MATH 5112 (Spring 2024) Lecture 2 (transcribed by TAI Sung Chit Huey)

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

Let K be a field, assumed to be algebraically closed unless noted otherwise. (E.g., K = C or IFT,)

Definition 1.1. An associative algebra (over K) is a K-vector space A with a bilinear map A x A — A,
written (a,b) — ab, that satisfies a(bc) = (ab)c for all a, b, c € A.

Definition 1.2. When we refer to an algebra, we will always mean an associative algebra that is nonzero
and has a unit element 1 satisfying la = al = a for all a € A.

This means that if A is an algebra then 0 # 1 in A. The zero vector space is not an algebra.

Definition 1.3. A morphism f: A — B of algebras (over K) is a K-linear map such that
o f(ab) = f(a)f(b) for a,b e A
° f(lA) =1p

We say f is an isomorphism if f is a bijection.

Example 1.4. If V is a vector space (over K), then End(V) e {linear maps V' — V} is an algebra,

where the product is composition pip2 def p1 0 p2, and the unit is idy : V = V.

Definition 1.5. A representation of an algebra A is a pair (p,V) where V is a K-vector space and
p:A— EndV is an algebra morphism.

Often we identify (p, V') with the left A-module structure on V' in which A acts by

a-vdéfp(a)(v) forae A,veV.

Definition 1.6. A morphism ¢ : (p1,V1) = (p2, V2) is a linear map ¢ : V1 — Vs such that ¢(p;(a)(v)) =
p2(a)(od(v)) for all a € A, v € V4. (Sometimes called an intertwining operator)

We say that ¢ is an isomorphism if ¢ is a bijection of vector spaces.

Definition 1.7. A subrepresentation of (p,V) is a subspace W C V with p(a)(W) C W for all a € A.

If W is a subrepresentation, then it makes sense to say that the pair (p, W) is a representation, where
we reinterpret p as a map A — End(W) by taking appropriate restrictions.

We say that (p, V) is irreducible if V' # 0 and there are no other subrepresentations except V' and 0.

Proposition 1.8 (Schur’s Lemma). Let ¢ : (p1,V1) = (p2, V2) be a morphism of representations.
(a) If both representations are irreducible then ¢ is an isomorphism.
(This holds even when K is not algebraically closed)

(b) If (p,V) = (p1,V1) = (p2,V2) and this representation is finite dimensional (dimV < oo) and
irreducible, and K is algebraically closed, then ¢ is a scalar map, so ¢ = X -idy for some A € K.

(¢) If K is algebraically closed and A is commutative (ab = ba for all a,b € A) then every irreducible
representation (p, V) has dimV = 1.
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Example 1.9 (Important counterexamples). Assume K = R is the field of real numbers, which not
algebraically closed. Then (b) and (c) can both fail, in the following way:

LetAdéf{[Z _ab}:a,beR}défV.

As R-algebras, A = C. Let p: A — End(V) = End(A) be the regular representation, i.e. p(y)(z) def yz.

Every 0 # z € A is invertible, so (p,V) is irreducible with (real) dimension 2. This “contradicts” (c)
above since A is commutative.

Define ¢ ([ Z _ab }) = [ _ab :Z }, which is multiplication by the matrix [ (1) _01 }

This is a morphism ¢ : (p,V) — (p, V) since A is commutative, but it is not a scalar map for the scalars
K =R, “contradicting” (b).

2 Indecomposable representations

Let A be an algebra over K, not necessarily algebraically closed. Suppose (p1,V1) and (p2,Va) are
representations of A. Then we can form the direct sum representation

def
(p1, V1) @ (p2, V2) = (p1 © p2, V1 @ Va),

where (p1 @ p2)(a)(vy + v2) def p1(a)(v1) + p2(a)(ve) for a € A, v; € V5 and vg € Vo, and V; & Vs is a
direct sum of vector spaces.
NOte that (plv ‘/1) @ (PQ; ‘/2) = (PQ; ‘/2) S2) (pla Vl)
Definition 2.1. A representation (p, V) is indecomposable if it is not isomorphic to (p1, V1) @ (p2, Va)
for any nonzero representations (p;, V;). This occurs if and only if (p,V) does not have two nonzero
subrepresentations Wy, Wy C V with V = W7 @ W5 as any internal direct sum.
Notation. If Wy, Wy C V' are subspaces then writing

(a) V=W e W,
is just an abbreviation for

(b) it holds that V = W1 + W2 and 0 = W1 N WQ.

In general, the direct sum W@ W, is some new vector space satisfying a universal property, with canonical
inclusions of W; and W5. When (b) holds, the ambient vector space V satisfies these conditions so can
be identified with W7 & Wh.

Note that irreducible = indecomposable, but not vice versa.

Example 2.2. Consider the (commutative) polynomial algebra A = K[z]. What are the irreducible
representations of A?

Choose a linear map L : V — V, where V is a vector space.

Define py, : K[z] — End(V) by formula such that
pr(f(x)) = f(L) <= pranz" + ...+ asx® + ayx +ag) = anL™ + ...+ axL? + ay L + aol.

Then (pr,, V) is a representation of K[z].
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Every representation of K[z] must arise via this construction because every algebra morphism A — B is
uniquely determined by the image of the variable x. It is possible that different choices of L might give
isomorphic representations (pr,, V'), however.

The representation (pr, V') is irreducible if and only if dim V' = 1 since K is algebraically closed and K|[x]
is commutative.

What are the indecomposable representations of K[x]?

