
MATH 5112 (Spring 2024) Lecture 2 (transcribed by TAI Sung Chit Huey)

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

Let K be a field, assumed to be algebraically closed unless noted otherwise. (E.g., K = C or Fp)

Definition 1.1. An associative algebra (over K) is a K-vector space A with a bilinear map A×A→ A,
written (a, b) 7→ ab, that satisfies a(bc) = (ab)c for all a, b, c ∈ A.

Definition 1.2. When we refer to an algebra, we will always mean an associative algebra that is nonzero
and has a unit element 1 satisfying 1a = a1 = a for all a ∈ A.

This means that if A is an algebra then 0 6= 1 in A. The zero vector space is not an algebra.

Definition 1.3. A morphism f : A→ B of algebras (over K) is a K-linear map such that

• f(ab) = f(a)f(b) for a, b ∈ A

• f(1A) = 1B

We say f is an isomorphism if f is a bijection.

Example 1.4. If V is a vector space (over K), then End(V )
def
= {linear maps V → V } is an algebra,

where the product is composition ρ1ρ2
def
= ρ1 ◦ ρ2, and the unit is idV : V → V .

Definition 1.5. A representation of an algebra A is a pair (ρ, V ) where V is a K-vector space and
ρ : A→ EndV is an algebra morphism.

Often we identify (ρ, V ) with the left A-module structure on V in which A acts by

a · v def
= ρ(a)(v) for a ∈ A, v ∈ V .

Definition 1.6. A morphism φ : (ρ1, V1)→ (ρ2, V2) is a linear map φ : V1 → V2 such that φ(ρ1(a)(v)) =
ρ2(a)(φ(v)) for all a ∈ A, v ∈ V1. (Sometimes called an intertwining operator)

We say that φ is an isomorphism if φ is a bijection of vector spaces.

Definition 1.7. A subrepresentation of (ρ, V ) is a subspace W ⊆ V with ρ(a)(W ) ⊆W for all a ∈ A.

If W is a subrepresentation, then it makes sense to say that the pair (ρ,W ) is a representation, where
we reinterpret ρ as a map A→ End(W ) by taking appropriate restrictions.

We say that (ρ, V ) is irreducible if V 6= 0 and there are no other subrepresentations except V and 0.

Proposition 1.8 (Schur’s Lemma). Let φ : (ρ1, V1)→ (ρ2, V2) be a morphism of representations.

(a) If both representations are irreducible then φ is an isomorphism.

(This holds even when K is not algebraically closed)

(b) If (ρ, V ) = (ρ1, V1) = (ρ2, V2) and this representation is finite dimensional (dimV < ∞) and
irreducible, and K is algebraically closed, then φ is a scalar map, so φ = λ · idV for some λ ∈ K.

(c) If K is algebraically closed and A is commutative (ab = ba for all a, b ∈ A) then every irreducible
representation (ρ, V ) has dimV = 1.
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Example 1.9 (Important counterexamples). Assume K = R is the field of real numbers, which not
algebraically closed. Then (b) and (c) can both fail, in the following way:

Let A
def
=

{[
a −b
b a

]
: a, b ∈ R

}
def
= V .

As R-algebras, A ∼= C. Let ρ : A→ End(V ) = End(A) be the regular representation, i.e. ρ(y)(z)
def
= yz.

Every 0 6= z ∈ A is invertible, so (ρ, V ) is irreducible with (real) dimension 2. This “contradicts” (c)
above since A is commutative.

Define φ

([
a −b
b a

])
=

[
−b −a
a −b

]
, which is multiplication by the matrix

[
0 −1
1 0

]
.

This is a morphism φ : (ρ, V )→ (ρ, V ) since A is commutative, but it is not a scalar map for the scalars
K = R, “contradicting” (b).

2 Indecomposable representations

Let A be an algebra over K, not necessarily algebraically closed. Suppose (ρ1, V1) and (ρ2, V2) are
representations of A. Then we can form the direct sum representation

(ρ1, V1)⊕ (ρ2, V2)
def
= (ρ1 ⊕ ρ2, V1 ⊕ V2),

where (ρ1 ⊕ ρ2)(a)(v1 + v2)
def
= ρ1(a)(v1) + ρ2(a)(v2) for a ∈ A, v1 ∈ V1 and v2 ∈ V2, and V1 ⊕ V2 is a

direct sum of vector spaces.

