MATH 5112 (Spring 2024) Lecture 7 (transcribed by MA Junwei)

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

Let K be an algebraically closed field.

For integers n > 0, let Mat,, (K) be the algebra of n x n matrices over K.

Remember that if V' is an n-dimensional K-vector space, then End(V) & Mat,, (K).

Theorem 1.1. Suppose A = @), Matg, (K) for some integers di,ds,...,d, > 0. For each index

i € {1,2,...,r}, A has an irreducible representation V; of dimension d;, and every finite-dimensional
representation of A is a direct sum of copies of Vi, Vs, ..., V., which are pairwise non-isomorphic.

If we view A C Mat,,(K) as a subalgebra of block diagonal n x n matrices where n =dy +ds + - - + d,,
then we can construct V; as the subspace of vectors in K" with zeros outside the rows indexed by

(d1 +d2+--'+di,1)+{1727...,di}.

Lemma 1.2. Suppose A is any K-algebra with a finite-dimensional representation V. There exists a
finite filtration 0 = Vp C V4 C - -+ C V,, = V where each V; is a subrepresentation with V;/V;_1 irreducible.

Let A be any K-algebra with dim(A) < co. The radical of A is

Rad(A) ef {the elements in A that act as zero in every irreducible representation of A}
= (the largest nilpotent 2-sided ideal in A).

Theorem 1.3. A finite-dimensional algebra A has finitely many irreducible representations V7, ...,V
up to isomorphism, each representation V; has finite dimension d; = dim(V;), and it holds that

A/Rad(A) = @ End(V;) & @ Matg, (K).

Since each End(V;) has dimension d? = dim(V;)?, it follows that:
Corollary 1.4. If dim A < oo, then dim A — dimRad(A) = }_;_, dim(V;)? < dim A.

Example 1.5. Suppose A = K]z]/(z™) where n > 1. Then we can view A as the vector space
A =K-span{l,z,..., 2" '}
The fact that
2" =0in A = if (p,V) is a finite-dimensional representation of A, then exists a basis for V
in which matrix of p(z) is strictly upper triangular
= if V is irreducible, then p(z) = 0 and dimV = 1.
Thus A/Rad(A) = End(K) = K.
Note that we can see directly that Rad(A) = (z) as this is the largest nilpotent two-sided ideal in A.

Example 1.6. Suppose A is the subalgebra of upper-triangular matrices in Mat,, (K).

Let (V;, p;) be the representation of A in which V; = K and p; : A — End(K) = K sends a € A to the
scalar p;(a) = a4 (the diagonal entry of a in row i) for i = 1,2,...,n.
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One can check that representations are irreducible and pairwise-non-isomorphic.

They give all irreducible representations of A (up to isomorphism) since
Rad(A) = {strictly upper-triangular matrices in Mat,, (K)},
as this is the largest nilpotent two-sided ideal in A, and so

A/Rad(A) 2 K" = there are exactly n isomorphism classes of irreducible A-representations.

2 Semisimple algebras

Our main new results today concern the following class of algebras.

Definition 2.1. A finite-dimensional algebra A is called semisimple if Rad(A) = 0.

Recall that a representation is semisimple if it is a direct sum of irreducible representations.

Proposition 2.2. Assume A is an algebra over K with dim A < co. The following are equivalent:
(1) A is semisimple.
(2) >0, dim(V;)? = dim A where V; are the distinct isomorphism classes of irreducible A-representations.
(3) A= @;_, Maty, (K) for some integers dy,da, ...,d, >0

(4) Any finite-dimensional representation of A is semisimple.

(5)

5) The regular representation of A is semisimple.

Proof. We have (1) <= (2) since dim A — dimRad(A) = Y_/_, dim(V;).

The implication (1) = (3) is Theorem Conversely, (3) + Theorem [L1]=> (2) = (1).
We conclude that (1) < (3).

Now we claim that (3) = (4) = (5) = (3).
The implication (3) = (4) holds by Theorem [I.I|and (4) = (5) is trivial.

To show that (5) = (3), assume (5). Then we can write A = @;_, d;V; where V;,V5,...,V, are
irreducible and pairwise-non-isomorphic, since the regular representation of A is semisimple.

Now consider End 4(A) = {morphisms A — A as A-representations} = Hom (A4, A).
Schur’s lemma tells us that
e End,s(V;) = K so End4(d;V;) = Matg, (K), and
o Homyu(V;,V;) = 0if i # j, so Homa(d; Vi, d;V;) = 0if i # j.
Thus, we compute End4(A) = Homy (A, A) = @U Hom(d;V;, d;V;) = @, Matg, (K).
Exercise: Show that (Ends(A))°® 2 A or equivalently that End4(A4) & A°P.
Last time: There is an isomorphism (€D, Maty, (K))® = @, Maty, (K) afforded by the transpose map.
Thus we have A = (Enda(A))%® = (@, Matg, (K))*® = ), Matg, (K).
This is property (3), so (5) = (3) as desired. O
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3 Characters

Let A be an algebra. Suppose (V, p) is a finite-dimensional representation of A.

