
MATH 5112 (Spring 2024) Lecture 3 (transcribed by TAI Sung Chit Huey)

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

Let A be an algebra over a field K, which is algebraically closed unless otherwise noted.

Given two representations (ρ1, V1) and (ρ2, V2) of A, we can form the direct sum representation

(ρ1, V1)⊕ (ρ2, V2)
def
= (ρ1 ⊕ ρ2, V1 ⊕ V2)

where (ρ1 ⊕ ρ2)(a)(v1 + v2) = ρ1(a)(v1) + ρ2(a)(v2) for v1 ∈ V1, v2 ∈ V2, a ∈ A.

Definition 1.1. A representation (ρ, V ) for A is indecomposable if it is not isomorphic to any direct sum
(ρ1, V1)⊕ (ρ2, V2) with V1 6= 0 and V2 6= 0.

Clearly NOT indecomposable =⇒ NOT irreducible, since if (ρ, V ) ∼= (ρ1, V1)⊕(ρ2, V2) then each (ρi, Vi)
corresponds to a subrepresentation.

Taking contrapositives, this means that irreducible =⇒ indecomposable, but not vice versa.

Definition 1.2. A representation (ρ, V ) is semisimple or completely reducible if we have

(ρ, V ) ∼=
⊕
i∈I

(ρi, Vi)

where each (ρi, Vi) is irreducible.

Given any subspace I ⊆ A, let A/I = {a+ I : a ∈ A} be the vector space quotient.

A subspace I is a left/right/two-sided ideal in A if AI ⊂ I or IA ⊂ I or AIA ⊂ I, respectively.

If I is a proper two-sided ideal then A/I is an algebra, with product (a+ I)(b+ I) = ab+ I for a, b ∈ A.

(Note that if I = A then I is a two-sided ideal but A/I = 0, which we do not consider to be an algebra.)

If I is a left/right ideal then A/I is naturally a left/right A-module.

If (ρ, V ) is an A-representation and W ⊂ V is a subrepresentation, then we can form a quotient repre-
sentation (ρ, V/W ) by interpreting ρ : A→ EndV as a map A→ End(V/W ) via formula

ρ(a)(v +W ) = ρ(a)(v) +W for v ∈ V .

Remark 1.3 (Issues with quotients). One must check that formulas involving cosets x+ S (where x is
an element and S is a set) give the same result if we replace x by any y such that x+S = y+S. Usually
what needs to be checked is routine, but we tend to omit the details.

Quotient algebras are useful since they let us define algebras by generators and relations.

Example 1.4. The Weyl algebra is

A = 〈x, y | yx− xy = 1〉.

This means that A is the quotient of free algebra K〈x, y〉 by the two sided ideal

〈yx− xy − 1〉 def= {intersection of all two-sided ideals containing yx− xy − 1}.
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To save space, we write f(x, y) instead of f(x, y) + 〈yx− xy − 1〉 to denote elements of A.

It often hard to say concretely what an ideal like 〈yx − xy − 1〉 is explicitly, and to classify precisely
which expressions in 〈x, y〉 become zero in the quotient. In practice, taking quotients means we can make
substitutions like yx = xy + 1 in polynomial expressions.

The relations in an algebra defined by generators and relations provide an algorithm for transforming a
given expression to others that are equal in the algebra. In principle, an exhaustive search using this
algorithm can tell you if two expressions are equal, but this search might not terminate.

2 Weyl algebra

Things work out nicely for the Weyl algebra A = K〈x, y | yx = xy + 1〉.

Proposition 2.1. A basis for the Weyl algebra is {xiyj : i, j ≥ 0}.

Proof. It is easy to see that the set spans algebra, since

xi1yj1xi2yj2 . . . xikyjk = xi1+i2+...+ikyj1+j2+...+jk + (lower degree terms)

via repeated substitutions yx = xy + 1.

To show linear independence, assume char(K) = 0.

