This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

In the last lecture we defined semisimple representations, which are representations isomorphic to direct sums of irreducible representations.

Notation. If $V_{1}, V_{2}, \ldots, V_{n}$ are vector spaces, then we view elements of the direct sum $V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}$ either as tuples $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ or as row vectors $\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ where each $v_{i} \in V_{i}$.

Assume A is an algebra defined over an algebraically closed field K.
We proved the following technical result last time:

Proposition 1.1. Suppose $V_{1}, V_{2}, \cdots, V_{m}$ are irreducible, pairwise non-isomorphic, finite-dimensional A-representations. Choose positive integers $n_{1}, n_{2}, \ldots, n_{m}$ and define $V=\bigoplus_{i=1}^{m} V_{i}^{\oplus n_{i}}$. Then any subrepresentation W of V has $W \cong \bigoplus_{i=1}^{m} V_{i}^{\oplus r_{i}}$ for some integers $0 \leq r_{i} \leq n_{i}$, and there is an isomorphism

$$
\phi: \bigoplus_{i=1}^{m} V_{i}^{\oplus r_{i}} \xrightarrow{\sim} W
$$

that sends $x=[\underbrace{x_{11} x_{12} \cdots x_{1 r_{1}}}_{\in V_{1}} \underbrace{x_{21} x_{22} \cdots x_{2 r_{2}}}_{\in V_{2}} \cdots] \in \bigoplus_{i=1}^{m} V_{i}^{\oplus r_{i}}$ to $x M \in W$, where M is a full rank, block diagonal matrix with entries in K, whose successive blocks have size $r_{i} \times n_{i}$ for $i=1,2, \ldots, m$.

Here are two consequences of this proposition:

- If V is an irreducible finite dimensional A-representation and $v_{1}, v_{2}, \ldots, v_{n} \in V$ are linearly independent, then the map $a \mapsto\left(a v_{1}, \ldots, a v_{n}\right)$ is a surjection $A \rightarrow V^{\oplus n}$.
- Density theorem: If $(V, \rho)=\bigoplus_{i=1}^{r}\left(V_{i}, \rho_{i}\right)$ is a direct sum of pairwise non-isomorphic, irreducible, finite dimensional A-representations, then $\bigoplus_{i=1}^{r} \rho_{i}: A \rightarrow \bigoplus_{i=1}^{r} \operatorname{End}\left(V_{i}\right)$ is surjective.

2 Matrix algebras

We have already seen that the algebra of all $n \times n$ matrices over K has a unique isomorphism class of irreducible representations. We can generalize this to block diagonal matrix algebras.
Choose integers $d_{1}, d_{2}, \ldots, d_{r}>0$.
Let $A=\bigoplus_{i=1}^{r} \operatorname{Mat}_{d_{i}}(K)$ where we define $\operatorname{Mat}_{d}(K)$ to be the algebra of $d \times d$ matrices over K.
Set $n=\sum_{i=1}^{r} d_{i}$. Then we can view A as the subalgebra of $\operatorname{Mat}_{n}(K)$ consisting of all block diagonal matrices with successive blocks of size $d_{i} \times d_{i}$.

The vector space K^{n} is automatically an A-representation. We construct a sequence of sub-representations:
Let $V_{1} \subseteq K^{n}$ be the subspace of vectors with zeros outside rows $1,2, \ldots, d_{1}$
Let $V_{2} \subseteq K^{n}$ be the subspace of vectors with zeros outside rows $d_{1}+1, d_{1}+2, \ldots, d_{1}+d_{2}$.
Let $V_{3} \subseteq K^{n}$ be the subspace of vectors with zeros outside rows $d_{1}+d_{2}+1, d_{1}+d_{2}+2, \ldots, d_{1}+d_{2}+d_{3}$.
Define V_{4}, \ldots, V_{r} analogously, so $V_{r} \subseteq K^{n}$ is the subspace of vectors with zeros outside the last d_{r} rows. As vector spaces, we have $V_{i} \cong K^{d_{i}}$.

