This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

Let A be an algebra over a field K, which is algebraically closed unless otherwise noted.
Given two representations $\left(\rho_{1}, V_{1}\right)$ and $\left(\rho_{2}, V_{2}\right)$ of A, we can form the direct sum representation

$$
\left(\rho_{1}, V_{1}\right) \oplus\left(\rho_{2}, V_{2}\right) \stackrel{\text { def }}{=}\left(\rho_{1} \oplus \rho_{2}, V_{1} \oplus V_{2}\right)
$$

where $\left(\rho_{1} \oplus \rho_{2}\right)(a)\left(v_{1}+v_{2}\right)=\rho_{1}(a)\left(v_{1}\right)+\rho_{2}(a)\left(v_{2}\right)$ for $v_{1} \in V_{1}, v_{2} \in V_{2}, a \in A$.
Definition 1.1. A representation (ρ, V) for A is indecomposable if it is not isomorphic to any direct sum $\left(\rho_{1}, V_{1}\right) \oplus\left(\rho_{2}, V_{2}\right)$ with $V_{1} \neq 0$ and $V_{2} \neq 0$.
Clearly NOT indecomposable \Longrightarrow NOT irreducible, since if $(\rho, V) \cong\left(\rho_{1}, V_{1}\right) \oplus\left(\rho_{2}, V_{2}\right)$ then each $\left(\rho_{i}, V_{i}\right)$ corresponds to a subrepresentation.
Taking contrapositives, this means that irreducible \Longrightarrow indecomposable, but not vice versa.
Definition 1.2. A representation (ρ, V) is semisimple or completely reducible if we have

$$
(\rho, V) \cong \bigoplus_{i \in I}\left(\rho_{i}, V_{i}\right)
$$

where each $\left(\rho_{i}, V_{i}\right)$ is irreducible.
Given any subspace $I \subseteq A$, let $A / I=\{a+I: a \in A\}$ be the vector space quotient.
A subspace I is a left/right/two-sided ideal in A if $A I \subset I$ or $I A \subset I$ or $A I A \subset I$, respectively.
If I is a proper two-sided ideal then A / I is an algebra, with product $(a+I)(b+I)=a b+I$ for $a, b \in A$.
(Note that if $I=A$ then I is a two-sided ideal but $A / I=0$, which we do not consider to be an algebra.) If I is a left/right ideal then A / I is naturally a left/right A-module.

If (ρ, V) is an A-representation and $W \subset V$ is a subrepresentation, then we can form a quotient representation $(\rho, V / W)$ by interpreting $\rho: A \rightarrow \operatorname{End} V$ as a map $A \rightarrow \operatorname{End}(V / W)$ via formula

$$
\rho(a)(v+W)=\rho(a)(v)+W \quad \text { for } v \in V
$$

Remark 1.3 (Issues with quotients). One must check that formulas involving cosets $x+S$ (where x is an element and S is a set) give the same result if we replace x by any y such that $x+S=y+S$. Usually what needs to be checked is routine, but we tend to omit the details.
Quotient algebras are useful since they let us define algebras by generators and relations.
Example 1.4. The Weyl algebra is

$$
A=\langle x, y \mid y x-x y=1\rangle
$$

This means that A is the quotient of free algebra $K\langle x, y\rangle$ by the two sided ideal

$$
\langle y x-x y-1\rangle \stackrel{\text { def }}{=}\{\text { intersection of all two-sided ideals containing } y x-x y-1\}
$$

To save space, we write $f(x, y)$ instead of $f(x, y)+\langle y x-x y-1\rangle$ to denote elements of A.
It often hard to say concretely what an ideal like $\langle y x-x y-1\rangle$ is explicitly, and to classify precisely which expressions in $\langle x, y\rangle$ become zero in the quotient. In practice, taking quotients means we can make substitutions like $y x=x y+1$ in polynomial expressions.
The relations in an algebra defined by generators and relations provide an algorithm for transforming a given expression to others that are equal in the algebra. In principle, an exhaustive search using this algorithm can tell you if two expressions are equal, but this search might not terminate.

