This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

Let \mathbb{K} be an algebraically closed field.
For integers $n>0$, let $\operatorname{Mat}_{n}(\mathbb{K})$ be the algebra of $n \times n$ matrices over \mathbb{K}.
Remember that if V is an n-dimensional \mathbb{K}-vector space, then $\operatorname{End}(V) \cong \operatorname{Mat}_{n}(\mathbb{K})$.
Theorem 1.1. Suppose $A=\bigoplus_{i=1}^{r} \operatorname{Mat}_{d_{i}}(\mathbb{K})$ for some integers $d_{1}, d_{2}, \ldots, d_{r}>0$. For each index $i \in\{1,2, \ldots, r\}, A$ has an irreducible representation V_{i} of dimension d_{i}, and every finite-dimensional representation of A is a direct sum of copies of $V_{1}, V_{2}, \ldots, V_{r}$, which are pairwise non-isomorphic.
If we view $A \subseteq \operatorname{Mat}_{n}(\mathbb{K})$ as a subalgebra of block diagonal $n \times n$ matrices where $n=d_{1}+d_{2}+\cdots+d_{r}$, then we can construct V_{i} as the subspace of vectors in \mathbb{K}^{n} with zeros outside the rows indexed by

$$
\left(d_{1}+d_{2}+\cdots+d_{i-1}\right)+\left\{1,2, \ldots, d_{i}\right\} .
$$

Lemma 1.2. Suppose A is any K-algebra with a finite-dimensional representation V. There exists a finite filtration $0=V_{0} \subset V_{1} \subset \cdots \subset V_{n}=V$ where each V_{i} is a subrepresentation with V_{i} / V_{i-1} irreducible.

Let A be any \mathbb{K}-algebra with $\operatorname{dim}(A)<\infty$. The radical of A is

$$
\begin{aligned}
\operatorname{Rad}(A) & \stackrel{\text { def }}{=}\{\text { the elements in } A \text { that act as zero in every irreducible representation of } A\} \\
& =(\text { the largest nilpotent } 2 \text {-sided ideal in } A)
\end{aligned}
$$

Theorem 1.3. A finite-dimensional algebra A has finitely many irreducible representations V_{1}, \ldots, V_{r} up to isomorphism, each representation V_{i} has finite dimension $d_{i}=\operatorname{dim}\left(V_{i}\right)$, and it holds that

$$
A / \operatorname{Rad}(A) \cong \bigoplus_{i=1}^{r} \operatorname{End}\left(V_{i}\right) \cong \bigoplus_{i=1}^{r} \operatorname{Mat}_{d_{i}}(\mathbb{K})
$$

Since each $\operatorname{End}\left(V_{i}\right)$ has dimension $d_{i}^{2}=\operatorname{dim}\left(V_{i}\right)^{2}$, it follows that:
Corollary 1.4. If $\operatorname{dim} A<\infty$, then $\operatorname{dim} A-\operatorname{dim} \operatorname{Rad}(A)=\sum_{i=1}^{r} \operatorname{dim}\left(V_{i}\right)^{2} \leq \operatorname{dim} A$.
Example 1.5. Suppose $A=\mathbb{K}[x] /\left(x^{n}\right)$ where $n \geq 1$. Then we can view A as the vector space

$$
A=\mathbb{K}-\operatorname{span}\left\{1, x, \ldots, x^{n-1}\right\}
$$

The fact that

$$
\begin{aligned}
x^{n}=0 \text { in } A \Longrightarrow & \text { if }(\rho, V) \text { is a finite-dimensional representation of } A \text {, then exists a basis for } V \\
& \text { in which matrix of } \rho(x) \text { is strictly upper triangular } \\
\Longrightarrow & \text { if } V \text { is irreducible, then } \rho(x)=0 \text { and } \operatorname{dim} V=1 .
\end{aligned}
$$

Thus $A / \operatorname{Rad}(A) \cong \operatorname{End}(\mathbb{K})=\mathbb{K}$.
Note that we can see directly that $\operatorname{Rad}(A)=(x)$ as this is the largest nilpotent two-sided ideal in A.
Example 1.6. Suppose A is the subalgebra of upper-triangular matrices in $\operatorname{Mat}_{n}(\mathbb{K})$.
Let $\left(V_{i}, \rho_{i}\right)$ be the representation of A in which $V_{i}=\mathbb{K}$ and $\rho_{i}: A \rightarrow \operatorname{End}(\mathbb{K})=\mathbb{K}$ sends $a \in A$ to the scalar $\rho_{i}(a)=a_{i i}$ (the diagonal entry of a in row i) for $i=1,2, \ldots, n$.

