
MATH 5112 (Spring 2024) Lecture 1 (transcribed by TAI Sung Chit Huey)

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Associative Algebras

Setup: Let K be a field. Assume that K is algebraically closed unless noted otherwise.

Note that if K is algebraically closed, then every linear map Kn → Kn has an eigenvalue in K.

Usually we take K = C, the complex numbers, or K = Fq, the algebraic closure of the finite field Fq.

Definition 1.1. An associative algebra (over K) is a K-vector space A with a bilinear map A×A→ A,
written (a, b) 7→ a · b or ab, that is associative in the sense that a(bc) = (ab)c for all a, b, c ∈ A.

Here, “bilinear” means that the following properties hold for all a, b, c ∈ A and λ ∈ K.

• (a+ b)c = ac+ bc

• a(b+ c) = ab+ ac

• (λa)b = a(λb) = λ(ab)

Because the product is associative, any way of parenthesizing an iterated product a1a2a3 . . . an with
ai ∈ A gives the same result, so we can just omit the parentheses in such expressions.

Definition 1.2. A unit for an associative algebra A is an element 1 ∈ A with 1a = a1 = a for all a ∈ A.

Fact 1.3. If A has a unit then it is unique.

Proof. If 1 and 1′ are units for A, then 1 = 11′ = 1′ since a = a1′ and 1a = a.

From now on, an algebra (over K) means a nonzero, associative algebra that has a unit. A subalgebra
of an algebra is a subspace containing the unit that is closed under multplication.

Example 1.4. Let n be a positive integer. Here are some algebras:

• (Trivial algebra) The field K is itself an algebra. This is the smallest possible algebra, up to
isomorphism, since the zero vector space is not an algebra.

• (Polynomial algebra) The set K[x1, x2, . . . , xn] of polynomials in commuting variables xi with co-
efficients in K is an algebra with unit 1. This algebra is commutative, meaning fg = gf for all
elements f and g.

• (Endomorphism algebra) Let V be a K-vector space. Let EndV be the vector space of K-linear

maps V → V . This is an algebra for the product given by composition ρ1ρ2
def
= ρ1◦ρ2 for ρi : V → V .

The unit is the identity map idV : V → V .

Aside: the vector space of all maps V → V is also algebra with the same product and unit, but
this is an unreasonably high-dimensional object that is not of much interest.

• (Free algebra) The setK〈X1, X2, . . . , Xn〉 of polynomials in non-commuting variablesX1, X2, . . . , Xn

is also an algebra.

• (Group algebra) Given a group G. Let K[G] be the K-vector space with basis {ag : g ∈ G}. This
becomes an algebra for the bilinear multiplication that has agah = agh for g, h ∈ G. Unit is a1G
where 1G is unit for G.

Definition 1.5. A morphism f : A→ B of algebras (over K) is a K-linear map such that
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• f(ab) = f(a)f(b) for a, b ∈ A.

• f(1A) = 1B .

We say f is an isomorphism if there exists a morphism g : B → A such that f ◦ g = idB and g ◦ f = idA.
This occurs if and only if f is a bijection.

Example 1.6. There is a unique morphism K〈X1, X2, . . . , Xn〉 → K[x1, x2, . . . , xn] that sends each
variables Xi 7→ xi (i.e., that lets the variables commute). In fact, if A is any algebra and we choose some
elements a1, a2, . . . , an, then there is a unique morphism K〈X1, X2, . . . , Xn〉 → A sending each Xi 7→ ai.

Example 1.7. The field K viewed as a K-algebra is is initial in the category of K-algebras: there is a
unique morphism K → A for any K-algebra A.

2 Representations

Definition 2.1. Let A be an algebra over K. A representation of A is a pair (ρ, V ) where V is a K-vector
space and ρ : A→ EndV is an algebra morphism.

Notation. Sometimes we will say that the map “ρ : A → EndV ” is a representation. If ρ is known
implicitly, we may also refer to V as a representation of A.

Definition 2.2. A left A-module is a vector space V with a bilinear map A×V → V , written (a, v) 7→ av,
such that

(1) 1Av = v for all v ∈ V

(2) a(bv) = (ab)v for a, b ∈ A, v ∈ V

Representations of A are the same as left A-modules in the following sense:

(1) If (ρ, V ) is a representation, then setting

av
def
= ρ(a)(v)

for a ∈ A, v ∈ V makes V into a left A-module.

(2) If V is a left A-module, then setting

ρ(a)(v)
def
= av

for a ∈ A, v ∈ V defines a representation ρ : A→ EndV .

Moreover, operations (1) and (2) are inverses of each other.