2 Weyl algebra

Things work out nicely for the Weyl algebra $A=K\langle x, y \mid y x=x y+1\rangle$.
Proposition 2.1. A basis for the Weyl algebra is $\left\{x^{i} y^{j}: i, j \geq 0\right\}$.
Proof. It is easy to see that the set spans algebra, since

$$
x^{i_{1}} y^{j_{1}} x^{i_{2}} y^{j_{2}} \ldots x^{i_{k}} y^{j_{k}}=x^{i_{1}+i_{2}+\ldots+i_{k}} y^{j_{1}+j_{2}+\ldots+j_{k}}+\text { (lower degree terms) }
$$

via repeated substitutions $y x=x y+1$.
To show linear independence, assume $\operatorname{char}(K)=0$.
(The argument when $\operatorname{char}(K)>0$ is similar but not as elegant; see the textbook for details.)
Consider the polynomial ring $K[z]$. For $f \in K[z]$, define $x \cdot f=z f$ and $y \cdot f=\frac{d f}{d z}$.
There is a unique left A-module structure on $K[z]$ with these formulas, because

$$
y \cdot(x \cdot f)=y \cdot(z f)=\frac{d}{d z}(z f)=f+z \frac{d f}{d z}=f+x \cdot(y \cdot f)
$$

which is equivalent to $y x=x y+1$.
Now suppose $c_{i j} \in K$ are such that $\sum_{i, j} c_{i j} x^{i} y^{j}=0$ in A.
Let $L=\sum_{i, j} c_{i j} z^{i}\left(\frac{d}{d z}\right)^{j}$ be a differential operator on $K[z]$. Then

$$
L(f)=\left(\sum_{i, j} c_{i j} x^{i} y^{j}\right) \cdot f=0 \text { for all } f \in K[z]
$$

But we can write $L=\sum_{j=0}^{r} Q_{j}(z)\left(\frac{d}{d z}\right)^{j}$ for some polynomials $Q_{j}(z) \in K[z]$.
Now observe that

$$
\begin{aligned}
& L(1)=Q_{0}(z)=0 \\
& L(z)=Q_{0}(z) z+Q_{1}(z)=Q_{1}(z)=0 \\
& L\left(z^{2}\right)=Q_{0}(z) z^{2}+Q_{1}(z) z+Q_{2}(z)=Q_{2}(z)=0
\end{aligned}
$$

Thus we have $Q_{0}=Q_{1}=\ldots=Q_{r}=0 \Longrightarrow c_{i j}=0$ for every i, j, which proves that elements $x^{i} y^{j}$ must be linearly independent.

Example 2.2. The q-Weyl algebra is

$$
A=K\left\langle x, x^{-1}, y, y^{-1} \mid y x=q x y, x x^{-1}=x^{-1} x=1, y y^{-1} y^{-1} y=1\right\rangle
$$

Here, $q \in K$ is a fixed nonzero element.

We require q to be nonzero, since if $q=0$ then $x=y=0$ so $A=0$:

$$
y x=0 \Longrightarrow y^{-1} y x=x=0 \text { and } y x x^{-1}=y=0
$$

Proposition 2.3. If $q \neq 0$, then a basis for the q-Weyl algebra is $\left\{x^{i} y^{j}: i, j \in \mathbb{Z}\right\}$
Proof. The argument to show that give elements span the algebra is similar to the Weyl algebra case.
For linear independence, see the textbook.

3 Quiver representations

Quivers are another source of algebra representations.
Definition 3.1. A quiver $Q=(I, E)$ is a directed graph with self-loops and multiple edges allowed.
Here, I is the set of vertices in Q and E is the multi-set of directed edges $i \rightarrow j$.
(A multi-set is, informally, a set allowing repeated elements. This can be viewed formally as a map from an arbitrary set to the set of positive integers $\{1,2,3, \ldots\}$.)