One can check that representations are irreducible and pairwise-non-isomorphic.
They give all irreducible representations of A (up to isomorphism) since

$$
\operatorname{Rad}(A)=\left\{\text { strictly upper-triangular matrices in } \operatorname{Mat}_{n}(\mathbb{K})\right\}
$$

as this is the largest nilpotent two-sided ideal in A, and so

$$
A / \operatorname{Rad}(A) \cong \mathbb{K}^{n} \Longrightarrow \text { there are exactly } n \text { isomorphism classes of irreducible } A \text {-representations. }
$$

2 Semisimple algebras

Our main new results today concern the following class of algebras.
Definition 2.1. A finite-dimensional algebra A is called semisimple if $\operatorname{Rad}(A)=0$.
Recall that a representation is semisimple if it is a direct sum of irreducible representations.
Proposition 2.2. Assume A is an algebra over \mathbb{K} with $\operatorname{dim} A<\infty$. The following are equivalent:
(1) A is semisimple.
(2) $\sum_{i=1}^{r} \operatorname{dim}\left(V_{i}\right)^{2}=\operatorname{dim} A$ where V_{i} are the distinct isomorphism classes of irreducible A-representations.
(3) $A \cong \bigoplus_{i=1}^{r} \operatorname{Mat}_{d_{i}}(\mathbb{K})$ for some integers $d_{1}, d_{2}, \ldots, d_{r}>0$
(4) Any finite-dimensional representation of A is semisimple.
(5) The regular representation of A is semisimple.

Proof. We have $(1) \Longleftrightarrow(2)$ since $\operatorname{dim} A-\operatorname{dim} \operatorname{Rad}(A)=\sum_{i=1}^{r} \operatorname{dim}\left(V_{i}\right)^{2}$.

The implication $(1) \Longrightarrow(3)$ is Theorem 1.3 . Conversely, $(3)+$ Theorem $1.1 \Longrightarrow(2) \Longrightarrow(1)$.
We conclude that $(1) \Longleftrightarrow(3)$.

Now we claim that $(3) \Longrightarrow(4) \Longrightarrow(5) \Longrightarrow$ (3).
The implication $(3) \Longrightarrow(4)$ holds by Theorem 1.1 and $(4) \Longrightarrow(5)$ is trivial.
To show that $(5) \Longrightarrow(3)$, assume (5). Then we can write $A=\bigoplus_{i=1}^{r} d_{i} V_{i}$ where $V_{1}, V_{2}, \ldots, V_{r}$ are irreducible and pairwise-non-isomorphic, since the regular representation of A is semisimple.
Now consider $\operatorname{End}_{A}(A)=\{$ morphisms $A \rightarrow A$ as A-representations $\}=\operatorname{Hom}_{A}(A, A)$.
Schur's lemma tells us that

- $\operatorname{End}_{A}\left(V_{i}\right)=\mathbb{K}$ so $\operatorname{End}_{A}\left(d_{i} V_{i}\right) \cong \operatorname{Mat}_{d_{i}}(\mathbb{K})$, and
- $\operatorname{Hom}_{A}\left(V_{i}, V_{j}\right)=0$ if $i \neq j$, so $\operatorname{Hom}_{A}\left(d_{i} V_{i}, d_{j} V_{j}\right)=0$ if $i \neq j$.

Thus, we compute $\operatorname{End}_{A}(A)=\operatorname{Hom}_{A}(A, A)=\bigoplus_{i, j} \operatorname{Hom}\left(d_{i} V_{i}, d_{j} V_{j}\right) \cong \bigoplus_{i} \operatorname{Mat}_{d_{i}}(\mathbb{K})$.
Exercise: Show that $\left(\operatorname{End}_{A}(A)\right)^{\mathrm{op}} \cong A$ or equivalently that $\operatorname{End}_{A}(A) \cong A^{\mathrm{op}}$.
Last time: There is an isomorphism $\left(\bigoplus_{i} \operatorname{Mat}_{d_{i}}(\mathbb{K})\right)^{\text {op }} \cong \bigoplus_{i} \operatorname{Mat}_{d_{i}}(\mathbb{K})$ afforded by the transpose map.
Thus we have $A \cong\left(\operatorname{End}_{A}(A)\right)^{\mathrm{op}} \cong\left(\bigoplus_{i} \operatorname{Mat}_{d_{i}}(\mathbb{K})\right)^{\mathrm{op}} \cong \bigoplus_{i} \operatorname{Mat}_{d_{i}}(\mathbb{K})$.
This is property (3), so $(5) \Longrightarrow(3)$ as desired.