Definition 2.3. Let Aop be the same vector space as A but with multiplication a ∗op b = ba for a, b ∈ A.
This gives another algebra with the same unit as A known as the opposite algebra.

It is instructive to check the associativity of ∗op directly:

a ∗op (b ∗op c) = a ∗op (cb) = (cb)a = c(ba) = ba ∗op c = (a ∗op b) ∗op c.

Definition 2.4. A right A-module is a vector space V with a bilinear map V × A → V written as
(v, a) 7→ va for a ∈ A, v ∈ V such that

(1) v1A = v for all v ∈ V .

(2) (va)b = v(ab) for a, b ∈ A, v ∈ V .
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Representations of Aop are the same as right A-modules, in the same sense as above.

If A is commutative, then A = Aop. In this case, left A-modules are the same as right A-modules.

Example 2.5. Here are two common representations:

• (Zero representation) If V = 0, then EndV consists of the unique map 0→ 0, and the unique map
A→ EndV = {0→ 0} is an algebra morphism.

• (Regular representation) Define ρ : A → EndV by ρ(a)(b) = ab for a, b ∈ A, then (ρ,A) is a
representation of A.

If A = K, then any K-vector space is a left A-module and so affords a representation.

Definition 2.6. Suppose (ρ, V ) is a representation of A. A subrepresentation of (ρ, V ) is a subspace
W ⊂ V such that ρ(a)(W ) ⊆W for all a ∈ A.

Note that 0 and V itself are always subrepresentations. We say that (ρ, V ) is irreducible if V 6= 0 and
there are no other subrepresentations.

Definition 2.7. If V is a left A-module, then a submodule is a subspace W ⊂ V such that aw ∈ W for
all a ∈ A and w ∈W .

Under the correspondence between representations and left modules described above, subrepresentations
correspond to submodules. In this sense, “subrepresentations are the same thing as submodules.”

3 Morphisms of representations

Definition 3.1. Suppose (ρ1, V1) and (ρ2, V2) are representations of A.

A morphism φ : (ρ1, V1)→ (ρ2, V2) is a linear map φ : V1 → V2 such that

φ(ρ1(a)(v)) = ρ2(a)(φ(v))

for all a ∈ V and v ∈ V1. This property holds precisely when the diagram

V1 V2

V1 V2

φ

ρ1(a) ρ2(a)

φ

commutes for all a ∈ A.

We say that φ is an isomorphism if φ is a bijection.

Proposition 3.2 (Schur’s Lemma). For this result, K may be any field, not necessarily algebraically
closed. Let (ρ1, V1) and (ρ2, V2) be representations of A. Suppose φ : (ρ1, V1) → (ρ2, V2) is a nonzero
morphism.

(1) If (ρ1, V1) is irreducible then φ is injective.

(2) If (ρ2, V2) is irreducible then φ is surjective.

(3) If both representations are irreducible then φ is an isomorphism.

Proof. Check that kerφ = {v ∈ V1 : φ(v) = 0} ⊂ V1 and Imφ = {φ(v) : v ∈ V1} ⊂ V2 are subrepresenta-
tions. But kerφ 6= V1 and Imφ 6= 0 if φ is nonzero. The result therefore follows since only 0 and V can
be subrepresentations of an irreducible representation (ρ, V ).

3



MATH 5112 (Spring 2024) Lecture 1 (transcribed by TAI Sung Chit Huey)

For the last two results we go back to assuming that K is algebraically closed.

Corollary 3.3. Assume K is algebraically closed and (ρ, V ) is an irreducible representation of A with
V finite dimensional. Suppose φ : (ρ, V )→ (ρ, V ) is a morphism. Then there exists a scalar λ ∈ K such
that φ(v) = λv for all v ∈ V , that is, φ = λ · idV is a scalar map.

Proof. As K is algebraically closed, there must be an eigenvalue for φ, i.e. there must be some λ ∈ K
such that φ− λ · idV is not invertible. But φ− λ · idV is another morphism (ρ, V )→ (ρ, V ). So we must
have φ− λ · idV = 0 by Schur’s Lemma.

Corollary 3.4. If K is algebraically closed and A is commutative, then every irreducible representation
(ρ, V ) of A has dimV = 1

Proof. If (ρ, V ) is a representation, then the map ρ(a) : V → V for any a ∈ A is a morphism (ρ, V ) →
(ρ, V ) since A is commutative. By Corollary 2.10, we must have ρ(a) = λ · idV for some λ ∈ K.

But this applies to every a ∈ A, so every subspace of V is a subrepresentation.

Therefore V is irreducible if and only if dimV = 1.
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