This document is a **transcript** of the lecture, so is more like an abbreviated set of lecture slides than complete lecture notes. For the latter, **consult the textbook** listed on the course webpage.

1 Associative Algebras

Setup: Let K be a field. Assume that K is algebraically closed unless noted otherwise.

Note that if K is algebraically closed, then every linear map $K^n \to K^n$ has an eigenvalue in K.

Usually we take $K = \mathbb{C}$, the complex numbers, or $K = \overline{\mathbb{F}_q}$, the algebraic closure of the finite field \mathbb{F}_q .

Definition 1.1. An *associative algebra* (over K) is a K-vector space A with a bilinear map $A \times A \rightarrow A$, written $(a, b) \mapsto a \cdot b$ or ab, that is associative in the sense that a(bc) = (ab)c for all $a, b, c \in A$.

Here, "bilinear" means that the following properties hold for all $a, b, c \in A$ and $\lambda \in K$.

- (a+b)c = ac+bc
- a(b+c) = ab + ac
- $(\lambda a)b = a(\lambda b) = \lambda(ab)$

Because the product is associative, any way of parenthesizing an iterated product $a_1a_2a_3...a_n$ with $a_i \in A$ gives the same result, so we can just omit the parentheses in such expressions.

Definition 1.2. A *unit* for an associative algebra A is an element $1 \in A$ with 1a = a1 = a for all $a \in A$.

Fact 1.3. If A has a unit then it is unique.

Proof. If 1 and 1' are units for A, then 1 = 11' = 1' since a = a1' and 1a = a.

From now on, an *algebra* (over K) means a **nonzero**, **associative** algebra that **has a unit**. A *subalgebra* of an algebra is a subspace containing the unit that is closed under multiplication.

Example 1.4. Let n be a positive integer. Here are some algebras:

- (*Trivial algebra*) The field K is itself an algebra. This is the smallest possible algebra, up to isomorphism, since the zero vector space is not an algebra.
- (*Polynomial algebra*) The set $K[x_1, x_2, ..., x_n]$ of polynomials in commuting variables x_i with coefficients in K is an algebra with unit 1. This algebra is *commutative*, meaning fg = gf for all elements f and g.
- (*Endomorphism algebra*) Let V be a K-vector space. Let End V be the vector space of K-linear maps $V \to V$. This is an algebra for the product given by composition $\rho_1 \rho_2 \stackrel{\text{def}}{=} \rho_1 \circ \rho_2$ for $\rho_i : V \to V$. The unit is the identity map $\mathrm{id}_V : V \to V$.

Aside: the vector space of all maps $V \to V$ is also algebra with the same product and unit, but this is an unreasonably high-dimensional object that is not of much interest.

- (*Free algebra*) The set $K\langle X_1, X_2, \ldots, X_n \rangle$ of polynomials in non-commuting variables X_1, X_2, \ldots, X_n is also an algebra.
- (*Group algebra*) Given a group G. Let K[G] be the K-vector space with basis $\{a_g : g \in G\}$. This becomes an algebra for the bilinear multiplication that has $a_g a_h = a_{gh}$ for $g, h \in G$. Unit is a_{1_G} where 1_G is unit for G.

Definition 1.5. A morphism $f: A \to B$ of algebras (over K) is a K-linear map such that

- f(ab) = f(a)f(b) for $a, b \in A$.
- $f(1_A) = 1_B$.

We say f is an *isomorphism* if there exists a morphism $g: B \to A$ such that $f \circ g = id_B$ and $g \circ f = id_A$. This occurs if and only if f is a bijection.

Example 1.6. There is a unique morphism $K\langle X_1, X_2, \ldots, X_n \rangle \to K[x_1, x_2, \ldots, x_n]$ that sends each variables $X_i \mapsto x_i$ (i.e., that lets the variables commute). In fact, if A is any algebra and we choose some elements a_1, a_2, \ldots, a_n , then there is a unique morphism $K\langle X_1, X_2, \ldots, X_n \rangle \to A$ sending each $X_i \mapsto a_i$.

Example 1.7. The field K viewed as a K-algebra is is *initial* in the category of K-algebras: there is a unique morphism $K \to A$ for any K-algebra A.

2 Representations

Definition 2.1. Let A be an algebra over K. A *representation* of A is a pair (ρ, V) where V is a K-vector space and $\rho : A \to \text{End } V$ is an algebra morphism.

Notation. Sometimes we will say that the map " $\rho : A \to \text{End } V$ " is a representation. If ρ is known implicitly, we may also refer to V as a representation of A.

Definition 2.2. A *left A-module* is a vector space V with a bilinear map $A \times V \to V$, written $(a, v) \mapsto av$, such that

- (1) $1_A v = v$ for all $v \in V$
- (2) a(bv) = (ab)v for $a, b \in A, v \in V$

Representations of A are the same as left A-modules in the following sense:

(1) If (ρ, V) is a representation, then setting

$$av \stackrel{\text{def}}{=} \rho(a)(v)$$

for $a \in A$, $v \in V$ makes V into a left A-module.

(2) If V is a left A-module, then setting

 $\rho(a)(v) \stackrel{\text{def}}{=} av$

for $a \in A$, $v \in V$ defines a representation $\rho : A \to \operatorname{End} V$.

Moreover, operations (1) and (2) are inverses of each other.

