This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

Let K be a field, assumed to be algebraically closed unless noted otherwise. (E.g., $K=\mathbb{C}$ or $\overline{\mathbb{F}_{p}}$)
Definition 1.1. An associative algebra (over K) is a K-vector space A with a bilinear map $A \times A \rightarrow A$, written $(a, b) \mapsto a b$, that satisfies $a(b c)=(a b) c$ for all $a, b, c \in A$.

Definition 1.2. When we refer to an algebra, we will always mean an associative algebra that is nonzero and has a unit element 1 satisfying $1 a=a 1=a$ for all $a \in A$.

This means that if A is an algebra then $0 \neq 1$ in A. The zero vector space is not an algebra.
Definition 1.3. A morphism $f: A \rightarrow B$ of algebras (over K) is a K-linear map such that

- $f(a b)=f(a) f(b)$ for $a, b \in A$
- $f\left(1_{A}\right)=1_{B}$

We say f is an isomorphism if f is a bijection.
Example 1.4. If V is a vector space (over K), then $\operatorname{End}(V) \stackrel{\text { def }}{=}\{\operatorname{linear}$ maps $V \rightarrow V\}$ is an algebra, where the product is composition $\rho_{1} \rho_{2} \stackrel{\text { def }}{=} \rho_{1} \circ \rho_{2}$, and the unit is id ${ }_{V}: V \rightarrow V$.

Definition 1.5. A representation of an algebra A is a pair (ρ, V) where V is a K-vector space and $\rho: A \rightarrow \operatorname{End} V$ is an algebra morphism.
Often we identify (ρ, V) with the left A-module structure on V in which A acts by

$$
a \cdot v \stackrel{\text { def }}{=} \rho(a)(v) \quad \text { for } a \in A, v \in V
$$

Definition 1.6. A morphism $\phi:\left(\rho_{1}, V_{1}\right) \rightarrow\left(\rho_{2}, V_{2}\right)$ is a linear map $\phi: V_{1} \rightarrow V_{2}$ such that $\phi\left(\rho_{1}(a)(v)\right)=$ $\rho_{2}(a)(\phi(v))$ for all $a \in A, v \in V_{1}$. (Sometimes called an intertwining operator)
We say that ϕ is an isomorphism if ϕ is a bijection of vector spaces.
Definition 1.7. A subrepresentation of (ρ, V) is a subspace $W \subseteq V$ with $\rho(a)(W) \subseteq W$ for all $a \in A$.
If W is a subrepresentation, then it makes sense to say that the pair (ρ, W) is a representation, where we reinterpret ρ as a map $A \rightarrow \operatorname{End}(W)$ by taking appropriate restrictions.
We say that (ρ, V) is irreducible if $V \neq 0$ and there are no other subrepresentations except V and 0 .
Proposition 1.8 (Schur's Lemma). Let $\phi:\left(\rho_{1}, V_{1}\right) \rightarrow\left(\rho_{2}, V_{2}\right)$ be a morphism of representations.
(a) If both representations are irreducible then ϕ is an isomorphism.
(This holds even when K is not algebraically closed)
(b) If $(\rho, V)=\left(\rho_{1}, V_{1}\right)=\left(\rho_{2}, V_{2}\right)$ and this representation is finite dimensional ($\operatorname{dim} V<\infty$) and irreducible, and K is algebraically closed, then ϕ is a scalar map, so $\phi=\lambda \cdot \mathrm{id}_{V}$ for some $\lambda \in K$.
(c) If K is algebraically closed and A is commutative $(a b=b a$ for all $a, b \in A)$ then every irreducible representation (ρ, V) has $\operatorname{dim} V=1$.

