MATH 5112 (Spring 2024) Lecture 1 (transcribed by TAI Sung Chit Huey)

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Associative Algebras

Setup: Let K be a field. Assume that K is algebraically closed unless noted otherwise.
Note that if K is algebraically closed, then every linear map K™ — K™ has an eigenvalue in K.
Usually we take K = C, the complex numbers, or K = E, the algebraic closure of the finite field F,,.
Definition 1.1. An associative algebra (over K) is a K-vector space A with a bilinear map A x A — A,
written (a,b) — a- b or ab, that is associative in the sense that a(bc) = (ab)c for all a,b,c € A.
Here, “bilinear” means that the following properties hold for all a,b,c € A and ) € K.

e (a+b)c=ac+be

e a(lb+c)=ab+ac

e (Aa)b = a(A\b) = A(abd)
Because the product is associative, any way of parenthesizing an iterated product ajasas...a, with
a; € A gives the same result, so we can just omit the parentheses in such expressions.
Definition 1.2. A unit for an associative algebra A is an element 1 € A with 1la = al = a for all a € A.
Fact 1.3. If A has a unit then it is unique.

Proof. If 1 and 1’ are units for A, then 1 = 11’ = 1’ since a = al’ and la = a. O

From now on, an algebra (over K) means a nonzero, associative algebra that has a unit. A subalgebra
of an algebra is a subspace containing the unit that is closed under multplication.
Example 1.4. Let n be a positive integer. Here are some algebras:

o (Trivial algebra) The field K is itself an algebra. This is the smallest possible algebra, up to
isomorphism, since the zero vector space is not an algebra.

(Polynomial algebra) The set K[x1,xa,...,zy] of polynomials in commuting variables z; with co-
efficients in K is an algebra with unit 1. This algebra is commutative, meaning fg = gf for all
elements f and g.

e (Endomorphism algebra) Let V be a K-vector space. Let EndV be the vector space of K-linear
maps V — V. This is an algebra for the product given by composition p;ps def props forp; : V. — V.
The unit is the identity map idy : V — V.

Aside: the vector space of all maps V' — V is also algebra with the same product and unit, but
this is an unreasonably high-dimensional object that is not of much interest.

e (Free algebra) The set K (X1, Xo, ..., Xp) of polynomials in non-commuting variables X1, Xo, ..., X,
is also an algebra.

e (Group algebra) Given a group G. Let K[G] be the K-vector space with basis {a, : g € G}. This
becomes an algebra for the bilinear multiplication that has agap = agp for g,h € G. Unit is a1,
where 1¢ is unit for G.

Definition 1.5. A morphism f: A — B of algebras (over K) is a K-linear map such that
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o f(ab) = f(a)f(b) for a,b € A.
e f(la)=1p.
We say [ is an isomorphism if there exists a morphism g : B — A such that fog =idg and go f = id 4.

This occurs if and only if f is a bijection.

Example 1.6. There is a unique morphism K(X;,Xo,...,X,,) — K[z, z9,...,z,] that sends each
variables X; — x; (i.e., that lets the variables commute). In fact, if A is any algebra and we choose some
elements aq,aq, ..., a,, then there is a unique morphism K(X;, Xo,...,X,,) — A sending each X; — a;.

Example 1.7. The field K viewed as a K-algebra is is initial in the category of K-algebras: there is a
unique morphism K — A for any K-algebra A.

2 Representations

Definition 2.1. Let A be an algebra over K. A representation of A is a pair (p, V') where V is a K-vector
space and p: A — EndV is an algebra morphism.

Notation. Sometimes we will say that the map “p : A — EndV” is a representation. If p is known
implicitly, we may also refer to V' as a representation of A.

Definition 2.2. A left A-module is a vector space V with a bilinear map AxV — V| written (a,v) — av,
such that

(1) 1lgv=viorallveV

(2) a(bv) = (ab)v for a,be A, v eV
Representations of A are the same as left A-modules in the following sense:

(1) If (p, V) is a representation, then setting

av < p(a)(v)

fora € A, v € V makes V into a left A-module.
(2) If V is a left A-module, then setting
def
pla)(v) < av
for a € A, v € V defines a representation p: A — End V.
Moreover, operations (1) and (2) are inverses of each other.
Definition 2.3. Let A° be the same vector space as A but with multiplication a *qp b = ba for a,b € A.

