
MATH 5112 (Spring 2024) Lecture 5 (transcribed by Tsz-Kin CHAN)

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

1.1 Tensor products of vector spaces

In the last lecture, we defined tensor products of vector spaces over fields and algebras.

We briefly review the definition for vector spaces V and W over an arbitrary field K.

• The direct product V ×W is the set of pairs (v, w) with v ∈ V and w ∈W .

• The free product V ∗W is the K-vector space with V ×W as a basis.

• The tensor product V ⊗W is the quotient vector space V ⊗W def
= (V ∗W )/IV,W where IV,W is the

subspace of V ∗W spanned by the elements of the following forms:

1. (v1 + v2, w)− (v1, w)− (v2, w),

2. (v, w1 + w2)− (v, w1)− (v, w2),

3. (av, w)− a(v, w),

4. (v, aw)− a(v, w),

for any a ∈ K, v1, v2, v ∈ V and w1, w2, w ∈W .

The image of (v, w) ∈ V ×W under the quotient map V ∗W → V ⊗W is denoted v ⊗ w ∈ V ⊗W and
called a pure tensor . For any a ∈ K, v1, v2, v ∈ V , w1, w2, w ∈W it holds that

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2, av ⊗ w = v ⊗ aw = a(v ⊗ w).

Fact. If V has basis {vi}i∈I and W has basis {wj}j∈J then {vi ⊗ wj}(i,j)∈I×J is a basis for V ⊗W .

1.2 Tensor algebras and their quotients

Because the tensor product is associative in the sense that we can identify U ⊗ (V ⊗W ) ∼= (U ⊗V )⊗W ,

we can define iterated tensor products V ⊗0
def
= K and V ⊗n := V ⊗ V ⊗ · · · ⊗ V (n terms) when V is any

K-vector space. Using these notations, the tensor algebra of V is defined as

T V def
=
⊕
n≥0

V ⊗n.

This is an (associative, unital) algebra with product xy
def
= x⊗ y and unit 1 ∈ K = V ⊗0 ⊂ T V .

Notice that if V = 0 then T V = K, and that T V is commutative if and only if dimV ≤ 1.

Any choice of basis for V determines an isomorphism from T V to a free algebra K〈X1, X2, . . . 〉.

Three notable quotients of T V :

1. The symmetric algebra of V is SV def
= T V/〈v ⊗ w − w ⊗ v : v, w ∈ V 〉.

2. The exterior algebra is
∧
V

def
= T V/〈v ⊗ v : v ∈ V 〉.

3. The universal enveloping algebra of V , when V is a Lie algebra with bracket [·, ·], is

UV def
= T V/〈v ⊗ w − w ⊗ v − [w, v] : v, w ∈ V 〉.
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2 Semisimple representations

In this lecture, we begin a new chapter focusing on some general results about algebra representations.

2.1 Basic definitions and examples

From now on, we will assume that K is an algebraically closed field, and A is a K-algebra.

Definition 2.1. A representation of A is semisimple or completely reducible if it is isomorphic to a direct
sum of irreducible representations.

As a general rule in mathematical terminology:

“simple” ≡ “irreducible” and “semisimple” ≡ “(direct) sum of simple objects”.

Notation. Suppose V is a left A-module. Often we will say that “V is a representation of A”: this just
means the representation (V, ρ) where ρ : A→ End(V ) is defined by ρ(a) : x 7→ ax for a ∈ A and x ∈ V .

Example 2.2 (Matrix algebras). Let A = Matn(K) be the algebra of n × n matrices over K and let
V = Kn be the K-vector space of column vectors with n rows.

We can transform any vector in V by multiplying it on the left by a matrix in A, and this makes V into
an A-representation: in other words, given X ∈ A and v ∈ V let Xv just mean matrix multiplication.

This representation is irreducible since if v, w ∈ W and v 6= 0 then some X ∈ A has Xv = w. So every
nonzero vector is cyclic in the sense that it is not contained in any proper A-subrepresentation.

In this case we have End(V ) = A, which is also an A-representation, via the regular representation in
which one matrix acts on another by ordinary matrix multiplication X : Y 7→ XY .

The regular representation of A is semsimple as we have A ∼= V ⊕n as A-representations.

An explicit isomorphism A
∼−→ V ⊕n is the map sending

X =

 X11 · · · X1n

...
...

Xn1 · · · Xnn

 7→

 X11

...
Xn1

 ,
 X12

...
Xn2

 , · · · ,
 X1n

...
Xnn


 .

Notation. Here we define V ⊕n to be the set of n-tuples (v1, v2, . . . , vn) where each vi ∈ V and where

(v1, v2, . . . , vn) + (w1, w2, . . . , wn)
def
= (v1 + w1, v2 + w2, . . . , vn + wn),

c(v1, v2, . . . , vn)
def
= (cv1, cv2, . . . , cvn),

for vi, wi ∈ V and c ∈ K.
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Example 2.3. More generally, suppose A is any algebra and V is an irreducible A-representation of
finite dimension n. Then End(V ) = {linear maps L : V → V } is an A-representation for the action

a · L : v 7→ a · L(v) for a ∈ A and v ∈ V.

This representation is semisimple with End(V ) ∼= V ⊕n as A-representations. If V has basis {v1, · · · , vn}
then an explicit isomorphism End(V )

∼−→ V ⊕n is provided by the map L 7→ (L(v1), · · · , L(vn))

2.2 Subrepresentation of semisimple representations

Our main results today are derived from the following technical property. Among other consequences, it
tells us that all subrepresentations of semisimple representations are semisimple.