Choose A € K and an integer n > 1. Define J) , : K™ — K™ to be the linear map with matrix

Al 0
A1
1
0 A
A1 0
For example, J) 3 = linear map with matrix | 0 X 1
0 0 X

Then (py, ,, k) is indecomposable (but not irreducible if n > 1), and every indecomposable representation
of K|[z] is isomorphic to one of these representation, by the uniqueness of Jordan canonical form.

Moreover, it holds that (ps, ., K™) = (ps,, .., K™ if and only if n = n/ and A = X,

These statements are not self-evident; their proofs requires a lot of linear algebra work.

3 Group Representations

Suppose G is a group. Given a vector space V', let GL(V') be the group of invertible linear maps V — V.
Definition 3.1. A group representation of G is a pair (p, V') where V is a vector space and p : G — GL(V)
is a group homomorphism.

Group representations are the same as representations of the corresponding group algebra.

Recall that the group algebra is K[G] = K-span{a, : g € G} where agap = agp.

We can turn any group representation (p, V') for G into a representation of K[G] by setting p(aq) = p(g)
and extending by linearity.

Conversely, if (p, V') representation of K[G] then every p(a,) € GL(V) for g € G is invertible and
g9~ plag) € GL(V)

is a group homomorphism G — GL(V). This holds since for every invertible a € A in any algebra, we
have p(a)p(a=t) = p(14) = idy for any representation (p, V).

4 Ideals in algebras

Let A be an algebra.

Definition 4.1. A left ideal in A is a subspace I C A with af e {ai:ielI} CIforallacA.
A right ideal in A is a subspace I C A with Ia C I for all a € A.
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A two-sided ideal in A is a subspace that is both a left and right ideal.
All three notions coincide if A is commutative.

Left ideals are the same as subrepresentations of the regular representation of A and right ideals are the
same as subrepresentations of the regular representation of A°P.

The subspaces 0 and A are always two-sided ideals. If these are the only two-sided ideals then A is simple.
Example 4.2. The algebra Mat,, «,, (K) is simple. To check this, we need to show that if I C Mat,,x, (K)
is a nonzero two-sided ideal then every n X n matrix is in /. If there is some elementary matrix Ej;;, € I,
then every other elementary matrix is obtained as Ey = E;jE;,Ei € I so any linear combination of
elementary matrices is in I, which means that every n x n matrix is in I. So it is enough to show that

I contains some elementary matrix. As I is nonzero, there is some 0 # M € I with some nonzero entry
M; # 0, and then we have Ej;, = ﬁEijEkk € I as needed.
J

Example 4.3. If ¢ : A — B is an algebra morphism then the kernel
def
kergp = {a € A: ¢(a) =0}

is a two-sided ideal. The kernel is always a subspace, and if ¢(a) = 0 then ¢(zay) = ¢(x)d(a)o(y) =0
for all z,y € A. Taking x = 1 shows that A is right ideal and taking y = 1 shows that A is a left ideal,
so it is a two-sided ideal.

Example 4.4. If S C A is any set, then we define (S) to be the intersection of all two-sided ideals in A
containing S. We call this the two-sided ideal generated by S. Exercise: show that all elements of
(S) have the form a;s1b1 + ...+ an8,b, for some n > 0 and some a;,b; € A, s; € S.

Example 4.5. A mazimal left/right /two-sided ideal I C A is an ideal properly contained in exactly one
other left/right /two-sided ideal (namely A itself). One can use Zorn’s lemma to show that every ideal is
contained in a maximal ideal. (Zorn’s lemma is only needed if A is infinite-dimensional.)

Assume I is two-sided ideal in an algebra A with I # A. Then the quotient vector space
A/l ={a+1:ac A}
where a + I % {a+1i:i€ I} is an algebra for the multiplication defined by
(a+D(b+1I)=ab+1 fora,be A

The unit is 14 I. There is something to check to make sure that the above multiplication is well-defined.
This is a standard exercise. The linear map 7 : A — A/I with 7(a) = a + I is an algebra morphism.

Definition 4.6. If (py,V) is a representation of A and W C V is a subrepresentations, then we define
the py/w : A — End(V/W) by the formula

pvyw(a)(x+W)=py(a)(x) + W forac A,z V.

Then (pV/W, V/W) is a representation of A, called the quotient representation.

If T C Ais a left ideal, then A/I is a representation of A via this construction.

Equivalently, A/I is a left A-module for the action a - (b + I) L ab+1 for a,b € A.

5 Generators and relations

Recall that K(X3,...,X,) is the free algebra of polynomials in noncommuting variables.
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If f1,..., fm € K(Xy,...,X,) then we can consider the quotient algebra

K<X1;X27'"7Xn>/<{f17f27"'af’m}>7
which we often denote by writing
K{X1,Xo,..Xpn | i=fo=...fm=0).

We think of the elements of this quotient are polynomials as usual, but we can replace expressions equal
to f; by zero.

Remark 5.1. Technically, if I = ({f1, fo,..., fm}) then elements of K(Xi,Xs,...,X,)/I are cosets
of the form f + I. Usually we write things by dropping the “+I” part, even though this can make it
ambiguous whether f belongs to K (X1, Xs,..., X,) or the quotient.

Example 5.2. The Weyl algebra is
Klx,y|yxr —ay—1=0)= K{z,y | yzr —azy =1).
In the Weyl algebra, we have yr = zy + 1 and zyr = x(zvy + 1) = 2%y + 2 = (yr — 1)a = ya® — 2.

Example 5.3. The ¢-Weyl algebra for a fixed nonzero element ¢ € K is

1 1

K <$,x_1,y,y_1 | yr = qry and zz™" = 2y = T T— y—ly - 1>.

The second set of relations ensures that z,2~! and y,y~! are inverses of each other.
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