
MATH 5112 (Spring 2024) Lecture 6 (transcribed by Tsz-Kin CHAN)

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

In the last lecture we defined semisimple representations, which are representations isomorphic to direct
sums of irreducible representations.

Notation. If V1, V2, . . . , Vn are vector spaces, then we view elements of the direct sum V1⊕V2⊕· · ·⊕Vn
either as tuples (v1, v2, . . . , vn) or as row vectors

[
v1 v2 . . . vn

]
where each vi ∈ Vi.

Assume A is an algebra defined over an algebraically closed field K.

We proved the following technical result last time:

Proposition 1.1. Suppose V1, V2, · · · , Vm are irreducible, pairwise non-isomorphic, finite-dimensional
A-representations. Choose positive integers n1, n2, . . . , nm and define V =

⊕m
i=1 V

⊕ni
i . Then any sub-

representation W of V has W ∼=
⊕m

i=1 V
⊕ri
i for some integers 0 ≤ ri ≤ ni, and there is an isomorphism

φ :

m⊕
i=1

V ⊕rii
∼−→W

that sends x =

[
x11 x12 · · ·x1r1︸ ︷︷ ︸

∈V1

x21 x22 · · · x2r2︸ ︷︷ ︸
∈V2

· · · ]
∈
⊕m

i=1 V
⊕ri
i to xM ∈ W , where M is a full

rank, block diagonal matrix with entries in K, whose successive blocks have size ri×ni for i = 1, 2, . . . ,m.

Here are two consequences of this proposition:

• If V is an irreducible finite dimensional A-representation and v1, v2, . . . , vn ∈ V are linearly inde-
pendent, then the map a 7→ (av1, . . . , avn) is a surjection A→ V ⊕n.

• Density theorem: If (V, ρ) =
⊕r

i=1(Vi, ρi) is a direct sum of pairwise non-isomorphic, irreducible,
finite dimensional A-representations, then

⊕r
i=1 ρi : A→

⊕r
i=1 End(Vi) is surjective.

2 Matrix algebras

We have already seen that the algebra of all n × n matrices over K has a unique isomorphism class of
irreducible representations. We can generalize this to block diagonal matrix algebras.

Choose integers d1, d2, . . . , dr > 0.

Let A =
⊕r

i=1 Matdi(K) where we define Matd(K) to be the algebra of d× d matrices over K.

Set n =
∑r

i=1 di. Then we can view A as the subalgebra of Matn(K) consisting of all block diagonal
matrices with successive blocks of size di × di.

The vector spaceKn is automatically anA-representation. We construct a sequence of sub-representations:

Let V1 ⊆ Kn be the subspace of vectors with zeros outside rows 1, 2, . . . , d1

Let V2 ⊆ Kn be the subspace of vectors with zeros outside rows d1 + 1, d1 + 2, . . . , d1 + d2.

Let V3 ⊆ Kn be the subspace of vectors with zeros outside rows d1 + d2 + 1, d1 + d2 + 2, . . . , d1 + d2 + d3.

Define V4, . . . , Vr analogously, so Vr ⊆ Kn is the subspace of vectors with zeros outside the last dr rows.

As vector spaces, we have Vi ∼= Kdi .
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Theorem 2.1. In this setup, each Vi is an irreducible A-representation, and every finite-dimensional
A-representation is isomorphic to a direct sum of zero or more copies of V1, V2, . . . , Vr.

Before proving this theorem, we introduce another definition.

Definition 2.2. Suppose (V, ρ) is an A-representation.

Let V ∗ be the vector space of all K-linear maps λ : V → K.

Then let ρ∗ : A→ End(V ∗) be the linear map defined by

ρ∗(a)(λ) : x 7→ λ(ρ(a)(x)) for a ∈ A and λ ∈ V ∗.

We refer to the pair (V ∗, ρ∗) as the dual of (V, ρ).

It is a representation of the opposite algebra Aop.