Proposition 2.4. Let V1, V2, · · · , Vm be a finite list of irreducible finite-dimensional A-representations
with Vi 6∼= Vj if i 6= j. Consider the A-representation V =

⊕m
i=1 V

⊕ni
i where n1, n2, . . . , nm are nonnega-

tive integers. Now suppose W is a subrepresentation of V . Then:

(1) For some integers 0 ≤ ri ≤ ni there is an isomorphism φ :
⊕m

i=1 V
⊕ri
i

∼−→W .

(2) The map
⊕m

i=1 V
⊕ri
i

φ−−→W ↪→ V is a direct sum of inclusions φi : V ⊕rii ↪→ V ⊕ni
i of the form

φi(a1, a2, · · · , ari) =
[
a1 a2 · · · ari

]
Xi

where each Xi is a full rank ri × ni matrix with values in K.

Proof sketch. If W = 0 then the proposition is trivial. Assume W = 0.

We proceed by induction on n
def
= n1 + n2 + · · ·+ nm.

If n = 1 then we must have 0 6= W = V in which case the result is again obvious.

Assume n > 1. Since W is finite-dimensional, it has an irreducible subrepresentation P (this was shown
in the HW1 exercises). Observe that HomA(P, V ) =

⊕m
i=1 HomA(P, Vi)

⊕ni . In this equation:

• each term HomA(P, Vi) on the right side is nonzero if and only if P ∼= Vi by Schur’s lemma;

• the left side is nonzero since it contains inclusion P ↪→W ↪→ V .

Therefore P must be isomorphic to Vi for some i.

The inclusion Vi
∼−→ P ↪→ V ⊕ni

i ↪→ V must be given by a map of the form

v 7→ (q1v, · · · , qni
v)

for some scalars qi ∈ K that are not all zero. This is because composing this map with each projection

(a1, · · · , ani) 7→ aj ∈ Vi

is a morphism of A-representations Vi → Vi, which must be a scalar map by Schur’s lemma.

Let g ∈ GLni
(K) = {invertible ni × ni matrices} act on V ⊕ni

i on the right by the formula

g : (v1, v2, · · · , vni
) 7→

[
v1 v2 · · · vn

]
g

while acting on V
⊕nj

j for i 6= j as the identity. This gives a right action of the general linear group on V .

We may choose g ∈ GLni
(K) such that

Pg = {(0, 0, · · · , 0, v) : v ∈ Vi} ⊂ V ⊕ni
i .
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Then Wg = W ′ ⊕ Vi where Vi = Pg and W ′ is the kernel of projection Wg → Pg, which satisfies

W ′ ⊂ V ⊕n1
1 ⊕ · · · ⊕ V ⊕(ni−1)

i ⊕ · · · ⊕ V ⊕nm
m .

Now we apply the proposition to W ′ by induction, and multiply the resulting inclusion by g−1.

Corollary 2.5. Assume the following setup:

• V is an irreducible finite-dimensional representation of A.

• The elements v1, v2, . . . , vn ∈ V are linearly independent.

• The elements w1, w2, . . . , wn ∈ V are arbitrary.

Then there exists an element a ∈ A such that avi = wi for all i = 1, 2, . . . , n.

Proof. Assume no such element exists. Then the image of A under the map

a 7→ (av1, · · · , avn)

is a proper subrepresentation of V ⊕n, which we denote by W .

By Proposition 2.4 we know that W ∼= V ⊕m for some 0 ≤ m < n and there exists an inclusion

φ : V ⊕m
∼−→W ↪→ V ⊕n

of the form φ(a1, a2, · · · , am) =
[
a1 a2 · · · am

]
X where X is a full rank m× n matrix.

Since (v1, v2, · · · , vn) ∈W , we may choose ai ∈ V such that φ(a1, a2, · · · , am) = (v1, v2, · · · , vn).

Also, since m < n, there is nonzero vector

 q1
...

qn

 ∈ Kn such that X

 q1
...

qn

 = 0. But now

n∑
i=1

qivi =
[
v1 v2 . . . vn

]  q1
...

qn

 =
[
a1 a2 · · · am

]
X

 q1
...

qn

 = 0

which contradicts the linear independence of v1, · · · , vn.

Theorem 2.6 (Density theorem). Let (V, ρ) be an irreducible, finite-dimensional A-representation. Then
the map ρ : A → End(V ) is surjective. Moreover, if (V, ρ) = (V1, ρ1) ⊕ · · · ⊕ (Vr, ρr) where each (Vi, ρi)
is an irreducible A-representation, then the map

⊕r
i=1 ρi : A→

⊕r
i=1 End(Vi) is also surjective.

Proof. For the first claim, choose any L ∈ End(V ) and suppose v1, v2, . . . , vn is a basis of V . Set
wi = L(vi). By the previous corollary, some a ∈ A has ρ(a)vi = wi for all i which means that ρ(a) = L.

The second claim is nontrivial since direct sums of surjective maps are not necessarily surjective. For
example, the direct sum of the identity map becomes x 7→ (x, x, · · · , x) which is usually not surjective.

The surjective property that we wish to show will be a consequence of the second part of Proposition 2.4.

Let Y =
⊕r

i=1 End(Vi). This is a semisimple A-representation as End(Vi) ∼= V ⊕dii where di = dimVi.

By Proposition 2.4, the subrepresentation

W
def
=

(
r⊕
i=1

ρi

)
(A) ⊂ Y
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is isomorphic to
⊕r

i=1 V
⊕mi
i for some integers 0 ≤ mi ≤ di, and there is an inclusion

φ :

r⊕
i=1

V ⊕mi
i

∼−→W ↪→ Y

that is given by a direct sum of inclusions φi : V ⊕mi
i ↪→ V ⊕dii .

Since each ρi is surjective, the composition of this inclusion with the projection Y → End(Vi) is surjective.

Hence each φi is surjective and mi = di. This shows that
⊕

i ρi is surjective.
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