
MATH 5112 (Spring 2024) Lecture 4 (transcribed by Tsz-Kin CHAN)

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

In the previous lecture we introduced two more sources of representations in representation theory:

• Quivers Q = (I, E), which are directed graphs with vertices I and edges E, with self-loops and
multiple edges allowed. A quiver representation (V•, ρ•) consists of the following data:

1. For each vertex i ∈ I, we assign a vector space Vi.

2. For each (directed) edge i→ j, we assign a linear map ρij : Vi → Vj .

There is a bijection between quiver representations of Q and algebra representations of its associated
path algebra, which is unital when I is finite.

• Lie algebras (g, [·, ·]), which consist of a K-vector space g and bilinear map [·, ·] called the Lie
bracket satisfying:

1. Anticommutativity: [x, x] = 0 for all x ∈ g, which implies [x, y] = −[y, x] for all x, y ∈ g.

2. Jacobi identity: We have [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x, y, z ∈ g.

Despite the name, a Lie algebra is not technically an algebra, at least how we have defined it, since
when we say “algebra” we implicitly assume associativity and the existence of a unit element, but
the Lie bracket for a Lie algebra usually has neither property.

A Lie algebra representation is a pair (V, ρ) such that

1. V is a vector space over the same ground field K as g.

2. ρ : g → gl(V ) is Lie algebra morphism, meaning a linear map preserving the relevant Lie
brackets. Here gl(V ) is the set of all linear maps V → V (so the same vector space as End(V ))
but viewed as a Lie algebra with bracket

[L1, L2] = L1 ◦ L2 − L2 ◦ L1, ∀L1, L2 ∈ gl(V ).

There exists a bijection between Lie algebra representation of g and algebra representations of U(g),
its universal enveloping algebra of g (which will be given a second definition later today).

2 Tensor products of vector spaces

Let V and W be two K-vector spaces. Their direct product is simply the set of pairs

V ×W = {(v, w) : v ∈ w, b ∈W}.

This object is just a set, not a vector space. Define the free product V ∗W to be the K-vector space with
V ×W as a basis. Each element of V ∗W is a finite linear combination of pairs (v, w) ∈ V ×W .

One way to define the tensor product of V and W is as the quotient vector space

V ⊗W def
= (V ∗W )/IV,W

where IV,W is the subspace spanned by all elements of the form

• (v1 + v2, w)− (v1, w)− (v2, w),

• (v, w1 + w2)− (v, w1)− (v, w2),
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• (av, w)− a(v, w), or

• (v, aw)− a(v, w),

for any a ∈ K, v1, v2, v ∈ V , and w1, w2, w ∈W .

If x ∈ V and y ∈ W , then we write x ⊗ y ∈ V ⊗W for the image of the pair (x, y) ∈ V ×W ⊂ V ∗W
under the quotient map V ∗W → V ⊗W . This means that

x⊗ y def
= (x, y) + IV,W

if we view elements of a vector space quotient a cosets of a subspace.

We refer to x ⊗ y as a pure tensor . Not all elements of V ⊗W are pure tensors, but every element is a
finite linear combination of pure tensors.

We can manipulate pure tensors without changing their value in V ⊗W using the following identities:

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2, (cv)⊗ w = c(v ⊗ w) = v ⊗ (cw)

for v1, v2, v ∈ V , w1, w2, w ∈W , and c ∈ K.

These equations hold because the differences between the two sides belong to the subspace IV,W .

This means that we can have x⊗ y = x′ ⊗ y′ when x 6= x′ and y 6= y′.

A simple example is when x′ = −x ∈ V and y′ = −y ∈W .

Exercise 2.1 (Important to do once). If {vi : i ∈ I} is a basis of V and {wj : j ∈ J} is a basis of W
then the set of pure tensors {vi ⊗ wj : (i, j) ∈ I × J} is a basis of V ⊗W .

Exercise 2.2. If U , V , and W are K-vector spaces, then there is a unique isomorphism

(U ⊗ V )⊗W ∼−→ U ⊗ (V ⊗W )

that sends u⊗ (v ⊗ w) 7→ (u⊗ v)⊗ w for each u ∈ U , v ∈ V , and w ∈W .