Fact 2.3. For A =
⊕r

i=1 Matdi(K) ⊆ Matn(K), the usual matrix transpose map X 7→ X> is an algebra
isomorphism A ∼= Aop.

Given a linear map between vector spaces L : V →W , define L∗ : W ∗ → V ∗ by L∗(f) = f ◦ L.

Fact 2.4. If L is injective then L∗ is surjective, and if L is surjective then L∗ is injective.

Proof of Theorem 2.1. It is easy to see that each Vi is an irreducible A-representation, as each nonzero
element of Vi is cyclic for the action of A.

Let X be some finite m-dimensional representation of A where m <∞.

Then X∗ is representation of Aop ∼= A.

In other words, X∗ can be viewed as an A-representation for the action

a · λ : x 7→ λ(a>x) for x ∈ X, λ ∈ X∗, a ∈ A.

Choose a basis {λ1, . . . , λm} for X∗. Then let φ : A⊕A⊕ · · · ⊕A = A⊕m → X∗ be the map

φ(a1, a2, . . . , am) = a1λ1 + a2λ2 + · · ·+ amλm.

Because K ⊂ A, this map is surjective. Therefore, the dual map φ∗ : X → (A⊕m)∗ is injective.

Key claim: The A-representations (A⊕m)∗ and A⊕m are isomorphic.

If we can prove this, then it will follow that X is isomorphic to a subrepresentation of A⊕m. As we have
A ∼=

⊕r
i=1 V

⊕di
i as A-representations (the isomorphism is provided by viewing a matrix as a tuple of

column vectors), we would then get

X ∼=

(
a subrepresentation of A⊕m ∼=

r⊕
i=1

V ⊕mdi
i

)
,

which by our technical proposition would imply that X ∼=
⊕r

i=1 V
⊕si
i for some integers si ≥ 0 as desired.

We will only explain the m = 1 case of the key claim.

Let A act on A∗ by a · λ : x 7→ λ(a>x) for a ∈ A and λ ∈ A∗. Define Θ : A→ A∗ to be the linear map

Θ : a 7→ (x 7→ tr(a>x)).
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Then Θ is a bijection since it is a nonzero linear map with trivial kernel between finite-dimensional vector
spaces of the same dimension. It is also a homomorphism of A-representations since we have

Θ(gh)(x) = tr(h>g>x) = Θ(h)(g>x) = (g ·Θ(h))(x) for g, h, x ∈ A,

which implies that Θ(gh) = g ·Θ(h). Thus Θ : A
∼−→ A∗ is an isomorphism of A-representations.

3 Filtrations

Continue to let A be an algebra. Suppose V is an A-representation.

Definition 3.1. A filtration of V is a finite, increasing sequence of subspaces

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

where each Vi is sub-representation of V .

Lemma 3.2. If dimV < ∞ then V has a filtration in which each quotient Vi/Vi−1 is an irreducible
A-representation.

Proof. We argue by induction on dimV .

If dimV ≤ 1 then the result is trivial: just take n = 1 and Vn = V .

Assume dimV > 1 and choose any irreducible subrepresentation V1 ⊂ V .

Then let U = V/V1. By induction there is a filtration

0 = U0 ⊂ U1 ⊂ · · · ⊂ Un−1 = U

in which each quotient Ui/Ui−1 is irreducible.

Let Vi be the preimage of Ui−1 under the quotient map V → V/V1 = U . Then

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

gives the desired filtration, since Vi/Vi−1 ∼= (Vi/V1)/(Vi−1/V1) = Ui−1/Ui−2 for i > 1.

3.1 Radicals of finite-dimensional algebras

Assume that A is an algebra with dimA <∞.

Definition 3.3. The radical of A is the set of elements a ∈ A that act as zero in every irreducible
representation of A. Let Rad(A) denote this set of elements.

Proposition 3.4. The set Rad(A) is a two-sided ideal of A.

