This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

1.1 Tensor products of vector spaces

In the last lecture, we defined tensor products of vector spaces over fields and algebras.
We briefly review the definition for vector spaces V and W over an arbitrary field K.

- The direct product $V \times W$ is the set of pairs (v, w) with $v \in V$ and $w \in W$.
- The free product $V * W$ is the K-vector space with $V \times W$ as a basis.
- The tensor product $V \otimes W$ is the quotient vector space $V \otimes W \stackrel{\text { def }}{=}(V * W) / \mathcal{I}_{V, W}$ where $\mathcal{I}_{V, W}$ is the subspace of $V * W$ spanned by the elements of the following forms:

1. $\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right)$,
2. $\left(v, w_{1}+w_{2}\right)-\left(v, w_{1}\right)-\left(v, w_{2}\right)$,
3. $(a v, w)-a(v, w)$,
4. $(v, a w)-a(v, w)$,
for any $a \in K, v_{1}, v_{2}, v \in V$ and $w_{1}, w_{2}, w \in W$.
The image of $(v, w) \in V \times W$ under the quotient map $V * W \rightarrow V \otimes W$ is denoted $v \otimes w \in V \otimes W$ and called a pure tensor. For any $a \in K, v_{1}, v_{2}, v \in V, w_{1}, w_{2}, w \in W$ it holds that

$$
\left(v_{1}+v_{2}\right) \otimes w=v_{1} \otimes w+v_{2} \otimes w, \quad v \otimes\left(w_{1}+w_{2}\right)=v \otimes w_{1}+v \otimes w_{2}, \quad a v \otimes w=v \otimes a w=a(v \otimes w)
$$

Fact. If V has basis $\left\{v_{i}\right\}_{i \in I}$ and W has basis $\left\{w_{j}\right\}_{j \in J}$ then $\left\{v_{i} \otimes w_{j}\right\}_{(i, j) \in I \times J}$ is a basis for $V \otimes W$.

1.2 Tensor algebras and their quotients

Because the tensor product is associative in the sense that we can identify $U \otimes(V \otimes W) \cong(U \otimes V) \otimes W$, we can define iterated tensor products $V^{\otimes 0} \stackrel{\text { def }}{=} K$ and $V^{\otimes n}:=V \otimes V \otimes \cdots \otimes V$ (n terms) when V is any K-vector space. Using these notations, the tensor algebra of V is defined as

$$
\mathcal{T} V \stackrel{\text { def }}{=} \bigoplus_{n \geq 0} V^{\otimes n} .
$$

This is an (associative, unital) algebra with product $x y \stackrel{\text { def }}{=} x \otimes y$ and unit $1 \in K=V^{\otimes 0} \subset \mathcal{T} V$.
Notice that if $V=0$ then $\mathcal{T} V=K$, and that $\mathcal{T} V$ is commutative if and only if $\operatorname{dim} V \leq 1$.
Any choice of basis for V determines an isomorphism from $\mathcal{T} V$ to a free algebra $K\left\langle X_{1}, X_{2}, \ldots\right\rangle$.

Three notable quotients of $\mathcal{T} V$:

1. The symmetric algebra of V is $\mathcal{S} V \stackrel{\text { def }}{=} \mathcal{T} V /\langle v \otimes w-w \otimes v: v, w \in V\rangle$.
2. The exterior algebra is $\bigwedge V \stackrel{\text { def }}{=} \mathcal{T} V /\langle v \otimes v: v \in V\rangle$.
3. The universal enveloping algebra of V, when V is a Lie algebra with bracket $[\cdot, \cdot]$, is

$$
\mathcal{U} V \stackrel{\text { def }}{=} \mathcal{T} V /\langle v \otimes w-w \otimes v-[w, v]: v, w \in V\rangle
$$

2 Semisimple representations

In this lecture, we begin a new chapter focusing on some general results about algebra representations.