Note that (ρ1, V1)⊕ (ρ2, V2) ∼= (ρ2, V2)⊕ (ρ1, V1).

Definition 2.1. A representation (ρ, V ) is indecomposable if it is not isomorphic to (ρ1, V1) ⊕ (ρ2, V2)
for any nonzero representations (ρi, Vi). This occurs if and only if (ρ, V ) does not have two nonzero
subrepresentations W1,W2 ⊂ V with V = W1 ⊕W2 as any internal direct sum.

Notation. If W1,W2 ⊆ V are subspaces then writing

(a) V = W1 ⊕W2

is just an abbreviation for

(b) it holds that V = W1 +W2 and 0 = W1 ∩W2.

In general, the direct sum W1⊕W2 is some new vector space satisfying a universal property, with canonical
inclusions of W1 and W2. When (b) holds, the ambient vector space V satisfies these conditions so can
be identified with W1 ⊕W2.

Note that irreducible =⇒ indecomposable, but not vice versa.

Example 2.2. Consider the (commutative) polynomial algebra A = K[x]. What are the irreducible
representations of A?

Choose a linear map L : V → V , where V is a vector space.

Define ρL : K[x]→ End(V ) by formula such that

ρL(f(x)) = f(L) ⇐⇒ ρL(anx
n + . . .+ a2x

2 + a1x+ a0) = anL
n + . . .+ a2L

2 + a1L+ a0I.

Then (ρL, V ) is a representation of K[x].
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Every representation of K[x] must arise via this construction because every algebra morphism A→ B is
uniquely determined by the image of the variable x. It is possible that different choices of L might give
isomorphic representations (ρL, V ), however.

The representation (ρL, V ) is irreducible if and only if dimV = 1 since K is algebraically closed and K[x]
is commutative.

What are the indecomposable representations of K[x]?

Choose λ ∈ K and an integer n ≥ 1. Define Jλ,n : Kn → Kn to be the linear map with matrix

λ 1 0
λ 1

. . .
. . .

. . . 1
0 λ

 .

For example, Jλ,3 = linear map with matrix

 λ 1 0
0 λ 1
0 0 λ

.

Then (ρJλ,n,Kn) is indecomposable (but not irreducible if n > 1), and every indecomposable representation
of K[x] is isomorphic to one of these representation, by the uniqueness of Jordan canonical form.

Moreover, it holds that (ρJλ,n ,K
n) ∼= (ρJλ′,n′ ,K

n′
) if and only if n = n′ and λ = λ′.

These statements are not self-evident; their proofs requires a lot of linear algebra work.

3 Group Representations

Suppose G is a group. Given a vector space V , let GL(V ) be the group of invertible linear maps V → V .

Definition 3.1. A group representation of G is a pair (ρ, V ) where V is a vector space and ρ : G→ GL(V )
is a group homomorphism.

Group representations are the same as representations of the corresponding group algebra.

Recall that the group algebra is K[G] = K-span{ag : g ∈ G} where agah = agh.

We can turn any group representation (ρ, V ) for G into a representation of K[G] by setting ρ(ag) = ρ(g)
and extending by linearity.

Conversely, if (ρ, V ) representation of K[G] then every ρ(ag) ∈ GL(V ) for g ∈ G is invertible and

g 7→ ρ(ag) ∈ GL(V )

is a group homomorphism G → GL(V ). This holds since for every invertible a ∈ A in any algebra, we
have ρ(a)ρ(a−1) = ρ(1A) = idV for any representation (ρ, V ).

4 Ideals in algebras

Let A be an algebra.

Definition 4.1. A left ideal in A is a subspace I ⊂ A with aI
def
= {ai : i ∈ I} ⊆ I for all a ∈ A.

A right ideal in A is a subspace I ⊂ A with Ia ⊂ I for all a ∈ A.
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A two-sided ideal in A is a subspace that is both a left and right ideal.

All three notions coincide if A is commutative.

Left ideals are the same as subrepresentations of the regular representation of A and right ideals are the
same as subrepresentations of the regular representation of Aop.

The subspaces 0 and A are always two-sided ideals. If these are the only two-sided ideals then A is simple.

