This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

In the previous lecture we introduced two more sources of representations in representation theory:

- Quivers $Q=(I, E)$, which are directed graphs with vertices I and edges E, with self-loops and multiple edges allowed. A quiver representation $\left(V_{\bullet}, \rho_{\bullet}\right)$ consists of the following data:

1. For each vertex $i \in I$, we assign a vector space V_{i}.
2. For each (directed) edge $i \rightarrow j$, we assign a linear map $\rho_{i j}: V_{i} \rightarrow V_{j}$.

There is a bijection between quiver representations of Q and algebra representations of its associated path algebra, which is unital when I is finite.

- Lie algebras $(\mathfrak{g},[\cdot, \cdot])$, which consist of a K-vector space \mathfrak{g} and bilinear map $[\cdot, \cdot]$ called the Lie bracket satisfying:

1. Anticommutativity: $[x, x]=0$ for all $x \in \mathfrak{g}$, which implies $[x, y]=-[y, x]$ for all $x, y \in \mathfrak{g}$.
2. Jacobi identity: We have $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0 \forall x, y, z \in \mathfrak{g}$.

Despite the name, a Lie algebra is not technically an algebra, at least how we have defined it, since when we say "algebra" we implicitly assume associativity and the existence of a unit element, but the Lie bracket for a Lie algebra usually has neither property.

A Lie algebra representation is a pair (V, ρ) such that

1. V is a vector space over the same ground field K as \mathfrak{g}.
2. $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ is Lie algebra morphism, meaning a linear map preserving the relevant Lie brackets. Here $\mathfrak{g l}(V)$ is the set of all linear maps $V \rightarrow V$ (so the same vector space as $\operatorname{End}(V)$) but viewed as a Lie algebra with bracket

$$
\left[L_{1}, L_{2}\right]=L_{1} \circ L_{2}-L_{2} \circ L_{1}, \forall L_{1}, L_{2} \in \mathfrak{g l}(V)
$$

There exists a bijection between Lie algebra representation of \mathfrak{g} and algebra representations of $U(\mathfrak{g})$, its universal enveloping algebra of \mathfrak{g} (which will be given a second definition later today).

2 Tensor products of vector spaces

Let V and W be two K-vector spaces. Their direct product is simply the set of pairs

$$
V \times W=\{(v, w): v \in w, b \in W\}
$$

This object is just a set, not a vector space. Define the free product $V * W$ to be the K-vector space with $V \times W$ as a basis. Each element of $V * W$ is a finite linear combination of pairs $(v, w) \in V \times W$.

One way to define the tensor product of V and W is as the quotient vector space

$$
V \otimes W \stackrel{\text { def }}{=}(V * W) / \mathcal{I}_{V, W}
$$

where $\mathcal{I}_{V, W}$ is the subspace spanned by all elements of the form

- $\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right)$,
- $\left(v, w_{1}+w_{2}\right)-\left(v, w_{1}\right)-\left(v, w_{2}\right)$,
- $(a v, w)-a(v, w)$, or
- $(v, a w)-a(v, w)$,
for any $a \in K, v_{1}, v_{2}, v \in V$, and $w_{1}, w_{2}, w \in W$.
If $x \in V$ and $y \in W$, then we write $x \otimes y \in V \otimes W$ for the image of the pair $(x, y) \in V \times W \subset V * W$ under the quotient map $V * W \rightarrow V \otimes W$. This means that

$$
x \otimes y \stackrel{\text { def }}{=}(x, y)+\mathcal{I}_{V, W}
$$

if we view elements of a vector space quotient a cosets of a subspace.
We refer to $x \otimes y$ as a pure tensor. Not all elements of $V \otimes W$ are pure tensors, but every element is a finite linear combination of pure tensors.
We can manipulate pure tensors without changing their value in $V \otimes W$ using the following identities:
$\left(v_{1}+v_{2}\right) \otimes w=v_{1} \otimes w+v_{2} \otimes w, \quad v \otimes\left(w_{1}+w_{2}\right)=v \otimes w_{1}+v \otimes w_{2}, \quad(c v) \otimes w=c(v \otimes w)=v \otimes(c w)$
for $v_{1}, v_{2}, v \in V, w_{1}, w_{2}, w \in W$, and $c \in K$.
These equations hold because the differences between the two sides belong to the subspace $\mathcal{I}_{V, W}$.
This means that we can have $x \otimes y=x^{\prime} \otimes y^{\prime}$ when $x \neq x^{\prime}$ and $y \neq y^{\prime}$.
A simple example is when $x^{\prime}=-x \in V$ and $y^{\prime}=-y \in W$.