Example 3.2. We draw the quiver $Q=(\{a, b, c, d\},\{a \rightarrow b, c \rightarrow b, d \rightarrow b\})$ as

Example 3.3. The quiver $Q=(I, E)$, where $I=\{1,2,3,4,5\}$ and

$$
E=\{1 \rightarrow 1,1 \rightarrow 2,1 \rightarrow 2,2 \rightarrow 1,1 \rightarrow 4,3 \rightarrow 5\}
$$

can be drawn as

Definition 3.4. A representation $\left(V_{*}, \rho_{*}\right)$ of a quiver $Q=(I, E)$ is an assignment of a vector space V_{i} for each $i \in I$ and a linear map $\rho_{i j}: V_{i} \rightarrow V_{j}$ for each edge $i \rightarrow j$ in E.
Why is this relevant? Quiver representations are natural to consider because they contain the same data as an arbitrary diagram of linear maps between vector spaces. Moreover, there is a related path algebra whose algebra representations are in bijection with quiver representations.

Definition 3.5. The path algebra Path $_{Q}$ of a quiver $Q=(I, E)$ is the K-vector space with a basis given by all directed paths in Q, including trivial paths p_{i} for each $i \in I$, with multiplication of paths given by

$$
\left(i_{0} \rightarrow 1_{1} \rightarrow \ldots \rightarrow i_{n}\right) \cdot\left(j_{0} \rightarrow j_{1} \rightarrow \ldots \rightarrow j_{m}\right) \stackrel{\text { def }}{=} \begin{cases}j_{0} \rightarrow j_{1} \rightarrow \ldots \rightarrow j_{m} \rightarrow i_{1} \rightarrow i_{2} \ldots i_{n} & \text { if } j_{m}=i_{0} \\ 0 & \text { if } j_{m} \neq i_{0}\end{cases}
$$

If Q has a finite set of vertices, then the element $\sum_{i \in I} p_{i}$ is the unit in Path ${ }_{Q}$.

We can translate between representations of Q and Path $_{Q}$:
(1) Suppose (ρ, V) is a representation of Path_{Q}.

Define a representation of Q by setting $V_{i}=\rho\left(p_{i}\right)(V)$ for $i \in I$ and

$$
\rho_{i j}=\left.\rho(i \rightarrow j)\right|_{V_{i}}: V_{i} \rightarrow V_{j}
$$

for edges $i \rightarrow j$ in E.
The definition of $\rho_{i j}$ makes sense as a map $V_{i} \rightarrow V_{j}$ since

$$
\begin{aligned}
\rho(i \rightarrow j)\left(V_{i}\right) & =\rho(i \rightarrow j) \circ \rho\left(p_{i}\right)(V)=\rho\left(i \rightarrow j \cdot p_{i}\right)(V)=\rho(i \rightarrow j)(V) \\
& =\rho\left(p_{j} \cdot i \rightarrow j\right)(V)=\rho\left(p_{j}\right) \circ \rho(i \rightarrow j)(V) \subset \rho\left(p_{j}\right)(V)=V_{j} .
\end{aligned}
$$

(2) Suppose $\left(V_{*}, \rho_{*}\right)$ is a quiver representation of Q. Form a representation of Path ${ }_{Q}$ by setting

$$
V=\bigoplus_{i \in I} V_{i}
$$

and let $\rho\left(i_{0} \rightarrow i_{1} \rightarrow \ldots i_{m}\right)$ be the unique linear map $V \rightarrow V$ that sends

$$
\begin{cases}V_{j}=V_{i_{0}} \xrightarrow{\rho_{i_{0} i_{1}}} V_{i_{1}} \xrightarrow{\rho_{i_{1} i_{2}}} \ldots \xrightarrow{\rho_{i_{m-1} i_{m}}} V_{i_{m}} & \text { if } i_{0}=j \\ V_{j} \rightarrow 0 & \text { if } i_{0} \neq j\end{cases}
$$

In particular, $\rho\left(p_{i}\right)$ is the projection $V \rightarrow V_{i}$. Then (ρ, V) is a representation of Path_{Q}.
The operations (1) and (2) are inverses of each other.
We have notions of direct sums, subrepresentations, irreducibility, indecomposability and morphisms for quiver representations. The definitions are similar to the algebra representation case. See the textbook for precise formulations.