Theorem 2.1. In this setup, each V_{i} is an irreducible A-representation, and every finite-dimensional A-representation is isomorphic to a direct sum of zero or more copies of $V_{1}, V_{2}, \ldots, V_{r}$.
Before proving this theorem, we introduce another definition.
Definition 2.2. Suppose (V, ρ) is an A-representation.
Let V^{*} be the vector space of all K-linear maps $\lambda: V \rightarrow K$.
Then let $\rho^{*}: A \rightarrow \operatorname{End}\left(V^{*}\right)$ be the linear map defined by

$$
\rho^{*}(a)(\lambda): x \mapsto \lambda(\rho(a)(x)) \quad \text { for } a \in A \text { and } \lambda \in V^{*}
$$

We refer to the pair $\left(V^{*}, \rho^{*}\right)$ as the dual of (V, ρ).
It is a representation of the opposite algebra A^{op}.
Fact 2.3. For $A=\bigoplus_{i=1}^{r} \operatorname{Mat}_{d_{i}}(K) \subseteq \operatorname{Mat}_{n}(K)$, the usual matrix transpose map $X \mapsto X^{\top}$ is an algebra isomorphism $A \cong A^{\text {op }}$.

Given a linear map between vector spaces $L: V \rightarrow W$, define $L^{*}: W^{*} \rightarrow V^{*}$ by $L^{*}(f)=f \circ L$.
Fact 2.4. If L is injective then L^{*} is surjective, and if L is surjective then L^{*} is injective.
Proof of Theorem 2.1. It is easy to see that each V_{i} is an irreducible A-representation, as each nonzero element of V_{i} is cyclic for the action of A.

Let X be some finite m-dimensional representation of A where $m<\infty$.
Then X^{*} is representation of $A^{\text {op }} \cong A$.
In other words, X^{*} can be viewed as an A-representation for the action

$$
a \cdot \lambda: x \mapsto \lambda\left(a^{\top} x\right) \quad \text { for } x \in X, \lambda \in X^{*}, a \in A
$$

Choose a basis $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ for X^{*}. Then let $\phi: A \oplus A \oplus \cdots \oplus A=A^{\oplus m} \rightarrow X^{*}$ be the map

$$
\phi\left(a_{1}, a_{2}, \ldots, a_{m}\right)=a_{1} \lambda_{1}+a_{2} \lambda_{2}+\cdots+a_{m} \lambda_{m}
$$

Because $K \subset A$, this map is surjective. Therefore, the dual map $\phi^{*}: X \rightarrow\left(A^{\oplus m}\right)^{*}$ is injective.
$\underline{\text { Key claim: The } A \text {-representations }\left(A^{\oplus m}\right)^{*} \text { and } A^{\oplus m} \text { are isomorphic. }}$
If we can prove this, then it will follow that X is isomorphic to a subrepresentation of $A^{\oplus m}$. As we have $A \cong \bigoplus_{i=1}^{r} V_{i}^{\oplus d_{i}}$ as A-representations (the isomorphism is provided by viewing a matrix as a tuple of column vectors), we would then get

$$
X \cong\left(\text { a subrepresentation of } A^{\oplus m} \cong \bigoplus_{i=1}^{r} V_{i}^{\oplus m d_{i}}\right)
$$

which by our technical proposition would imply that $X \cong \bigoplus_{i=1}^{r} V_{i}^{\oplus s_{i}}$ for some integers $s_{i} \geq 0$ as desired.