Example 1.9 (Important counterexamples). Assume $K=\mathbb{R}$ is the field of real numbers, which not algebraically closed. Then (b) and (c) can both fail, in the following way:
Let $A \stackrel{\text { def }}{=}\left\{\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]: a, b \in \mathbb{R}\right\} \stackrel{\text { def }}{=} V$.
As \mathbb{R}-algebras, $A \cong \mathbb{C}$. Let $\rho: A \rightarrow \operatorname{End}(V)=\operatorname{End}(A)$ be the regular representation, i.e. $\rho(y)(z) \stackrel{\text { def }}{=} y z$.
Every $0 \neq z \in A$ is invertible, so (ρ, V) is irreducible with (real) dimension 2. This "contradicts" (c) above since A is commutative.
Define $\phi\left(\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]\right)=\left[\begin{array}{cc}-b & -a \\ a & -b\end{array}\right]$, which is multiplication by the matrix $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
This is a morphism $\phi:(\rho, V) \rightarrow(\rho, V)$ since A is commutative, but it is not a scalar map for the scalars $K=\mathbb{R}$, "contradicting" (b).

2 Indecomposable representations

Let A be an algebra over K, not necessarily algebraically closed. Suppose $\left(\rho_{1}, V_{1}\right)$ and $\left(\rho_{2}, V_{2}\right)$ are representations of A. Then we can form the direct sum representation

$$
\left(\rho_{1}, V_{1}\right) \oplus\left(\rho_{2}, V_{2}\right) \stackrel{\text { def }}{=}\left(\rho_{1} \oplus \rho_{2}, V_{1} \oplus V_{2}\right)
$$

where $\left(\rho_{1} \oplus \rho_{2}\right)(a)\left(v_{1}+v_{2}\right) \stackrel{\text { def }}{=} \rho_{1}(a)\left(v_{1}\right)+\rho_{2}(a)\left(v_{2}\right)$ for $a \in A, v_{1} \in V_{1}$ and $v_{2} \in V_{2}$, and $V_{1} \oplus V_{2}$ is a direct sum of vector spaces.
Note that $\left(\rho_{1}, V_{1}\right) \oplus\left(\rho_{2}, V_{2}\right) \cong\left(\rho_{2}, V_{2}\right) \oplus\left(\rho_{1}, V_{1}\right)$.
Definition 2.1. A representation (ρ, V) is indecomposable if it is not isomorphic to $\left(\rho_{1}, V_{1}\right) \oplus\left(\rho_{2}, V_{2}\right)$ for any nonzero representations $\left(\rho_{i}, V_{i}\right)$. This occurs if and only if (ρ, V) does not have two nonzero subrepresentations $W_{1}, W_{2} \subset V$ with $V=W_{1} \oplus W_{2}$ as any internal direct sum.

Notation. If $W_{1}, W_{2} \subseteq V$ are subspaces then writing
(a) $V=W_{1} \oplus W_{2}$
is just an abbreviation for
(b) it holds that $V=W_{1}+W_{2}$ and $0=W_{1} \cap W_{2}$.

In general, the direct sum $W_{1} \oplus W_{2}$ is some new vector space satisfying a universal property, with canonical inclusions of W_{1} and W_{2}. When (b) holds, the ambient vector space V satisfies these conditions so can be identified with $W_{1} \oplus W_{2}$.
Note that irreducible \Longrightarrow indecomposable, but not vice versa.
Example 2.2. Consider the (commutative) polynomial algebra $A=K[x]$. What are the irreducible representations of A ?
Choose a linear map $L: V \rightarrow V$, where V is a vector space.
Define $\rho_{L}: K[x] \rightarrow \operatorname{End}(V)$ by formula such that

$$
\rho_{L}(f(x))=f(L) \Longleftrightarrow \rho_{L}\left(a_{n} x^{n}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}\right)=a_{n} L^{n}+\ldots+a_{2} L^{2}+a_{1} L+a_{0} I
$$

Then $\left(\rho_{L}, V\right)$ is a representation of $K[x]$.

Every representation of $K[x]$ must arise via this construction because every algebra morphism $A \rightarrow B$ is uniquely determined by the image of the variable x. It is possible that different choices of L might give isomorphic representations $\left(\rho_{L}, V\right)$, however.
The representation $\left(\rho_{L}, V\right)$ is irreducible if and only if $\operatorname{dim} V=1$ since K is algebraically closed and $K[x]$ is commutative.