Definition 2.3. Let A^{op} be the same vector space as A but with multiplication $a *_{op} b = ba$ for $a, b \in A$. This gives another algebra with the same unit as A known as the *opposite algebra*.

It is instructive to check the associativity of $*_{op}$ directly:

$$a\ast_{\mathsf{op}}(b\ast_{\mathsf{op}}c)=a\ast_{\mathsf{op}}(cb)=(cb)a=c(ba)=ba\ast_{\mathsf{op}}c=(a\ast_{\mathsf{op}}b)\ast_{\mathsf{op}}c.$$

Definition 2.4. A *right A-module* is a vector space V with a bilinear map $V \times A \rightarrow V$ written as $(v, a) \mapsto va$ for $a \in A, v \in V$ such that

- (1) $v1_A = v$ for all $v \in V$.
- (2) (va)b = v(ab) for $a, b \in A, v \in V$.

Representations of A^{op} are the same as right A-modules, in the same sense as above.

If A is commutative, then $A = A^{op}$. In this case, left A-modules are the same as right A-modules.

Example 2.5. Here are two common representations:

- (*Zero representation*) If V = 0, then End V consists of the unique map $0 \to 0$, and the unique map $A \to \text{End } V = \{0 \to 0\}$ is an algebra morphism.
- (*Regular representation*) Define $\rho : A \to \text{End } V$ by $\rho(a)(b) = ab$ for $a, b \in A$, then (ρ, A) is a representation of A.

If A = K, then any K-vector space is a left A-module and so affords a representation.

Definition 2.6. Suppose (ρ, V) is a representation of A. A subrepresentation of (ρ, V) is a subspace $W \subset V$ such that $\rho(a)(W) \subseteq W$ for all $a \in A$.

Note that 0 and V itself are always subrepresentations. We say that (ρ, V) is *irreducible* if $V \neq 0$ and there are no other subrepresentations.

Definition 2.7. If V is a left A-module, then a *submodule* is a subspace $W \subset V$ such that $aw \in W$ for all $a \in A$ and $w \in W$.

Under the correspondence between representations and left modules described above, subrepresentations correspond to submodules. In this sense, "subrepresentations are the same thing as submodules."

3 Morphisms of representations

Definition 3.1. Suppose (ρ_1, V_1) and (ρ_2, V_2) are representations of A.

A morphism $\phi: (\rho_1, V_1) \to (\rho_2, V_2)$ is a linear map $\phi: V_1 \to V_2$ such that

$$\phi(\rho_1(a)(v)) = \rho_2(a)(\phi(v))$$

for all $a \in V$ and $v \in V_1$. This property holds precisely when the diagram

$$V_1 \xrightarrow{\phi} V_2$$

$$\rho_1(a) \downarrow \qquad \qquad \qquad \downarrow \rho_2(a)$$

$$V_1 \xrightarrow{\phi} V_2$$

commutes for all $a \in A$.

We say that ϕ is an isomorphism if ϕ is a bijection.

Proposition 3.2 (*Schur's Lemma*). For this result, K may be any field, not necessarily algebraically closed. Let (ρ_1, V_1) and (ρ_2, V_2) be representations of A. Suppose $\phi : (\rho_1, V_1) \to (\rho_2, V_2)$ is a nonzero morphism.

- (1) If (ρ_1, V_1) is irreducible then ϕ is injective.
- (2) If (ρ_2, V_2) is irreducible then ϕ is surjective.
- (3) If both representations are irreducible then ϕ is an isomorphism.

Proof. Check that ker $\phi = \{v \in V_1 : \phi(v) = 0\} \subset V_1$ and $\operatorname{Im}\phi = \{\phi(v) : v \in V_1\} \subset V_2$ are subrepresentations. But ker $\phi \neq V_1$ and $\operatorname{Im}\phi \neq 0$ if ϕ is nonzero. The result therefore follows since only 0 and V can be subrepresentations of an irreducible representation (ρ, V) .

For the last two results we go back to assuming that K is algebraically closed.

Corollary 3.3. Assume K is algebraically closed and (ρ, V) is an irreducible representation of A with V finite dimensional. Suppose $\phi : (\rho, V) \to (\rho, V)$ is a morphism. Then there exists a scalar $\lambda \in K$ such that $\phi(v) = \lambda v$ for all $v \in V$, that is, $\phi = \lambda \cdot id_V$ is a scalar map.

Proof. As K is algebraically closed, there must be an eigenvalue for ϕ , i.e. there must be some $\lambda \in K$ such that $\phi - \lambda \cdot id_V$ is not invertible. But $\phi - \lambda \cdot id_V$ is another morphism $(\rho, V) \to (\rho, V)$. So we must have $\phi - \lambda \cdot id_V = 0$ by Schur's Lemma.

Corollary 3.4. If K is algebraically closed and A is commutative, then every irreducible representation (ρ, V) of A has dim V = 1

Proof. If (ρ, V) is a representation, then the map $\rho(a) : V \to V$ for any $a \in A$ is a morphism $(\rho, V) \to (\rho, V)$ since A is commutative. By Corollary 2.10, we must have $\rho(a) = \lambda \cdot id_V$ for some $\lambda \in K$.

But this applies to every $a \in A$, so every subspace of V is a subrepresentation.

Therefore V is irreducible if and only if $\dim V = 1$.