(The argument when char(K) > 0 is similar but not as elegant; see the textbook for details.)

Consider the polynomial ring K[z]. For f ∈ K[z], define x · f = zf and y · f = df
dz .

There is a unique left A-module structure on K[z] with these formulas, because

y · (x · f) = y · (zf) =
d

dz
(zf) = f + z

df

dz
= f + x · (y · f),

which is equivalent to yx = xy + 1.

Now suppose cij ∈ K are such that
∑
i,j

cijx
iyj = 0 in A.

Let L =
∑
i,j

cijz
i

(
d

dz

)j
be a differential operator on K[z]. Then

L(f) =

∑
i,j

cijx
iyj

 · f = 0 for all f ∈ K[z].

But we can write L =
∑r
j=0Qj(z)

(
d
dz

)j
for some polynomials Qj(z) ∈ K[z].

Now observe that
L(1) = Q0(z) = 0

L(z) = Q0(z)z +Q1(z) = Q1(z) = 0

L(z2) = Q0(z)z2 +Q1(z)z +Q2(z) = Q2(z) = 0

...

Thus we have Q0 = Q1 = . . . = Qr = 0 =⇒ cij = 0 for every i, j, which proves that elements xiyj must
be linearly independent.
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Example 2.2. The q-Weyl algebra is

A = K〈x, x−1, y, y−1 | yx = qxy, xx−1 = x−1x = 1, yy−1y−1y = 1〉.

Here, q ∈ K is a fixed nonzero element.

We require q to be nonzero, since if q = 0 then x = y = 0 so A = 0:

yx = 0 =⇒ y−1yx = x = 0 and yxx−1 = y = 0.

Proposition 2.3. If q 6= 0, then a basis for the q-Weyl algebra is {xiyj : i, j ∈ Z}

Proof. The argument to show that give elements span the algebra is similar to the Weyl algebra case.

For linear independence, see the textbook.

3 Quiver representations

Quivers are another source of algebra representations.

Definition 3.1. A quiver Q = (I, E) is a directed graph with self-loops and multiple edges allowed.

Here, I is the set of vertices in Q and E is the multi-set of directed edges i→ j.

(A multi-set is, informally, a set allowing repeated elements. This can be viewed formally as a map from
an arbitrary set to the set of positive integers {1, 2, 3, . . . }.)

Example 3.2. We draw the quiver Q = ({a, b, c, d}, {a→ b, c→ b, d→ b}) as

a b c

d

Example 3.3. The quiver Q = (I, E), where I = {1, 2, 3, 4, 5} and

E = {1→ 1, 1→ 2, 1→ 2, 2→ 1, 1→ 4, 3→ 5},

can be drawn as

1 2

3 4

5

Definition 3.4. A representation (V∗, ρ∗) of a quiver Q = (I, E) is an assignment of a vector space Vi
for each i ∈ I and a linear map ρij : Vi → Vj for each edge i→ j in E.

Why is this relevant? Quiver representations are natural to consider because they contain the same data
as an arbitrary diagram of linear maps between vector spaces. Moreover, there is a related path algebra
whose algebra representations are in bijection with quiver representations.
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Definition 3.5. The path algebra PathQ of a quiver Q = (I, E) is the K-vector space with a basis given
by all directed paths in Q, including trivial paths pi for each i ∈ I, with multiplication of paths given by

(i0 → ı1 → . . .→ in) · (j0 → j1 → . . .→ jm)
def
=

{
j0 → j1 → . . .→ jm → i1 → i2 . . . in if jm = i0

0 if jm 6= i0

If Q has a finite set of vertices, then the element
∑
i∈I

pi is the unit in PathQ.

We can translate between representations of Q and PathQ:

(1) Suppose (ρ, V ) is a representation of PathQ.

Define a representation of Q by setting Vi = ρ(pi)(V ) for i ∈ I and

ρij = ρ(i→ j)|Vi : Vi → Vj

for edges i→ j in E.