Proof. The set Rad(A) is a subspace of A since if (V, ρ) is a representation then

ρ(x) = 0 =⇒ ρ(cx) = cρ(x) = 0 and ρ(x) = 0 = ρ(y) =⇒ ρ(x+ y) = ρ(x) + ρ(y) = 0

for all x, y ∈ A and c ∈ K. It is also a two-sided ideal since if a, b ∈ A then

ρ(x) = 0 =⇒ ρ(axb) = ρ(a)ρ(x)ρ(b) = 0.
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Let I be a two-sided idea in A. For integers n ≥ 1, let In = K-span{x1x2 · · ·xn : xi ∈ I}.

We say that I is nilpotent if In = 0 for some n > 0.

For example, the subspace of strictly upper triangular matrices is a nilpotent ideal in the algebra of all
upper triangular n× n matrices over K.

Proposition 3.5. If I is a nilpotent two-sided ideal in A then I ⊆ Rad(A).

Proof. Suppose I is a nilpotent two-sided ideal with In = 0. Choose any irreducible A-representation

V and pick 0 ≤ v ∈ V . Then the subspace Iv
def
= {xv : x ∈ I} is a subrepresentation. If Iv = V then

there is some x ∈ I with xv = v, which is impossible as xn = 0. Therefore Iv = 0 as it is a proper
subrepresntation of an irreducible representation. Since V was arbitrary, it follows that I ⊆ Rad(A).

The following shows that Rad(A) is precisely the largest nilpotent two-sided ideal in A.

Proposition 3.6. Rad(A) is a nilpotent two-sided ideal.

Proof. Since dimA <∞, the previous section shows that there exists a filtration of the regular represen-
tation 0 = A0 ⊂ A1 ⊂ · · · ⊂ An = A in which each quotient Ai/Ai−1 is irreducible as an A-representation.

Each x ∈ Rad(A) acts as zero on Ai/Ai−1, which means that xAi ⊂ Ai−1.

Therefore if x1, x2, · · · ∈ Rad(A) then x1x2 · · ·xiA ⊂ An−i and x1x2 · · ·xnA = 0. Hence Rad(A)n = 0.

4 Representations of finite-dimensional algebras

As a final application today, we can “classify” all representations of finite-dimensional algebras.

Theorem 4.1. Suppose A is a finite-dimensional algebra. Then A has finitely many isomorphism classes
of irreducible representations V1, V2, . . . , Vr and A/Rad(A) ∼=

⊕r
i=1 End(Vi) as K-algebras. Moreover,

every irreducible A-representation is finite-dimensional.

Notice that since dimVi is finite, we have End(Vi) ∼= Matd(K) for d = dimVi.

Therefore A/Rad(A) is isomorphic to a block diagonal matrix algebra of the form considered earlier today.

Proof. Suppose V is an A-representation.

If 0 6= x ∈ V then Ax is a nonzero subrepresentation of dimension at most dimA <∞.

Therefore, if V is irreducible then we must have V = Ax and dimV ≤ dimA <∞.

Now suppose (V1, ρ1), . . . , (Vr, ρr) are pairwise non-isomorphic, irreducible A-representations.

By the density theorem, the direct sum

φ =

r⊕
i=1

ρi : A→
r⊕

i=1

End(Vi)

is a surjective map. Since each End(Vi) has dimension (dimVi)
2, we have

r ≤
r∑

i=1

(dimVi)
2 ≤ dimA <∞

Thus r cannot be arbitrarily large, so the number of distinct isomorphism classes of irreducible A-
representations is finite and at most dimA.
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Finally assume r is maximal above, so that every irreducible A-representation is isomorphic to some Vi.

Then Rad(A) = ker(φ) so φ passes to an isomorphism A/Rad(A) ∼=
⊕r

i=1 End(Vi).

Corollary 4.2. If V1, V2, . . . , Vr are pairwise non-isomorphic irreducible representations of a finite-
dimensional algebra A then

∑r
i=1(dimVi)

2 ≤ dimA.
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