2.1 Basic definitions and examples

From now on, we will assume that K is an algebraically closed field, and A is a K-algebra.
Definition 2.1. A representation of A is semisimple or completely reducible if it is isomorphic to a direct sum of irreducible representations.
As a general rule in mathematical terminology:

$$
\text { "simple" } \equiv " \text { irreducible" and "semisimple" } \equiv "(\text { direct }) \text { sum of simple objects". }
$$

Notation. Suppose V is a left A-module. Often we will say that " V is a representation of A ": this just means the representation (V, ρ) where $\rho: A \rightarrow \operatorname{End}(V)$ is defined by $\rho(a): x \mapsto a x$ for $a \in A$ and $x \in V$.

Example 2.2 (Matrix algebras). Let $A=\operatorname{Mat}_{n}(K)$ be the algebra of $n \times n$ matrices over K and let $V=K^{n}$ be the K-vector space of column vectors with n rows.

We can transform any vector in V by multiplying it on the left by a matrix in A, and this makes V into an A-representation: in other words, given $X \in A$ and $v \in V$ let $X v$ just mean matrix multiplication.
This representation is irreducible since if $v, w \in W$ and $v \neq 0$ then some $X \in A$ has $X v=w$. So every nonzero vector is cyclic in the sense that it is not contained in any proper A-subrepresentation.

In this case we have $\operatorname{End}(V)=A$, which is also an A-representation, via the regular representation in which one matrix acts on another by ordinary matrix multiplication $X: Y \mapsto X Y$.

The regular representation of A is semsimple as we have $A \cong V^{\oplus n}$ as A-representations.
An explicit isomorphism $A \xrightarrow{\sim} V^{\oplus n}$ is the map sending

$$
X=\left[\begin{array}{rlr}
X_{11} & \cdots & X_{1 n} \\
\vdots & & \vdots \\
X_{n 1} & \cdots & X_{n n}
\end{array}\right] \mapsto\left(\left[\begin{array}{r}
X_{11} \\
\vdots \\
X_{n 1}
\end{array}\right],\left[\begin{array}{r}
X_{12} \\
\vdots \\
X_{n 2}
\end{array}\right], \cdots,\left[\begin{array}{r}
X_{1 n} \\
\vdots \\
X_{n n}
\end{array}\right]\right)
$$

Notation. Here we define $V^{\oplus n}$ to be the set of n-tuples $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ where each $v_{i} \in V$ and where

$$
\begin{gathered}
\left(v_{1}, v_{2}, \ldots, v_{n}\right)+\left(w_{1}, w_{2}, \ldots, w_{n}\right) \stackrel{\text { def }}{=}\left(v_{1}+w_{1}, v_{2}+w_{2}, \ldots, v_{n}+w_{n}\right) \\
c\left(v_{1}, v_{2}, \ldots, v_{n}\right) \stackrel{\text { def }}{=}\left(c v_{1}, c v_{2}, \ldots, c v_{n}\right)
\end{gathered}
$$

for $v_{i}, w_{i} \in V$ and $c \in K$.

Example 2.3. More generally, suppose A is any algebra and V is an irreducible A-representation of finite dimension n. Then $\operatorname{End}(V)=\{$ linear maps $L: V \rightarrow V\}$ is an A-representation for the action

$$
a \cdot L: v \mapsto a \cdot L(v) \quad \text { for } a \in A \text { and } v \in V
$$

This representation is semisimple with $\operatorname{End}(V) \cong V^{\oplus n}$ as A-representations. If V has basis $\left\{v_{1}, \cdots, v_{n}\right\}$ then an explicit isomorphism $\operatorname{End}(V) \xrightarrow{\sim} V^{\oplus n}$ is provided by the map $L \mapsto\left(L\left(v_{1}\right), \cdots, L\left(v_{n}\right)\right)$

2.2 Subrepresentation of semisimple representations

Our main results today are derived from the following technical property. Among other consequences, it tells us that all subrepresentations of semisimple representations are semisimple.