As a result of this exercise, there is a canonical isomorphism between any way of forming the tensor
product between a finite sequence of vector spaces (n principle, each way requires us to choose a paren-
thesization of the factors, since we can only tensor two spaces at a time). For example:

V1⊗((V2⊗V3)⊗V4) ∼= V1⊗(V2⊗(V3⊗V4)) ∼= (V1⊗V2)⊗(V3⊗V4) ∼= ((V1⊗V2)⊗V3)⊗V4 ∼= (V1⊗(V2⊗V3))⊗V4.

In view of this, we will ignore the issue of parenthesization and just define

V ⊗0
def
= K and V ⊗n

def
= V ⊗ · · · ⊗ V (n factors).

3 Tensor products of linear maps

If f ∈ Hom(V, V ′) and g ∈ Hom(W,W ′) are two linear maps then their tensor product is the unique
linear map f ⊗ g : V ⊗W → V ′ ⊗W ′ that acts on pure tensors as

v ⊗ w 7→ f(v)⊗ g(w) for all v ∈ V and w ∈W .

There are some things to check to make sure that this is well-defined. Since V ×W is a basis for V ∗W ,
there is certainly a unique linear map f ∗ g : V ∗W → V ′ ⊗W ′ that sends

(v, w) 7→ f(v)⊗ g(w) for all v ∈ V and w ∈W .
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We want know that the map f ∗ g descends to a well-defined map of quotient spaces V ⊗W → V ′ ⊗W ′,
since this will give exactly our desired map f ⊗ g. So we need to verify that (f ∗ g)(IV,W ) = 0 ⊆ V ′⊗W ′.

To check this, it is enough to show that f ∗ g sends each element in the spanning set for IV,W to zero.
This is some fairly routine algebra. For instance, if v1, v2 ∈ V and w ∈W then we have

(f ∗ g)((v1 + v2, w)− (v1, w)− (v2, w)) = (f ∗ g)((v1 + v2, w))− (f ∗ g)((v1, w))− (f ∗ g)((v2, w))

= f(v1 + v2)⊗ g(w)− f(v1)⊗ g(w)− f(v2)⊗ g(w)

= f(v1)⊗ g(w) + f(v2)⊗ g(w)− f(v1)⊗ g(w)− f(v2)⊗ g(w)

= 0

as needed. The calculations showing that f ∗ g kills off the other elements spanning IV,W are similar.

4 Tensor algebra

In this section, we introduce an object called the tensor algebra of a vector space V .

This is given as a vector space by the infinite direct sum

T V def
=

⊕
n≥0

V ⊗n.

Remember that the elements of an infinite direct sum are finite sums of elements from the summands.

We view T V as a K-algebra by defining

ab
def
= a⊗ b for a ∈ V ⊗m and b ∈ V ⊗n,

and extending by bilinearity. Here we view a⊗b ∈ V ⊗(m+n). This product is associative, since the tensor
product is associative. The unit of the resulting tensor algebra T V is the field unit 1 = 1K ∈ K = V ⊗0.

Notice that T V is an algebra even when V = 0, since then T V = T 0 = K.

Exercise 4.1. We may identify tensor algebras with free algebras. Suppose V is finite-dimensional with
basis {v1, . . . , vN}. Then there is a unique algebra isomorphism

T V ∼−→ K〈X1, . . . , XN 〉

that sends vi1 ⊗ vi2 ⊗ · · · ⊗ vik 7→ Xi1Xi2 · · ·Xik . A similar isomorphisms exists when V is infinite-
dimensional, if we allow infinitely-many variables in the free algebra.

We mention three interesting quotients of the tensor algebra.

4.1 Symmetric algebras

The first quotient is called the symmetric algebra of V . This is defined by

SV def
= T V/〈v ⊗ w − w ⊗ v : v, w ∈ V 〉.

Recall that “〈v ⊗ w − w ⊗ v : v, w ∈ V 〉” means the intersection of all two-sided ideals in T V containing
all of the differences v ⊗ w − w ⊗ v for each v, w ∈ V .

The symmetric algebra SV is always commutative. We have T V ∼= SV if and only if dimV ≤ 1.

Example 4.2. We may identify symmetric algebras with polynomial algebras. Suppose V is finite-
dimensional with basis {v1, . . . , vN}. Then there is a unique algebra isomorphism

SV ∼−→ K[x1, . . . , xN ]

that sends vi1 ⊗ vi2 ⊗ · · · ⊗ vik 7→ xi1xi2 · · ·xik . A similar isomorphisms exists when V is infinite-
dimensional, if we allow infinitely-many variables in the polynomial algebra.
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4.2 Exterior algebras

The second quotient is called the exterior algebra of V . This is defined by∧
V

def
= T V/〈v ⊗ v : v ∈ V 〉.