Exercise 2.1 (Important to do once). If $\left\{v_{i}: i \in I\right\}$ is a basis of V and $\left\{w_{j}: j \in J\right\}$ is a basis of W then the set of pure tensors $\left\{v_{i} \otimes w_{j}:(i, j) \in I \times J\right\}$ is a basis of $V \otimes W$.

Exercise 2.2. If U, V, and W are K-vector spaces, then there is a unique isomorphism

$$
(U \otimes V) \otimes W \xrightarrow{\sim} U \otimes(V \otimes W)
$$

that sends $u \otimes(v \otimes w) \mapsto(u \otimes v) \otimes w$ for each $u \in U, v \in V$, and $w \in W$.
As a result of this exercise, there is a canonical isomorphism between any way of forming the tensor product between a finite sequence of vector spaces (n principle, each way requires us to choose a parenthesization of the factors, since we can only tensor two spaces at a time). For example:
$V_{1} \otimes\left(\left(V_{2} \otimes V_{3}\right) \otimes V_{4}\right) \cong V_{1} \otimes\left(V_{2} \otimes\left(V_{3} \otimes V_{4}\right)\right) \cong\left(V_{1} \otimes V_{2}\right) \otimes\left(V_{3} \otimes V_{4}\right) \cong\left(\left(V_{1} \otimes V_{2}\right) \otimes V_{3}\right) \otimes V_{4} \cong\left(V_{1} \otimes\left(V_{2} \otimes V_{3}\right)\right) \otimes V_{4}$.
In view of this, we will ignore the issue of parenthesization and just define

$$
V^{\otimes 0} \stackrel{\text { def }}{=} K \quad \text { and } \quad V^{\otimes n} \stackrel{\text { def }}{=} V \otimes \cdots \otimes V(n \text { factors }) .
$$

3 Tensor products of linear maps

If $f \in \operatorname{Hom}\left(V, V^{\prime}\right)$ and $g \in \operatorname{Hom}\left(W, W^{\prime}\right)$ are two linear maps then their tensor product is the unique linear map $f \otimes g: V \otimes W \rightarrow V^{\prime} \otimes W^{\prime}$ that acts on pure tensors as

$$
v \otimes w \mapsto f(v) \otimes g(w) \quad \text { for all } v \in V \text { and } w \in W
$$

There are some things to check to make sure that this is well-defined. Since $V \times W$ is a basis for $V * W$, there is certainly a unique linear map $f * g: V * W \rightarrow V^{\prime} \otimes W^{\prime}$ that sends

$$
(v, w) \mapsto f(v) \otimes g(w) \quad \text { for all } v \in V \text { and } w \in W
$$

We want know that the map $f * g$ descends to a well-defined map of quotient spaces $V \otimes W \rightarrow V^{\prime} \otimes W^{\prime}$, since this will give exactly our desired map $f \otimes g$. So we need to verify that $(f * g)\left(\mathcal{I}_{V, W}\right)=0 \subseteq V^{\prime} \otimes W^{\prime}$.

To check this, it is enough to show that $f * g$ sends each element in the spanning set for $\mathcal{I}_{V, W}$ to zero. This is some fairly routine algebra. For instance, if $v_{1}, v_{2} \in V$ and $w \in W$ then we have

$$
\begin{aligned}
(f * g)\left(\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right)\right) & =(f * g)\left(\left(v_{1}+v_{2}, w\right)\right)-(f * g)\left(\left(v_{1}, w\right)\right)-(f * g)\left(\left(v_{2}, w\right)\right) \\
& =f\left(v_{1}+v_{2}\right) \otimes g(w)-f\left(v_{1}\right) \otimes g(w)-f\left(v_{2}\right) \otimes g(w) \\
& =f\left(v_{1}\right) \otimes g(w)+f\left(v_{2}\right) \otimes g(w)-f\left(v_{1}\right) \otimes g(w)-f\left(v_{2}\right) \otimes g(w) \\
& =0
\end{aligned}
$$

as needed. The calculations showing that $f * g$ kills off the other elements spanning $\mathcal{I}_{V, W}$ are similar.