Proposition 2.4. Let $V_{1}, V_{2}, \cdots, V_{m}$ be a finite list of irreducible finite-dimensional A-representations with $V_{i} \not \neq V_{j}$ if $i \neq j$. Consider the A-representation $V=\bigoplus_{i=1}^{m} V_{i}^{\oplus n_{i}}$ where $n_{1}, n_{2}, \ldots, n_{m}$ are nonnegative integers. Now suppose W is a subrepresentation of V. Then:
(1) For some integers $0 \leq r_{i} \leq n_{i}$ there is an isomorphism $\phi: \bigoplus_{i=1}^{m} V_{i}^{\oplus r_{i}} \xrightarrow{\sim} W$.
(2) The map $\bigoplus_{i=1}^{m} V_{i}^{\oplus r_{i}} \xrightarrow{\phi} W \hookrightarrow V$ is a direct sum of inclusions $\phi_{i}: V_{i}^{\oplus r_{i}} \hookrightarrow V_{i}^{\oplus n_{i}}$ of the form

$$
\phi_{i}\left(a_{1}, a_{2}, \cdots, a_{r_{i}}\right)=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{r_{i}}
\end{array}\right] X_{i}
$$

where each X_{i} is a full rank $r_{i} \times n_{i}$ matrix with values in K.
Proof sketch. If $W=0$ then the proposition is trivial. Assume $W=0$.
We proceed by induction on $n \stackrel{\text { def }}{=} n_{1}+n_{2}+\cdots+n_{m}$.
If $n=1$ then we must have $0 \neq W=V$ in which case the result is again obvious.
Assume $n>1$. Since W is finite-dimensional, it has an irreducible subrepresentation P (this was shown in the HW1 exercises). Observe that $\operatorname{Hom}_{A}(P, V)=\bigoplus_{i=1}^{m} \operatorname{Hom}_{A}\left(P, V_{i}\right)^{\oplus n_{i}}$. In this equation:

- each term $\operatorname{Hom}_{A}\left(P, V_{i}\right)$ on the right side is nonzero if and only if $P \cong V_{i}$ by Schur's lemma;
- the left side is nonzero since it contains inclusion $P \hookrightarrow W \hookrightarrow V$.

Therefore P must be isomorphic to V_{i} for some i.
The inclusion $V_{i} \xrightarrow{\sim} P \hookrightarrow V_{i}^{\oplus n_{i}} \hookrightarrow V$ must be given by a map of the form

$$
v \mapsto\left(q_{1} v, \cdots, q_{n_{i}} v\right)
$$

for some scalars $q_{i} \in K$ that are not all zero. This is because composing this map with each projection

$$
\left(a_{1}, \cdots, a_{n_{i}}\right) \mapsto a_{j} \in V_{i}
$$

is a morphism of A-representations $V_{i} \rightarrow V_{i}$, which must be a scalar map by Schur's lemma.
Let $g \in \mathrm{GL}_{n_{i}}(K)=\left\{\right.$ invertible $n_{i} \times n_{i}$ matrices $\}$ act on $V_{i}^{\oplus n_{i}}$ on the right by the formula

$$
g:\left(v_{1}, v_{2}, \cdots, v_{n_{i}}\right) \mapsto\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right] g
$$

while acting on $V_{j}^{\oplus n_{j}}$ for $i \neq j$ as the identity. This gives a right action of the general linear group on V.
We may choose $g \in \mathrm{GL}_{n_{i}}(K)$ such that

$$
P g=\left\{(0,0, \cdots, 0, v): v \in V_{i}\right\} \subset V_{i}^{\oplus n_{i}}
$$

Then $W g=W^{\prime} \oplus V_{i}$ where $V_{i}=P g$ and W^{\prime} is the kernel of projection $W g \rightarrow P g$, which satisfies

$$
W^{\prime} \subset V_{1}^{\oplus n_{1}} \oplus \cdots \oplus V_{i}^{\oplus\left(n_{i}-1\right)} \oplus \cdots \oplus V_{m}^{\oplus n_{m}}
$$

Now we apply the proposition to W^{\prime} by induction, and multiply the resulting inclusion by g^{-1}.

Corollary 2.5. Assume the following setup:

- V is an irreducible finite-dimensional representation of A.
- The elements $v_{1}, v_{2}, \ldots, v_{n} \in V$ are linearly independent.
- The elements $w_{1}, w_{2}, \ldots, w_{n} \in V$ are arbitrary.