We will only explain the $m=1$ case of the key claim.
Let A act on A^{*} by $a \cdot \lambda: x \mapsto \lambda\left(a^{\top} x\right)$ for $a \in A$ and $\lambda \in A^{*}$. Define $\Theta: A \rightarrow A^{*}$ to be the linear map

$$
\Theta: a \mapsto\left(x \mapsto \operatorname{tr}\left(a^{\top} x\right)\right)
$$

Then Θ is a bijection since it is a nonzero linear map with trivial kernel between finite-dimensional vector spaces of the same dimension. It is also a homomorphism of A-representations since we have

$$
\Theta(g h)(x)=\operatorname{tr}\left(h^{\top} g^{\top} x\right)=\Theta(h)\left(g^{\top} x\right)=(g \cdot \Theta(h))(x) \quad \text { for } g, h, x \in A
$$

which implies that $\Theta(g h)=g \cdot \Theta(h)$. Thus $\Theta: A \xrightarrow{\sim} A^{*}$ is an isomorphism of A-representations.

3 Filtrations

Continue to let A be an algebra. Suppose V is an A-representation.
Definition 3.1. A filtration of V is a finite, increasing sequence of subspaces

$$
0=V_{0} \subset V_{1} \subset \cdots \subset V_{n}=V
$$

where each V_{i} is sub-representation of V.
Lemma 3.2. If $\operatorname{dim} V<\infty$ then V has a filtration in which each quotient V_{i} / V_{i-1} is an irreducible A-representation.

Proof. We argue by induction on $\operatorname{dim} V$.
If $\operatorname{dim} V \leq 1$ then the result is trivial: just take $n=1$ and $V_{n}=V$.
Assume $\operatorname{dim} V>1$ and choose any irreducible subrepresentation $V_{1} \subset V$.
Then let $U=V / V_{1}$. By induction there is a filtration

$$
0=U_{0} \subset U_{1} \subset \cdots \subset U_{n-1}=U
$$

in which each quotient U_{i} / U_{i-1} is irreducible.
Let V_{i} be the preimage of U_{i-1} under the quotient map $V \rightarrow V / V_{1}=U$. Then

$$
0=V_{0} \subset V_{1} \subset \cdots \subset V_{n}=V
$$

gives the desired filtration, since $V_{i} / V_{i-1} \cong\left(V_{i} / V_{1}\right) /\left(V_{i-1} / V_{1}\right)=U_{i-1} / U_{i-2}$ for $i>1$.

3.1 Radicals of finite-dimensional algebras

Assume that A is an algebra with $\operatorname{dim} A<\infty$.
Definition 3.3. The radical of A is the set of elements $a \in A$ that act as zero in every irreducible representation of A. Let $\operatorname{Rad}(A)$ denote this set of elements.

Proposition 3.4. The set $\operatorname{Rad}(A)$ is a two-sided ideal of A.
Proof. The set $\operatorname{Rad}(A)$ is a subspace of A since if (V, ρ) is a representation then

$$
\rho(x)=0 \Longrightarrow \rho(c x)=c \rho(x)=0 \quad \text { and } \quad \rho(x)=0=\rho(y) \Longrightarrow \rho(x+y)=\rho(x)+\rho(y)=0
$$

for all $x, y \in A$ and $c \in K$. It is also a two-sided ideal since if $a, b \in A$ then

$$
\rho(x)=0 \Longrightarrow \rho(a x b)=\rho(a) \rho(x) \rho(b)=0
$$

Let I be a two-sided idea in A. For integers $n \geq 1$, let $I^{n}=K-\operatorname{span}\left\{x_{1} x_{2} \cdots x_{n}: x_{i} \in I\right\}$.
We say that I is nilpotent if $I^{n}=0$ for some $n>0$.
For example, the subspace of strictly upper triangular matrices is a nilpotent ideal in the algebra of all upper triangular $n \times n$ matrices over K.

Proposition 3.5. If I is a nilpotent two-sided ideal in A then $I \subseteq \operatorname{Rad}(A)$.
Proof. Suppose I is a nilpotent two-sided ideal with $I^{n}=0$. Choose any irreducible A-representation V and pick $0 \leq v \in V$. Then the subspace $I v \stackrel{\text { def }}{=}\{x v: x \in I\}$ is a subrepresentation. If $I v=V$ then there is some $x \in I$ with $x v=v$, which is impossible as $x^{n}=0$. Therefore $I v=0$ as it is a proper subrepresntation of an irreducible representation. Since V was arbitrary, it follows that $I \subseteq \operatorname{Rad}(A)$.