Definition 3.1. The character of (V, p) is the linear map x(v,,) : A — K with the formula

X(v,p) (@) = tr(p(a)) fora € A.

How can we compute the trace of ¢ € End(V)?

First choose a basis €1, ea, ..., e, of V. Then tr(¢) = > ., (coefficient of e; in ¢(e;)).

Some basic and well-known facts about traces:
(1) The method just given to compute the trace does not depend on the choice of basis.
(2) We have tr(¢1¢p2) = tr(papr) for all ¢1, 2 € End(V), so tr(digag; ') = tr(pa) if ¢ is invertible.
(3) If (Vi, p1) = (Va, p2) are finite-dimensional A-representations then x(v;,p,) = X(va,ps)-

To abbreviate, we will sometimes write xy instead of x(v,,)-

def

Let [A, A] = K-span {[a, b = ab—"ba:a,be A}. We view this as just a vector space.

Fact 3.2. We always have [A, A] C ker(x(v,p))
Proof. Let x = x(v,p). Then x(ab — ba) = tr(p(ab)) — tr(p(ba)) = tr(p(a)p(b)) — tr(p(b)p(a)) =0 O
In the following theorem, dim A is not required to be finite.

Theorem 3.3. The characters of any list of non-isomorphic irreducible finite-dimensional A-representations
are linearly independent (and, in particular, are distinct).

Proof. Suppose (V1,p1), (Va, p2),..., (Vi pr) are pairwise non-isomorphic irreducible finite-dimensional
A-representations. Let x; = Xx(v;,p,)- By the density theorem, the map

pL®- - ®pr: A= End(Vy) @ --- @ End(V;)

is surjective. Therefore, if Y., Aixi(a) = 0 for all a € A for some coefficients A1, Ao, ..., A, € K, then
Z Aitr(M;) =0 for any M; € End(V;) chosen independently,
i=1

which is only possible if Ay = Ay =--- = A, =0. 0
We say that a character x(v,, is irreducible if (V, p) is irreducible.

Theorem 3.4. Assume A is semisimple and dim A < oco. Then the irreducible characters of A are a
basis for the vector space (A/[A, A])* of linear maps A/[A, A] — K.

Proof. Each character x has [A4, A] C ker(x), so x belongs to (A/[A, A])*.

Since A = Maty, (K) @ - - - ® Maty, (K) it follows that [A, A] = @]_, [Mat,, (K), Matg, (K)].

We claim that [Maty(K), Matq(K)] = sl4(K), where sl4(K) is the vector space of d x d matrices over K
with zero trace. To prove the claim, note that the trace map certainly vanishes on [Matq(K), Matq(K)]
and that sl;(K) is spanned by the commutators

E;; = [Ei, Exjl fori#j and E; — Eit1 41 = [Eiit1, Pit1,4]
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where E;; is the elementary matrix with 1 in entry (7,7) and 0 elsewhere.
With the claim proved, we have A/[A, A] 2 K" since Maty(K)/sl;(K) = K.

Finally, we know that A has r distinct irreducible characters (by Theorem , and these are linearly
independent elements of (A/[A, A])*, so they must be a basis as dim(A/[4, A])* = dim(A/[A, A]) =r. O

4 Two general results

We finish today with two general results that can be applied to algebras A that are not necessarily
semisimple. Assume dim A < co. Let V' be a finite-dimensional representation of A.

Theorem 4.1. (Jordan-Hélder theorem) Suppose we have filtrations

0=VcWVic---CcV,=V and 0=VyjCcV/C---CV, =V
where V; and V; are subrepresentations such that the quotients W; “y /Vi—1 and W/ o V! V], are
irreducible. Then n = m and there exists a permutation o of {1,2,...,n} such that W) = W/ for all i.
We call the common length m = n of these filtrations the length of the representation V.
Proof. We can give a simple proof when char(K) = 0. In this case, it follows by a homework exercise
that xv = xw + xv,/w if A is any subrepresentation of V, and so we have xv = >/ xw, = Y1) Xw!-
Then we can deduce the theorem by the linear independence of the irreducible characters of A.

This argument does not work for char(K) = p > 0, because the multiplicities of the irreducible characters
in the decomposition of xy could be multiples of p. One can handle this case by a more involved inductive
argument; see the textbook for the details. O

We maintain the same setup for A and V in the next theorem.

Theorem 4.2. (Krull-Schmidt theorem) There is a decomposition of V', which is unique up to isomor-
phism and rearrangement of factors, as a direct sum of indecomposable A-representations.

We will give the proof next time. While the existence of such a decomposition follows pretty easily by
induction on dim V', the uniqueness claim in the theorem is nontrivial.
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