3 Characters

Let A be an algebra. Suppose (V, ρ) is a finite-dimensional representation of A.
Definition 3.1. The character of (V, ρ) is the linear map $\chi_{(V, \rho)}: A \rightarrow \mathbb{K}$ with the formula

$$
\chi_{(V, \rho)}(a)=\operatorname{tr}(\rho(a)) \quad \text { for } a \in A .
$$

How can we compute the trace of $\phi \in \operatorname{End}(V)$?
First choose a basis $e_{1}, e_{2}, \ldots, e_{n}$ of V. Then $\operatorname{tr}(\phi)=\sum_{i=1}^{n}\left(\right.$ coefficient of e_{i} in $\left.\phi\left(e_{i}\right)\right)$.
Some basic and well-known facts about traces:
(1) The method just given to compute the trace does not depend on the choice of basis.
(2) We have $\operatorname{tr}\left(\phi_{1} \phi_{2}\right)=\operatorname{tr}\left(\phi_{2} \phi_{1}\right)$ for all $\phi_{1}, \phi_{2} \in \operatorname{End}(V)$, so $\operatorname{tr}\left(\phi_{1} \phi_{2} \phi_{1}^{-1}\right)=\operatorname{tr}\left(\phi_{2}\right)$ if ϕ_{1} is invertible.
(3) If $\left(V_{1}, \rho_{1}\right) \cong\left(V_{2}, \rho_{2}\right)$ are finite-dimensional A-representations then $\chi_{\left(V_{1}, \rho_{1}\right)}=\chi_{\left(V_{2}, \rho_{2}\right)}$.

To abbreviate, we will sometimes write χ_{V} instead of $\chi_{(V, \rho)}$.
Let $[A, A]=\mathbb{K}$-span $\{[a, b] \stackrel{\text { def }}{=} a b-b a: a, b \in A\}$. We view this as just a vector space.
Fact 3.2. We always have $[A, A] \subseteq \operatorname{ker}\left(\chi_{(V, \rho)}\right)$
Proof. Let $\chi=\chi_{(V, \rho)}$. Then $\chi(a b-b a)=\operatorname{tr}(\rho(a b))-\operatorname{tr}(\rho(b a))=\operatorname{tr}(\rho(a) \rho(b))-\operatorname{tr}(\rho(b) \rho(a))=0$
In the following theorem, $\operatorname{dim} A$ is not required to be finite.
Theorem 3.3. The characters of any list of non-isomorphic irreducible finite-dimensional A-representations are linearly independent (and, in particular, are distinct).

Proof. Suppose $\left(V_{1}, \rho_{1}\right),\left(V_{2}, \rho_{2}\right), \ldots,\left(V_{r}, \rho_{r}\right)$ are pairwise non-isomorphic irreducible finite-dimensional A-representations. Let $\chi_{i}=\chi_{\left(V_{i}, \rho_{i}\right)}$. By the density theorem, the map

$$
\rho_{1} \oplus \cdots \oplus \rho_{r}: A \rightarrow \operatorname{End}\left(V_{1}\right) \oplus \cdots \oplus \operatorname{End}\left(V_{r}\right)
$$

is surjective. Therefore, if $\sum_{i=1}^{r} \lambda_{i} \chi_{i}(a)=0$ for all $a \in A$ for some coefficients $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r} \in \mathbb{K}$, then

$$
\sum_{i=1}^{r} \lambda_{i} \operatorname{tr}\left(M_{i}\right)=0 \quad \text { for any } M_{i} \in \operatorname{End}\left(V_{i}\right) \text { chosen independently, }
$$

which is only possible if $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{r}=0$.
We say that a character $\chi_{(V, \rho)}$ is irreducible if (V, ρ) is irreducible.
Theorem 3.4. Assume A is semisimple and $\operatorname{dim} A<\infty$. Then the irreducible characters of A are a basis for the vector space $(A /[A, A])^{*}$ of linear maps $A /[A, A] \rightarrow \mathbb{K}$.