Then there exists an element $a \in A$ such that $a v_{i}=w_{i}$ for all $i=1,2, \ldots, n$.
Proof. Assume no such element exists. Then the image of A under the map

$$
a \mapsto\left(a v_{1}, \cdots, a v_{n}\right)
$$

is a proper subrepresentation of $V^{\oplus n}$, which we denote by W.
By Proposition 2.4 we know that $W \cong V^{\oplus m}$ for some $0 \leq m<n$ and there exists an inclusion

$$
\phi: V^{\oplus m} \xrightarrow{\sim} W \hookrightarrow V^{\oplus n}
$$

of the form $\phi\left(a_{1}, a_{2}, \cdots, a_{m}\right)=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{m}\end{array}\right] X$ where X is a full rank $m \times n$ matrix.
Since $\left(v_{1}, v_{2}, \cdots, v_{n}\right) \in W$, we may choose $a_{i} \in V$ such that $\phi\left(a_{1}, a_{2}, \cdots, a_{m}\right)=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$.
Also, since $m<n$, there is nonzero vector $\left[\begin{array}{r}q_{1} \\ \vdots \\ q_{n}\end{array}\right] \in K^{n}$ such that $X\left[\begin{array}{r}q_{1} \\ \vdots \\ q_{n}\end{array}\right]=0$. But now

$$
\sum_{i=1}^{n} q_{i} v_{i}=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]\left[\begin{array}{r}
q_{1} \\
\vdots \\
q_{n}
\end{array}\right]=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{m}
\end{array}\right] X\left[\begin{array}{r}
q_{1} \\
\vdots \\
q_{n}
\end{array}\right]=0
$$

which contradicts the linear independence of v_{1}, \cdots, v_{n}.

Theorem 2.6 (Density theorem). Let (V, ρ) be an irreducible, finite-dimensional A-representation. Then the $\operatorname{map} \rho: A \rightarrow \operatorname{End}(V)$ is surjective. Moreover, if $(V, \rho)=\left(V_{1}, \rho_{1}\right) \oplus \cdots \oplus\left(V_{r}, \rho_{r}\right)$ where each $\left(V_{i}, \rho_{i}\right)$ is an irreducible A-representation, then the map $\bigoplus_{i=1}^{r} \rho_{i}: A \rightarrow \bigoplus_{i=1}^{r} \operatorname{End}\left(V_{i}\right)$ is also surjective.

Proof. For the first claim, choose any $L \in \operatorname{End}(V)$ and suppose $v_{1}, v_{2}, \ldots, v_{n}$ is a basis of V. Set $w_{i}=L\left(v_{i}\right)$. By the previous corollary, some $a \in A$ has $\rho(a) v_{i}=w_{i}$ for all i which means that $\rho(a)=L$.

The second claim is nontrivial since direct sums of surjective maps are not necessarily surjective. For example, the direct sum of the identity map becomes $x \mapsto(x, x, \cdots, x)$ which is usually not surjective.

The surjective property that we wish to show will be a consequence of the second part of Proposition 2.4 .
Let $Y=\bigoplus_{i=1}^{r} \operatorname{End}\left(V_{i}\right)$. This is a semisimple A-representation as $\operatorname{End}\left(V_{i}\right) \cong V_{i}^{\oplus d_{i}}$ where $d_{i}=\operatorname{dim} V_{i}$.
By Proposition 2.4, the subrepresentation

$$
W \stackrel{\text { def }}{=}\left(\bigoplus_{i=1}^{r} \rho_{i}\right)(A) \subset Y
$$

is isomorphic to $\bigoplus_{i=1}^{r} V_{i}^{\oplus m_{i}}$ for some integers $0 \leq m_{i} \leq d_{i}$, and there is an inclusion

$$
\phi: \bigoplus_{i=1}^{r} V_{i}^{\oplus m_{i}} \xrightarrow{\sim} W \hookrightarrow Y
$$

that is given by a direct sum of inclusions $\phi_{i}: V_{i}^{\oplus m_{i}} \hookrightarrow V_{i}^{\oplus d_{i}}$.
Since each ρ_{i} is surjective, the composition of this inclusion with the projection $Y \rightarrow \operatorname{End}\left(V_{i}\right)$ is surjective.
Hence each ϕ_{i} is surjective and $m_{i}=d_{i}$. This shows that $\bigoplus_{i} \rho_{i}$ is surjective.