4 Tensor algebra

In this section, we introduce an object called the tensor algebra of a vector space V.
This is given as a vector space by the infinite direct sum

$$
\mathcal{T} V \stackrel{\text { def }}{=} \bigoplus_{n \geq 0} V^{\otimes n}
$$

Remember that the elements of an infinite direct sum are finite sums of elements from the summands.
We view $\mathcal{T} V$ as a K-algebra by defining

$$
a b \stackrel{\text { def }}{=} a \otimes b \quad \text { for } a \in V^{\otimes m} \text { and } b \in V^{\otimes n}
$$

and extending by bilinearity. Here we view $a \otimes b \in V^{\otimes(m+n)}$. This product is associative, since the tensor product is associative. The unit of the resulting tensor algebra $\mathcal{T} V$ is the field unit $1=1_{K} \in K=V^{\otimes 0}$.
Notice that $\mathcal{T} V$ is an algebra even when $V=0$, since then $\mathcal{T} V=\mathcal{T} 0=K$.
Exercise 4.1. We may identify tensor algebras with free algebras. Suppose V is finite-dimensional with basis $\left\{v_{1}, \ldots, v_{N}\right\}$. Then there is a unique algebra isomorphism

$$
\mathcal{T} V \xrightarrow{\sim} K\left\langle X_{1}, \ldots, X_{N}\right\rangle
$$

that sends $v_{i_{1}} \otimes v_{i_{2}} \otimes \cdots \otimes v_{i_{k}} \mapsto X_{i_{1}} X_{i_{2}} \cdots X_{i_{k}}$. A similar isomorphisms exists when V is infinitedimensional, if we allow infinitely-many variables in the free algebra.

We mention three interesting quotients of the tensor algebra.

4.1 Symmetric algebras

The first quotient is called the symmetric algebra of V. This is defined by

$$
\mathcal{S} V \stackrel{\text { def }}{=} \mathcal{T} V /\langle v \otimes w-w \otimes v: v, w \in V\rangle
$$

Recall that " $\langle v \otimes w-w \otimes v: v, w \in V\rangle$ " means the intersection of all two-sided ideals in $\mathcal{T} V$ containing all of the differences $v \otimes w-w \otimes v$ for each $v, w \in V$.

The symmetric algebra $\mathcal{S} V$ is always commutative. We have $\mathcal{T} V \cong \mathcal{S} V$ if and only if $\operatorname{dim} V \leq 1$.
Example 4.2. We may identify symmetric algebras with polynomial algebras. Suppose V is finitedimensional with basis $\left\{v_{1}, \ldots, v_{N}\right\}$. Then there is a unique algebra isomorphism

$$
\mathcal{S} V \xrightarrow{\sim} K\left[x_{1}, \ldots, x_{N}\right]
$$

that sends $v_{i_{1}} \otimes v_{i_{2}} \otimes \cdots \otimes v_{i_{k}} \mapsto x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$. A similar isomorphisms exists when V is infinitedimensional, if we allow infinitely-many variables in the polynomial algebra.

4.2 Exterior algebras

The second quotient is called the exterior algebra of V. This is defined by

$$
\bigwedge V \stackrel{\text { def }}{=} \mathcal{T} V /\langle v \otimes v: v \in V\rangle
$$

Define $x \wedge y$ to be the image $x \otimes y \in V \otimes V$ under the quotient map $\mathcal{T} V \rightarrow \bigwedge V$. Then

$$
\begin{aligned}
0 & =(x+y) \wedge(x+y) \\
& =x \wedge y+x \wedge y+y \wedge x+y \wedge y \\
& =x \wedge y+y \wedge x
\end{aligned}
$$

so $x \wedge y=-y \wedge x$. This shows that the operation \wedge defines an anti-commutative product for $\wedge V$.
Example 4.3. Choosing a basis for V determines an isomorphism from ΛV to a "polynomial algebra" in which the variables anti-commute in the sense that $x_{i} x_{j}=-x_{j} x_{i}$.