What are the indecomposable representations of $K[x]$?
Choose $\lambda \in K$ and an integer $n \geq 1$. Define $J_{\lambda, n}: K^{n} \rightarrow K^{n}$ to be the linear map with matrix

$$
\left[\begin{array}{lllll}
\lambda & 1 & & & 0 \\
& \lambda & 1 & & \\
& & \ddots & \ddots & \\
& & & \ddots & 1 \\
0 & & & & \lambda
\end{array}\right]
$$

For example, $J_{\lambda, 3}=$ linear map with matrix $\left[\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right]$.
Then $\left(\rho_{J_{\lambda, n}, K^{n}}\right)$ is indecomposable (but not irreducible if $n>1$), and every indecomposable representation of $K[x]$ is isomorphic to one of these representation, by the uniqueness of Jordan canonical form.
Moreover, it holds that $\left(\rho_{J_{\lambda, n}}, K^{n}\right) \cong\left(\rho_{J_{\lambda^{\prime}, n^{\prime}}}, K^{n^{\prime}}\right)$ if and only if $n=n^{\prime}$ and $\lambda=\lambda^{\prime}$.
These statements are not self-evident; their proofs requires a lot of linear algebra work.

3 Group Representations

Suppose G is a group. Given a vector space V, let GL (V) be the group of invertible linear maps $V \rightarrow V$.
Definition 3.1. A group representation of G is a pair (ρ, V) where V is a vector space and $\rho: G \rightarrow \operatorname{GL}(V)$ is a group homomorphism.

Group representations are the same as representations of the corresponding group algebra.
Recall that the group algebra is $K[G]=K-\operatorname{span}\left\{a_{g}: g \in G\right\}$ where $a_{g} a_{h}=a_{g h}$.
We can turn any group representation (ρ, V) for G into a representation of $K[G]$ by setting $\rho\left(a_{g}\right)=\rho(g)$ and extending by linearity.
Conversely, if (ρ, V) representation of $K[G]$ then every $\rho\left(a_{g}\right) \in \mathrm{GL}(V)$ for $g \in G$ is invertible and

$$
g \mapsto \rho\left(a_{g}\right) \in \mathrm{GL}(V)
$$

is a group homomorphism $G \rightarrow \mathrm{GL}(V)$. This holds since for every invertible $a \in A$ in any algebra, we have $\rho(a) \rho\left(a^{-1}\right)=\rho\left(1_{A}\right)=\mathrm{id}_{V}$ for any representation (ρ, V).

4 Ideals in algebras

Let A be an algebra.
Definition 4.1. A left ideal in A is a subspace $I \subset A$ with $a I \stackrel{\text { def }}{=}\{a i: i \in I\} \subseteq I$ for all $a \in A$.
A right ideal in A is a subspace $I \subset A$ with $I a \subset I$ for all $a \in A$.

A two-sided ideal in A is a subspace that is both a left and right ideal.
All three notions coincide if A is commutative.
Left ideals are the same as subrepresentations of the regular representation of A and right ideals are the same as subrepresentations of the regular representation of A^{op}.
The subspaces 0 and A are always two-sided ideals. If these are the only two-sided ideals then A is simple.
Example 4.2. The algebra $\operatorname{Mat}_{n \times n}(K)$ is simple. To check this, we need to show that if $I \subseteq \operatorname{Mat}_{n \times n}(K)$ is a nonzero two-sided ideal then every $n \times n$ matrix is in I. If there is some elementary matrix $E_{j k} \in I$, then every other elementary matrix is obtained as $E_{i l}=E_{i j} E_{j k} E_{k l} \in I$ so any linear combination of elementary matrices is in I, which means that every $n \times n$ matrix is in I. So it is enough to show that I contains some elementary matrix. As I is nonzero, there is some $0 \neq M \in I$ with some nonzero entry $M_{j k} \neq 0$, and then we have $E_{j k}=\frac{1}{M_{j k}} E_{j j} M E_{k k} \in I$ as needed.

Example 4.3. If $\phi: A \rightarrow B$ is an algebra morphism then the kernel

$$
\operatorname{ker} \phi \stackrel{\text { def }}{=}\{a \in A: \phi(a)=0\}
$$

is a two-sided ideal. The kernel is always a subspace, and if $\phi(a)=0$ then $\phi(x a y)=\phi(x) \phi(a) \phi(y)=0$ for all $x, y \in A$. Taking $x=1$ shows that A is right ideal and taking $y=1$ shows that A is a left ideal, so it is a two-sided ideal.