This gives another algebra with the same unit as A known as the opposite algebra.

It is instructive to check the associativity of *, directly:

@ #op (b¥op €) = @ %op (cb) = (cb)a = c(ba) = ba *op ¢ = (& *op b) *op C.

Definition 2.4. A right A-module is a vector space V with a bilinear map V x A — V written as
(v,a) — va for a € A, v € V such that

(1) vlg=wvforalveV.
(2) (va)b=wv(ad) for a,be A, veV.
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Representations of A°P are the same as right A-modules, in the same sense as above.

If A is commutative, then A = A°P. In this case, left A-modules are the same as right A-modules.

Example 2.5. Here are two common representations:

e (Zero representation) It V=0, then End V counsists of the unique map 0 — 0, and the unique map
A — EndV = {0 — 0} is an algebra morphism.

o (Regular representation) Define p : A — EndV by p(a)(b) = ab for a,b € A, then (p,A) is a
representation of A.

If A= K, then any K-vector space is a left A-module and so affords a representation.

Definition 2.6. Suppose (p, V) is a representation of A. A subrepresentation of (p,V) is a subspace
W C V such that p(a)(W) C W for all a € A.

Note that 0 and V itself are always subrepresentations. We say that (p, V) is érreducible if V' # 0 and
there are no other subrepresentations.

Definition 2.7. If V is a left A-module, then a submodule is a subspace W C V such that aw € W for
alla € Aand we W.

Under the correspondence between representations and left modules described above, subrepresentations
correspond to submodules. In this sense, “subrepresentations are the same thing as submodules.”

3 Morphisms of representations

Definition 3.1. Suppose (p1, V1) and (p2, V) are representations of A.
A morphism ¢ : (p1,V1) — (p2, Va) is a linear map ¢ : V3 — V5 such that

$(p1(a)(v)) = p2(a)(¢(v))

for all @ € V and v € V4. This property holds precisely when the diagram

1% L Vs

m(a)l lpz(a)
[

V1 E— V2

commutes for all a € A.
We say that ¢ is an isomorphism if ¢ is a bijection.
Proposition 3.2 (Schur’s Lemma). For this result, K may be any field, not necessarily algebraically

closed. Let (p1,V1) and (p2, V2) be representations of A. Suppose ¢ : (p1, V1) — (p2,V2) is a nonzero
morphism.

(1) If (p1, V1) is irreducible then ¢ is injective.
(2) If (p2, V2) is irreducible then ¢ is surjective.
(3) If both representations are irreducible then ¢ is an isomorphism.
Proof. Check that ker¢ = {v € V7 : ¢(v) = 0} C V4 and Im¢ = {¢p(v) : v € V1} C V5 are subrepresenta-

tions. But ker ¢ # V7 and Im¢ # 0 if ¢ is nonzero. The result therefore follows since only 0 and V' can
be subrepresentations of an irreducible representation (p, V). O
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For the last two results we go back to assuming that K is algebraically closed.

Corollary 3.3. Assume K is algebraically closed and (p, V) is an irreducible representation of A with
V finite dimensional. Suppose ¢ : (p, V') — (p, V) is a morphism. Then there exists a scalar A € K such
that ¢(v) = Ao for all v € V| that is, ¢ = X - idy is a scalar map.

Proof. As K is algebraically closed, there must be an eigenvalue for ¢, i.e. there must be some A € K
such that ¢ — X -idy is not invertible. But ¢ — X -idy is another morphism (p, V) — (p, V). So we must
have ¢ — A -idy = 0 by Schur’s Lemma. O

Corollary 3.4. If K is algebraically closed and A is commutative, then every irreducible representation
(p, V) of AhasdimV =1

Proof. If (p, V') is a representation, then the map p(a) : V— V for any a € A is a morphism (p, V) —
(p, V) since A is commutative. By Corollary we must have p(a) = A -idy for some A € K.
But this applies to every a € A, so every subspace of V' is a subrepresentation.

Therefore V' is irreducible if and only if dimV = 1. O
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