Example 4.2. The algebra Matn×n(K) is simple. To check this, we need to show that if I ⊆ Matn×n(K)
is a nonzero two-sided ideal then every n× n matrix is in I. If there is some elementary matrix Ejk ∈ I,
then every other elementary matrix is obtained as Eil = EijEjkEkl ∈ I so any linear combination of
elementary matrices is in I, which means that every n × n matrix is in I. So it is enough to show that
I contains some elementary matrix. As I is nonzero, there is some 0 6= M ∈ I with some nonzero entry
Mjk 6= 0, and then we have Ejk = 1

Mjk
EjjMEkk ∈ I as needed.

Example 4.3. If φ : A→ B is an algebra morphism then the kernel

kerφ
def
= {a ∈ A : φ(a) = 0}

is a two-sided ideal. The kernel is always a subspace, and if φ(a) = 0 then φ(xay) = φ(x)φ(a)φ(y) = 0
for all x, y ∈ A. Taking x = 1 shows that A is right ideal and taking y = 1 shows that A is a left ideal,
so it is a two-sided ideal.

Example 4.4. If S ⊂ A is any set, then we define 〈S〉 to be the intersection of all two-sided ideals in A
containing S. We call this the two-sided ideal generated by S. Exercise: show that all elements of
〈S〉 have the form a1s1b1 + . . .+ ansnbn for some n ≥ 0 and some ai, bi ∈ A, si ∈ S.

Example 4.5. A maximal left/right/two-sided ideal I ( A is an ideal properly contained in exactly one
other left/right/two-sided ideal (namely A itself). One can use Zorn’s lemma to show that every ideal is
contained in a maximal ideal. (Zorn’s lemma is only needed if A is infinite-dimensional.)

Assume I is two-sided ideal in an algebra A with I 6= A. Then the quotient vector space

A/I = {a+ I : a ∈ A}

where a+ I
def
= {a+ i : i ∈ I} is an algebra for the multiplication defined by

(a+ I)(b+ I) = ab+ I for a, b ∈ A.

The unit is 1 + I. There is something to check to make sure that the above multiplication is well-defined.
This is a standard exercise. The linear map π : A→ A/I with π(a) = a+ I is an algebra morphism.

Definition 4.6. If (ρV , V ) is a representation of A and W ⊂ V is a subrepresentations, then we define
the ρV/W : A→ End(V/W ) by the formula

ρV/W (a)(x+W ) = ρV (a)(x) +W for a ∈ A, x ∈ V.

Then (ρV/W , V/W ) is a representation of A, called the quotient representation.

If I ⊆ A is a left ideal, then A/I is a representation of A via this construction.

Equivalently, A/I is a left A-module for the action a · (b+ I)
def
= ab+ I for a, b ∈ A.

5 Generators and relations

Recall that K〈X1, . . . , Xn〉 is the free algebra of polynomials in noncommuting variables.
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If f1, . . . , fm ∈ K〈X1, . . . , Xn〉 then we can consider the quotient algebra

K〈X1, X2, . . . , Xn〉/〈{f1, f2, . . . , fm}〉,

which we often denote by writing

K〈X1, X2, . . . Xn | f1 = f2 = . . . fm = 0〉.

We think of the elements of this quotient are polynomials as usual, but we can replace expressions equal
to fi by zero.

Remark 5.1. Technically, if I = 〈{f1, f2, . . . , fm}〉 then elements of K〈X1, X2, . . . , Xn〉/I are cosets
of the form f + I. Usually we write things by dropping the “+I” part, even though this can make it
ambiguous whether f belongs to K〈X1, X2, . . . , Xn〉 or the quotient.

Example 5.2. The Weyl algebra is

K〈x, y | yx− xy − 1 = 0〉 = K〈x, y | yx− xy = 1〉.

In the Weyl algebra, we have yx = xy + 1 and xyx = x(xy + 1) = x2y + x = (yx− 1)x = yx2 − x.

Example 5.3. The q-Weyl algebra for a fixed nonzero element q ∈ K is

K
〈
x, x−1, y, y−1 | yx = qxy and xx−1 = x−1x = yy−1 = y−1y = 1

〉
.

The second set of relations ensures that x, x−1 and y, y−1 are inverses of each other.
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