4 Lie algebra representations

Lie algebras are another sources of "representations" that can be viewed as a special case of algebra representations. Despite the name, Lie algebras are not "algebras" according to our definition, since their products are not associative. Here is the actual definition:
Let \mathfrak{g} be a vector space over K.
Assume $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ is a bilinear map satisfying $[a, a]=0$ for all $a \in \mathfrak{g}$.
This property implies that $[a, b]=-[b, a]$ for all $a, b \in \mathfrak{g}$, since

$$
0=[a+b, a+b]=[a, a+b]+[b, a+b]=[a, a]+[a, b]+[b, a]+[b, b]=[a, b]+[b, a]
$$

Definition 4.1. We say that \mathfrak{g} is a Lie algebra relative to the bracket $[\cdot, \cdot]$ if the Jacobi identity holds:

$$
[[a, b], c]+[[b, c], a]+[[c, a], b]=0 \text { for all } a, b, c \in \mathfrak{g}
$$

Example 4.2. If A is any associative algebra, then $[a, b] \stackrel{\text { def }}{=} a b-b a$ makes A into a Lie algebra.
Example 4.3. Let $\operatorname{Der}(A)$ be a vector space of linear maps $D: A \rightarrow A$ (for an algebra A) satisfying $D(a b)=a D(b)+D(a) b$. This is a Lie algebra for the bracket $\left[D_{1}, D_{2}\right]=D_{1} \circ D_{2}-D_{2} \circ D_{1}$.

Example 4.4. If V is any vector space then we write $\mathfrak{g l}(V)$ for the general linear Lie algebra obtained by giving the vector space $\operatorname{End}(V)$ the bracket $[f, g]=f \circ g-g \circ f$. This is a special case of Example 4.2.

A Lie subalgebra of a Lie algebra is a subspace closed under the bracket.
Theorem 4.5 (Ado's Theorem). If \mathfrak{g} is a finite-dimensional Lie algebra, then \mathfrak{g} is a Lie subalgebra of $\mathfrak{g l}(V)$ for some finite dimensional vector space V.

Definition 4.6. A morphism of Lie algebras is a linear map $\phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ such that

$$
\phi([a, b])=[\phi(a), \phi(b)] \text { for all } a, b \in \mathfrak{g} .
$$

Definition 4.7. A representation of a Lie algebra \mathfrak{g} is a pair (ρ, V) where V is a vector space and $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ is a Lie algebra morphism.

Example 4.8. The adjoint representation of \mathfrak{g} is (ρ, \mathfrak{g}) where $\rho(a)(b)=[a, b]$ for $a, b \in \mathfrak{g}$.

For any Lie algebra \mathfrak{g}, there is a related algebra, called the universal enveloping algebra $\mathfrak{U}(\mathfrak{g})$, such that there is a bijective correspondence between the Lie algebra representations of \mathfrak{g} and the algebra representations of $\mathfrak{U}(\mathfrak{g})$.
If \mathfrak{g} has a basis $\left\{x_{i}\right\}_{i \in I}$ and $c_{i j}^{k} \in K$ are the coefficients such that $\left[x_{i}, x_{j}\right]=\sum_{k} c_{i j}^{k} x_{k}$ for each $i, j \in I$, then $\mathfrak{U}(\mathfrak{g})$ may be defined via generators and relations as the quotient algebra

$$
\left.\mathfrak{U}(\mathfrak{g})=K\left\langle x_{i} \text { for } i \in I\right| x_{i} x_{j}-x_{j} x_{i}=\sum_{k} c_{i j}^{k} x_{k} \text { for all } i, j \in I\right\rangle
$$