The definition of ρij makes sense as a map Vi → Vj since

ρ(i→ j)(Vi) = ρ(i→ j) ◦ ρ(pi)(V ) = ρ(i→ j · pi)(V ) = ρ(i→ j)(V )

= ρ(pj · i→ j)(V ) = ρ(pj) ◦ ρ(i→ j)(V ) ⊂ ρ(pj)(V ) = Vj .

(2) Suppose (V∗, ρ∗) is a quiver representation of Q. Form a representation of PathQ by setting

V =
⊕
i∈I

Vi

and let ρ(i0 → i1 → . . . im) be the unique linear map V → V that sends{
Vj = Vi0

ρi0i1−−−→ Vi1
ρi1i2−−−→ . . .

ρim−1im−−−−−−→ Vim if i0 = j

Vj → 0 if i0 6= j.

In particular, ρ(pi) is the projection V → Vi. Then (ρ, V ) is a representation of PathQ.

The operations (1) and (2) are inverses of each other.

We have notions of direct sums, subrepresentations, irreducibility , indecomposability and morphisms for
quiver representations. The definitions are similar to the algebra representation case. See the textbook
for precise formulations.

4 Lie algebra representations

Lie algebras are another sources of “representations” that can be viewed as a special case of algebra
representations. Despite the name, Lie algebras are not “algebras” according to our definition, since
their products are not associative. Here is the actual definition:

Let g be a vector space over K.

Assume [·, ·] : g× g→ g is a bilinear map satisfying [a, a] = 0 for all a ∈ g.

This property implies that [a, b] = −[b, a] for all a, b ∈ g, since

0 = [a+ b, a+ b] = [a, a+ b] + [b, a+ b] = [a, a] + [a, b] + [b, a] + [b, b] = [a, b] + [b, a].
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Definition 4.1. We say that g is a Lie algebra relative to the bracket [·, ·] if the Jacobi identity holds:

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0 for all a, b, c ∈ g.

Example 4.2. If A is any associative algebra, then [a, b]
def
= ab− ba makes A into a Lie algebra.

Example 4.3. Let Der(A) be a vector space of linear maps D : A → A (for an algebra A) satisfying
D(ab) = aD(b) +D(a)b. This is a Lie algebra for the bracket [D1, D2] = D1 ◦D2 −D2 ◦D1.

Example 4.4. If V is any vector space then we write gl(V ) for the general linear Lie algebra obtained
by giving the vector space End(V ) the bracket [f, g] = f ◦ g− g ◦ f . This is a special case of Example 4.2.

A Lie subalgebra of a Lie algebra is a subspace closed under the bracket.

Theorem 4.5 (Ado’s Theorem). If g is a finite-dimensional Lie algebra, then g is a Lie subalgebra of
gl(V ) for some finite dimensional vector space V .

Definition 4.6. A morphism of Lie algebras is a linear map φ : g1 → g2 such that

φ([a, b]) = [φ(a), φ(b)] for all a, b ∈ g.

Definition 4.7. A representation of a Lie algebra g is a pair (ρ, V ) where V is a vector space and
ρ : g→ gl(V ) is a Lie algebra morphism.

Example 4.8. The adjoint representation of g is (ρ, g) where ρ(a)(b) = [a, b] for a, b ∈ g.

For any Lie algebra g, there is a related algebra, called the universal enveloping algebra U(g), such
that there is a bijective correspondence between the Lie algebra representations of g and the algebra
representations of U(g).

If g has a basis {xi}i∈I and ckij ∈ K are the coefficients such that [xi, xj ] =
∑
k c

k
ijxk for each i, j ∈ I,

then U(g) may be defined via generators and relations as the quotient algebra

U(g) = K

〈
xi for i ∈ I | xixj − xjxi =

∑
k

ckijxk for all i, j ∈ I

〉
.
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