-12}} \otimes \otimes v_{\sigma-1 m}$

Let $g e(v)$ be the Lie algebra of endomorphisms of V $\operatorname{End}_{n}^{\prime \prime}(v)$ milt $[x, y]=x y-y x$.

Finally let $B=E \in \operatorname{cn}_{A}(\epsilon)=\{b \in \operatorname{Gnd}(\epsilon) \mid a b=b a \operatorname{va\in A}\}$
The In this setting B is the image of of the universal enveloping algebra $U(g l(v)$) in fud () where the action of $g \in g l(v)$ on \in is

$$
g: v_{1} \otimes v_{2} \otimes \cdots v_{n} \mapsto g v_{1} \otimes g v_{2} \otimes \theta g v_{n}
$$

$$
\binom{u \mid g e(v)) \neq g e(v) \text { although this is also an (associate until) })}{\text { algebra containing the Lie alsebre ge lv }}
$$

algebra cortainims the Lie algebra gelv)

Also, B is generated bs elements of the form

$$
\begin{aligned}
& \Delta_{n}(b) \stackrel{\text { def }}{=} b \otimes 10 \cdots(0)+1 \otimes b(8)(8 \cdots) \\
& \text { for } b \in g \ell(v) \quad+\mid \otimes 1 \otimes b \otimes 1 \otimes \cdots \otimes 1+\ldots \\
& +|\otimes \cdots| \otimes b \in \epsilon \text { nd }(v)^{\otimes n} c \operatorname{tnd}(\epsilon) \\
& \text { as } \epsilon=v^{\otimes n}
\end{aligned}
$$

Pf Image of $U(g l(v))$ is certainly centamed in B.
Need to show that B is centamed in imper of $u(y e(x))$.
We may identity $B=S^{n}($ End $V)=\begin{aligned} & \text { span of the } n \text {-fold } \\ & \text { symmetric tensors of }\end{aligned}$ End (v)
$S^{n} U$ is an irred. reps of $G L(V)$ for $U=$ End V
(or mare generally for any finite din. © -vector space - HW exercise) and so it is spanned by elements of the form w (1) v(3)-هu for $u \in U$ (since such elements span a nonzero subrepn)
(n-fold: 2-fold tensor product is V 2 VV
3-fold " " is $V \otimes V O V$
u-fold ". is $V \otimes V \otimes V Q V$ etc.
Thus B is spanned $b y\{b \otimes b(0 \cdots b) b \in g \ell(v)\}$

But the elements $\Delta_{n}(b)$ for b $\in B$ generate this sparing set. Fundamental the of symmetric functions (another exercise) says that there is a polynomial P with coeffs in Q such that

$$
P\left(\Delta_{n}(b), \Delta_{n}\left(b^{2}\right), . . \Delta_{n}\left(b^{n}\right)\right)=b \otimes b \otimes \cdots b
$$

for each $b \in g \ell(v)$. Thus B is generated by the $\Delta_{n}(b)$ elements, each of which is cartamed in the image of $U(g l(v))$, so B is also contained in this image. D

The algebra $\mathbb{C}\left[S_{n}\right]$ is semisimple bi maschke's theorem, so A is also semi rimple. Thus ar first theorem implies: ${ }^{\text {as }} A \cong \mathbb{C}\left(\sigma_{n}\right]$
Schur-Werl duality (gelv)Version)
(1) Images of $\mathbb{C}\left(s_{n}\right]$ and $u(g l(v))$ in $f\left(n d\left(v^{\otimes n}\right)\right.$ are commuting algebras of each other, and both are semisimple.
(2) $\mathrm{V}^{\circ n}$ is a semisimple $u(g e(v))$-module and (C $\left[\sigma_{n}\right]$-module.
(3) As $\mathbb{C}\left[s_{n}\right]$ © $u(y l(v))$-modules, we have

$$
V^{\otimes n} \cong \underset{t 1-n}{\oplus} V_{\lambda} \otimes L_{\lambda}
$$

where sum is wooer partitions of n, V_{d} is the Specht mable for $\left.\mathbb{C} C_{S_{n}}\right]$ def med earlier, and each L_{λ} is either zero or an irreducible rep of $g l(v)$ and $L_{i} \neq L_{\mu}$
The "duality"" here refers to the correspondence $V_{\lambda} \leftrightarrow L_{\lambda}$ ir $+\neq \mu$ and $L_{\mu} \neq 0$ $4 \neq 0$

Prop $/$ Exercise Image of $G L(V)=\left[\begin{array}{l}\text { ineritive imper } \\ \text { mas } \\ V \rightarrow v\end{array}\right]$ in End $\left(V^{8 n}\right)$ spans End $\left(V^{\theta^{n}}\right)$ Pf sketch Want to show that any $b 0 \cdots b$ for $b \in g l(v)$ is a line camb of tenors $90-\otimes g$ for $g \in G L(V)$. Can shaw this using fact that $\varepsilon I+b \in G L(v)$ for all suticicantly small $\varepsilon>0 D$

Schur-weyl duality (GL(v) version)
As a reph of $S_{n} \times G L(v)$, we have

$$
V^{\otimes n} \cong \underset{t-n}{\oplus} V_{\lambda} \otimes L_{\lambda}
$$

where $L_{\lambda}=\operatorname{Hom}_{S_{n}}\left(V_{\lambda}, V^{0 n}\right)$ are distinct non-isomenaxic GUlV)-repos or zero.
Moarl: Schur-Wes dualte gives a cyacical grerepareme belwen