Define x ∧ y to be the image x⊗ y ∈ V ⊗ V under the quotient map T V →
∧
V . Then

0 = (x+ y) ∧ (x+ y)

= x ∧ y + x ∧ y + y ∧ x+ y ∧ y
= x ∧ y + y ∧ x

so x ∧ y = −y ∧ x. This shows that the operation ∧ defines an anti-commutative product for
∧
V .

Example 4.3. Choosing a basis for V determines an isomorphism from
∧
V to a “polynomial algebra”

in which the variables anti-commute in the sense that xixj = −xjxi.

4.3 Universal enveloping algebras

If g is a Lie algebra then its universal enveloping algebra is the quotient of the tensor algebra

U(g)
def
= T g/〈x⊗ y − y ⊗ x− [x, y] : x, y ∈ g〉.

This definition is equivalent to the one in the last lecture. The advantage of this formulation is that it
does not depend on a choice of basis for V . Our previous definition relied on such a choice, and it was
not clear that we got the same algebra for different choices of basis.

5 Tensor product of modules

Building on our definition of vector space tensor products, we can now define more general tensor products
of modules over a (not necessarily commutative) algebra.

5.1 Right modules with left modules

Consider the following setting:

1. A,B,C are algebras over the same field K.

2. V is a right B-module.

3. W is a left B-module.

Then we define V ⊗B W to be the vector space quotient

V ⊗B W
def
= (V ⊗W )/K-span{vb⊗ w − v ⊗ bw : v ∈ V,w ∈W, b ∈ B}.

In general, this object only has the structure of a K-vector space.

Specifically, if B is non-commutative, then V ⊗B W is not naturally a left or right module for B.

We refer to V ⊗B W as the tensor product of V and W over B. If v ∈ V and w ∈W then we write

v ⊗B w ∈ V ⊗B W

for the image of v ⊗ w ∈ V ⊗W under the quotient map V ⊗W → V ⊗B W . Notice that if b ∈ B then

vb⊗B w = v ⊗B bw.
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5.2 Bimodules

Continuing the setup from the previous section, we now assume in addition that:

• V is an (A,B)-bimodule, meaning that

1. V has both right B-module and left A-module structures;

2. these structures are compatible in the sense that (av)b = a(vb) for all a ∈ A, b ∈ B, v ∈ V .

Assume likewise that

• W is a (B,C)-bimodule, meaning that

1. W has both left B-module and right C-module structures;

2. these structures are compatible in the sense that (bw)c = b(wc), for all b ∈ B, c ∈ C,w ∈W .

Then the vector space V ⊗B W has a (A,C)-bimodule structure defined by{
a(v ⊗B w)

def
= (av)⊗B w if a ∈ A

(v ⊗B w)c
def
= v ⊗B (wc) if c ∈ C

for v ∈ V and w ∈W.

The case when A = B = C is worth noting. In this situation, V and W are both (B,B)-bimodules, and
the tensor product V ⊗B W is also a (B,B)-bimodule.

Remark 5.1. If the algebra B is commutative, then left and right B-modules are the same as (B,B)-
bimodules (do you see why?), and so we can form the tensor product of two left B-modules or two right
B-modules. However, this is secretly just doing the (B,B)-bimodule tensor product.

6 Diagrammatic definition of an algebra

Now that we have a good handle on vector space tensor products, we can given an alternate definition
of an algebra. This consists of a K-vector space A with linear maps ∇ : A⊗A→ A and ι : K → A that
make the following diagrams commute:

A⊗A⊗A A⊗A K ⊗A A⊗A A⊗K

A⊗A A A

∇⊗id

∇id⊗∇

∇

ι⊗id id⊗ι

∇
' '

The diagonal arrows on the right are the linear maps K ⊗ A→ A and A⊗K → A sending 1K ⊗ a 7→ a
and a⊗ 1K 7→ a for all a ∈ A. These maps are vector space isomorphisms.

Under this formulation, the product in A is ab
def
= ∇(a⊗ b) and the unit is ι(1K) ∈ A.

One nice feature of this definition is that it naturally suggests the definition of a coalgebra: this is the
object one gets by repeating the above definition but reversing the direction of all arrows.
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