The following shows that $\operatorname{Rad}(A)$ is precisely the largest nilpotent two-sided ideal in A.

Proposition 3.6. $\operatorname{Rad}(A)$ is a nilpotent two-sided ideal.

Proof. Since $\operatorname{dim} A<\infty$, the previous section shows that there exists a filtration of the regular representation $0=A_{0} \subset A_{1} \subset \cdots \subset A_{n}=A$ in which each quotient A_{i} / A_{i-1} is irreducible as an A-representation.
Each $x \in \operatorname{Rad}(A)$ acts as zero on A_{i} / A_{i-1}, which means that $x A_{i} \subset A_{i-1}$.
Therefore if $x_{1}, x_{2}, \cdots \in \operatorname{Rad}(A)$ then $x_{1} x_{2} \cdots x_{i} A \subset A_{n-i}$ and $x_{1} x_{2} \cdots x_{n} A=0$. Hence $\operatorname{Rad}(A)^{n}=0$.

4 Representations of finite-dimensional algebras

As a final application today, we can "classify" all representations of finite-dimensional algebras.
Theorem 4.1. Suppose A is a finite-dimensional algebra. Then A has finitely many isomorphism classes of irreducible representations $V_{1}, V_{2}, \ldots, V_{r}$ and $A / \operatorname{Rad}(A) \cong \bigoplus_{i=1}^{r} \operatorname{End}\left(V_{i}\right)$ as K-algebras. Moreover, every irreducible A-representation is finite-dimensional.

Notice that since $\operatorname{dim} V_{i}$ is finite, we have $\operatorname{End}\left(V_{i}\right) \cong \operatorname{Mat}_{d}(K)$ for $d=\operatorname{dim} V_{i}$.
Therefore $A / \operatorname{Rad}(A)$ is isomorphic to a block diagonal matrix algebra of the form considered earlier today.
Proof. Suppose V is an A-representation.
If $0 \neq x \in V$ then $A x$ is a nonzero subrepresentation of dimension at most $\operatorname{dim} A<\infty$.
Therefore, if V is irreducible then we must have $V=A x$ and $\operatorname{dim} V \leq \operatorname{dim} A<\infty$.
Now suppose $\left(V_{1}, \rho_{1}\right), \ldots,\left(V_{r}, \rho_{r}\right)$ are pairwise non-isomorphic, irreducible A-representations.
By the density theorem, the direct sum

$$
\phi=\bigoplus_{i=1}^{r} \rho_{i}: A \rightarrow \bigoplus_{i=1}^{r} \operatorname{End}\left(V_{i}\right)
$$

is a surjective map. Since each $\operatorname{End}\left(V_{i}\right)$ has dimension $\left(\operatorname{dim} V_{i}\right)^{2}$, we have

$$
r \leq \sum_{i=1}^{r}\left(\operatorname{dim} V_{i}\right)^{2} \leq \operatorname{dim} A<\infty
$$

Thus r cannot be arbitrarily large, so the number of distinct isomorphism classes of irreducible A representations is finite and at most $\operatorname{dim} A$.

Finally assume r is maximal above, so that every irreducible A-representation is isomorphic to some V_{i}.
Then $\operatorname{Rad}(A)=\operatorname{ker}(\phi)$ so ϕ passes to an isomorphism $A / \operatorname{Rad}(A) \cong \bigoplus_{i=1}^{r} \operatorname{End}\left(V_{i}\right)$.

Corollary 4.2. If $V_{1}, V_{2}, \ldots, V_{r}$ are pairwise non-isomorphic irreducible representations of a finitedimensional algebra A then $\sum_{i=1}^{r}\left(\operatorname{dim} V_{i}\right)^{2} \leq \operatorname{dim} A$.