Proof. Each character χ has $[A, A] \subset \operatorname{ker}(\chi)$, so χ belongs to $(A /[A, A])^{*}$.
Since $A=\operatorname{Mat}_{d_{1}}(\mathbb{K}) \oplus \cdots \oplus \operatorname{Mat}_{d_{r}}(\mathbb{K})$ it follows that $[A, A]=\bigoplus_{i=1}^{r}\left[\operatorname{Mat}_{d_{i}}(\mathbb{K})\right.$, $\left.\operatorname{Mat}_{d_{i}}(\mathbb{K})\right]$.
We claim that $\left[\operatorname{Mat}_{d}(\mathbb{K}), \operatorname{Mat}_{d}(\mathbb{K})\right]=\mathfrak{s l}_{d}(\mathbb{K})$, where $\mathfrak{s l}_{d}(\mathbb{K})$ is the vector space of $d \times d$ matrices over \mathbb{K} with zero trace. To prove the claim, note that the trace map certainly vanishes on $\left[\operatorname{Mat}_{d}(\mathbb{K})\right.$, $\left.\operatorname{Mat}_{d}(\mathbb{K})\right]$ and that $\mathfrak{s l}_{d}(\mathbb{K})$ is spanned by the commutators

$$
E_{i j}=\left[E_{i k}, E_{k j}\right] \text { for } i \neq j \quad \text { and } \quad E_{i i}-E_{i+1, i+1}=\left[E_{i, i+1}, E_{i+1, i}\right]
$$

where $E_{i j}$ is the elementary matrix with 1 in entry (i, j) and 0 elsewhere.
With the claim proved, we have $A /[A, A] \cong \mathbb{K}^{r}$ since $\operatorname{Mat}_{d}(\mathbb{K}) / \mathfrak{s l}_{d}(\mathbb{K}) \cong \mathbb{K}$.
Finally, we know that A has r distinct irreducible characters (by Theorem 1.1), and these are linearly independent elements of $(A /[A, A])^{*}$, so they must be a basis as $\operatorname{dim}(A /[A, A])^{*}=\operatorname{dim}(A /[A, A])=r$.

4 Two general results

We finish today with two general results that can be applied to algebras A that are not necessarily semisimple. Assume $\operatorname{dim} A<\infty$. Let V be a finite-dimensional representation of A.

Theorem 4.1. (Jordan-Hölder theorem) Suppose we have filtrations

$$
0=V_{0} \subset V_{1} \subset \cdots \subset V_{n}=V \quad \text { and } \quad 0=V_{0}^{\prime} \subset V_{1}^{\prime} \subset \cdots \subset V_{m}^{\prime}=V
$$

where V_{i} and V_{i}^{\prime} are subrepresentations such that the quotients $W_{i} \stackrel{\text { def }}{=} V_{i} / V_{i-1}$ and $W_{i}^{\prime} \stackrel{\text { def }}{=} V_{i}^{\prime} / V_{i-1}^{\prime}$ are irreducible. Then $n=m$ and there exists a permutation σ of $\{1,2, \ldots, n\}$ such that $W_{\sigma(i)} \cong W_{i}^{\prime}$ for all i.
We call the common length $m=n$ of these filtrations the length of the representation V.
Proof. We can give a simple proof when $\operatorname{char}(\mathbb{K})=0$. In this case, it follows by a homework exercise that $\chi_{V}=\chi_{W}+\chi_{V / W}$ if A is any subrepresentation of V, and so we have $\chi_{V}=\sum_{i=1}^{n} \chi_{W_{i}}=\sum_{i=1}^{m} \chi_{W_{i}^{\prime}}$.

Then we can deduce the theorem by the linear independence of the irreducible characters of A.
This argument does not work for $\operatorname{char}(\mathbb{K})=p>0$, because the multiplicities of the irreducible characters in the decomposition of χ_{V} could be multiples of p. One can handle this case by a more involved inductive argument; see the textbook for the details.

We maintain the same setup for A and V in the next theorem.
Theorem 4.2. (Krull-Schmidt theorem) There is a decomposition of V, which is unique up to isomorphism and rearrangement of factors, as a direct sum of indecomposable A-representations.

We will give the proof next time. While the existence of such a decomposition follows pretty easily by induction on $\operatorname{dim} V$, the uniqueness claim in the theorem is nontrivial.