4.3 Universal enveloping algebras

If \mathfrak{g} is a Lie algebra then its universal enveloping algebra is the quotient of the tensor algebra

$$
U(\mathfrak{g}) \stackrel{\text { def }}{=} \mathcal{T} \mathfrak{g} /\langle x \otimes y-y \otimes x-[x, y]: x, y \in \mathfrak{g}\rangle
$$

This definition is equivalent to the one in the last lecture. The advantage of this formulation is that it does not depend on a choice of basis for V. Our previous definition relied on such a choice, and it was not clear that we got the same algebra for different choices of basis.

5 Tensor product of modules

Building on our definition of vector space tensor products, we can now define more general tensor products of modules over a (not necessarily commutative) algebra.

5.1 Right modules with left modules

Consider the following setting:

1. A, B, C are algebras over the same field K.
2. V is a right B-module.
3. W is a left B-module.

Then we define $V \otimes_{B} W$ to be the vector space quotient

$$
V \otimes_{B} W \stackrel{\text { def }}{=}(V \otimes W) / K-\operatorname{span}\{v b \otimes w-v \otimes b w: v \in V, w \in W, b \in B\} .
$$

In general, this object only has the structure of a K-vector space.
Specifically, if B is non-commutative, then $V \otimes_{B} W$ is not naturally a left or right module for B.
We refer to $V \otimes_{B} W$ as the tensor product of V and W over B. If $v \in V$ and $w \in W$ then we write

$$
v \otimes_{B} w \in V \otimes_{B} W
$$

for the image of $v \otimes w \in V \otimes W$ under the quotient map $V \otimes W \rightarrow V \otimes_{B} W$. Notice that if $b \in B$ then

$$
v b \otimes_{B} w=v \otimes_{B} b w .
$$

5.2 Bimodules

Continuing the setup from the previous section, we now assume in addition that:

- V is an (A, B)-bimodule, meaning that

1. V has both right B-module and left A-module structures;
2. these structures are compatible in the sense that $(a v) b=a(v b)$ for all $a \in A, b \in B, v \in V$.

Assume likewise that

- W is a (B, C)-bimodule, meaning that

1. W has both left B-module and right C-module structures;
2. these structures are compatible in the sense that $(b w) c=b(w c)$, for all $b \in B, c \in C, w \in W$.

Then the vector space $V \otimes_{B} W$ has a (A, C)-bimodule structure defined by

$$
\left\{\begin{array}{ll}
a\left(v \otimes_{B} w\right) \stackrel{\text { def }}{=}(a v) \otimes_{B} w & \text { if } a \in A \\
\left(v \otimes_{B} w\right) c \stackrel{\text { def }}{=} v \otimes_{B}(w c) & \text { if } c \in C
\end{array} \quad \text { for } v \in V \text { and } w \in W\right.
$$

The case when $A=B=C$ is worth noting. In this situation, V and W are both (B, B)-bimodules, and the tensor product $V \otimes_{B} W$ is also a (B, B)-bimodule.

Remark 5.1. If the algebra B is commutative, then left and right B-modules are the same as (B, B) bimodules (do you see why?), and so we can form the tensor product of two left B-modules or two right B-modules. However, this is secretly just doing the (B, B)-bimodule tensor product.

6 Diagrammatic definition of an algebra

Now that we have a good handle on vector space tensor products, we can given an alternate definition of an algebra. This consists of a K-vector space A with linear maps $\nabla: A \otimes A \rightarrow A$ and $\iota: K \rightarrow A$ that make the following diagrams commute:

The diagonal arrows on the right are the linear maps $K \otimes A \rightarrow A$ and $A \otimes K \rightarrow A$ sending $1_{K} \otimes a \mapsto a$ and $a \otimes 1_{K} \mapsto a$ for all $a \in A$. These maps are vector space isomorphisms.

Under this formulation, the product in A is $a b \stackrel{\text { def }}{=} \nabla(a \otimes b)$ and the unit is $\iota\left(1_{K}\right) \in A$.
One nice feature of this definition is that it naturally suggests the definition of a coalgebra: this is the object one gets by repeating the above definition but reversing the direction of all arrows.