Example 4.4. If $S \subset A$ is any set, then we define $\langle S\rangle$ to be the intersection of all two-sided ideals in A containing S. We call this the two-sided ideal generated by S. Exercise: show that all elements of $\langle S\rangle$ have the form $a_{1} s_{1} b_{1}+\ldots+a_{n} s_{n} b_{n}$ for some $n \geq 0$ and some $a_{i}, b_{i} \in A, s_{i} \in S$.

Example 4.5. A maximal left/right/two-sided ideal $I \subsetneq A$ is an ideal properly contained in exactly one other left/right/two-sided ideal (namely A itself). One can use Zorn's lemma to show that every ideal is contained in a maximal ideal. (Zorn's lemma is only needed if A is infinite-dimensional.)

Assume I is two-sided ideal in an algebra A with $I \neq A$. Then the quotient vector space

$$
A / I=\{a+I: a \in A\}
$$

where $a+I \stackrel{\text { def }}{=}\{a+i: i \in I\}$ is an algebra for the multiplication defined by

$$
(a+I)(b+I)=a b+I \quad \text { for } a, b \in A
$$

The unit is $1+I$. There is something to check to make sure that the above multiplication is well-defined. This is a standard exercise. The linear map $\pi: A \rightarrow A / I$ with $\pi(a)=a+I$ is an algebra morphism.

Definition 4.6. If $\left(\rho_{V}, V\right)$ is a representation of A and $W \subset V$ is a subrepresentations, then we define the $\rho_{V / W}: A \rightarrow \operatorname{End}(V / W)$ by the formula

$$
\rho_{V / W}(a)(x+W)=\rho_{V}(a)(x)+W \text { for } a \in A, x \in V
$$

Then $\left(\rho_{V / W}, V / W\right)$ is a representation of A, called the quotient representation.
If $I \subseteq A$ is a left ideal, then A / I is a representation of A via this construction.
Equivalently, A / I is a left A-module for the action $a \cdot(b+I) \stackrel{\text { def }}{=} a b+I$ for $a, b \in A$.

5 Generators and relations

Recall that $K\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is the free algebra of polynomials in noncommuting variables.

If $f_{1}, \ldots, f_{m} \in K\left\langle X_{1}, \ldots, X_{n}\right\rangle$ then we can consider the quotient algebra

$$
K\left\langle X_{1}, X_{2}, \ldots, X_{n}\right\rangle /\left\langle\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}\right\rangle
$$

which we often denote by writing

$$
K\left\langle X_{1}, X_{2}, \ldots X_{n} \mid f_{1}=f_{2}=\ldots f_{m}=0\right\rangle
$$

We think of the elements of this quotient are polynomials as usual, but we can replace expressions equal to f_{i} by zero.

Remark 5.1. Technically, if $I=\left\langle\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}\right\rangle$ then elements of $K\left\langle X_{1}, X_{2}, \ldots, X_{n}\right\rangle / I$ are cosets of the form $f+I$. Usually we write things by dropping the " $+I$ " part, even though this can make it ambiguous whether f belongs to $K\left\langle X_{1}, X_{2}, \ldots, X_{n}\right\rangle$ or the quotient.

Example 5.2. The Weyl algebra is

$$
K\langle x, y \mid y x-x y-1=0\rangle=K\langle x, y \mid y x-x y=1\rangle
$$

In the Weyl algebra, we have $y x=x y+1$ and $x y x=x(x y+1)=x^{2} y+x=(y x-1) x=y x^{2}-x$.
Example 5.3. The q-Weyl algebra for a fixed nonzero element $q \in K$ is

$$
\left.K\left\langle x, x^{-1}, y, y^{-1}\right| y x=q x y \text { and } x x^{-1}=x^{-1} x=y y^{-1}=y^{-1} y=1\right\rangle
$$

The second set of relations ensures that x, x^{-1} and y, y^{-1} are inverses of each other.

