This document is a **transcript** of the lecture, so is more like an abbreviated set of lecture slides than complete lecture notes. For the latter, **consult the textbook** listed on the course webpage.

1 Review from last time

Let \mathbb{K} be an algebraically closed field.

For integers n > 0, let $Mat_n(\mathbb{K})$ be the algebra of $n \times n$ matrices over \mathbb{K} .

Remember that if V is an n-dimensional K-vector space, then $\operatorname{End}(V) \cong \operatorname{Mat}_n(\mathbb{K})$.

Theorem 1.1. Suppose $A = \bigoplus_{i=1}^{r} \operatorname{Mat}_{d_i}(\mathbb{K})$ for some integers $d_1, d_2, \ldots, d_r > 0$. For each index $i \in \{1, 2, \ldots, r\}$, A has an irreducible representation V_i of dimension d_i , and every finite-dimensional representation of A is a direct sum of copies of V_1, V_2, \ldots, V_r , which are pairwise non-isomorphic.

If we view $A \subseteq \operatorname{Mat}_n(\mathbb{K})$ as a subalgebra of block diagonal $n \times n$ matrices where $n = d_1 + d_2 + \cdots + d_r$, then we can construct V_i as the subspace of vectors in \mathbb{K}^n with zeros outside the rows indexed by

$$(d_1 + d_2 + \dots + d_{i-1}) + \{1, 2, \dots, d_i\}.$$

Lemma 1.2. Suppose A is any K-algebra with a finite-dimensional representation V. There exists a finite filtration $0 = V_0 \subset V_1 \subset \cdots \subset V_n = V$ where each V_i is a subrepresentation with V_i/V_{i-1} irreducible.

Let A be any \mathbb{K} -algebra with dim $(A) < \infty$. The radical of A is

 $\operatorname{Rad}(A) \stackrel{\text{def}}{=} \{ \text{the elements in } A \text{ that act as zero in every irreducible representation of } A \}$ = (the largest nilpotent 2-sided ideal in A).

Theorem 1.3. A finite-dimensional algebra A has finitely many irreducible representations V_1, \ldots, V_r up to isomorphism, each representation V_i has finite dimension $d_i = \dim(V_i)$, and it holds that

$$A/\operatorname{Rad}(A) \cong \bigoplus_{i=1}^{r} \operatorname{End}(V_i) \cong \bigoplus_{i=1}^{r} \operatorname{Mat}_{d_i}(\mathbb{K}).$$

Since each $\operatorname{End}(V_i)$ has dimension $d_i^2 = \dim(V_i)^2$, it follows that:

Corollary 1.4. If dim $A < \infty$, then dim $A - \dim \operatorname{Rad}(A) = \sum_{i=1}^{r} \dim(V_i)^2 \leq \dim A$.

Example 1.5. Suppose $A = \mathbb{K}[x]/(x^n)$ where $n \ge 1$. Then we can view A as the vector space

$$A = \mathbb{K}\operatorname{-span}\{1, x, \dots, x^{n-1}\}.$$

The fact that

 $x^n = 0$ in $A \implies$ if (ρ, V) is a finite-dimensional representation of A, then exists a basis for Vin which matrix of $\rho(x)$ is strictly upper triangular \implies if V is irreducible, then $\rho(x) = 0$ and dim V = 1.

Thus $A/\operatorname{Rad}(A) \cong \operatorname{End}(\mathbb{K}) = \mathbb{K}$.

Note that we can see directly that $\operatorname{Rad}(A) = (x)$ as this is the largest nilpotent two-sided ideal in A.

Example 1.6. Suppose A is the subalgebra of upper-triangular matrices in $Mat_n(\mathbb{K})$.

Let (V_i, ρ_i) be the representation of A in which $V_i = \mathbb{K}$ and $\rho_i : A \to \text{End}(\mathbb{K}) = \mathbb{K}$ sends $a \in A$ to the scalar $\rho_i(a) = a_{ii}$ (the diagonal entry of a in row i) for i = 1, 2, ..., n.

One can check that representations are irreducible and pairwise-non-isomorphic.

They give all irreducible representations of A (up to isomorphism) since

 $\operatorname{Rad}(A) = \{\operatorname{strictly upper-triangular matrices in Mat}_n(\mathbb{K})\},\$

as this is the largest nilpotent two-sided ideal in A, and so

 $A/\operatorname{Rad}(A) \cong \mathbb{K}^n \implies$ there are exactly *n* isomorphism classes of irreducible A-representations.

2 Semisimple algebras

Our main new results today concern the following class of algebras.

Definition 2.1. A finite-dimensional algebra A is called *semisimple* if $\operatorname{Rad}(A) = 0$.

Recall that a representation is *semisimple* if it is a direct sum of irreducible representations.

Proposition 2.2. Assume A is an algebra over \mathbb{K} with dim $A < \infty$. The following are equivalent:

- (1) A is semisimple.
- (2) $\sum_{i=1}^{r} \dim(V_i)^2 = \dim A$ where V_i are the distinct isomorphism classes of irreducible A-representations.
- (3) $A \cong \bigoplus_{i=1}^{r} \operatorname{Mat}_{d_i}(\mathbb{K})$ for some integers $d_1, d_2, \ldots, d_r > 0$
- (4) Any finite-dimensional representation of A is semisimple.
- (5) The regular representation of A is semisimple.

Proof. We have (1) \iff (2) since dim $A - \dim \operatorname{Rad}(A) = \sum_{i=1}^{r} \dim(V_i)^2$.

The implication $(1) \implies (3)$ is Theorem 1.3. Conversely, (3) + Theorem $1.1 \implies (2) \implies (1)$. We conclude that $(1) \iff (3)$.

Now we claim that $(3) \implies (4) \implies (5) \implies (3)$.

The implication $(3) \implies (4)$ holds by Theorem 1.1 and $(4) \implies (5)$ is trivial.

To show that (5) \implies (3), assume (5). Then we can write $A = \bigoplus_{i=1}^{r} d_i V_i$ where V_1, V_2, \ldots, V_r are irreducible and pairwise-non-isomorphic, since the regular representation of A is semisimple.

Now consider $\operatorname{End}_A(A) = \{\operatorname{morphisms} A \to A \text{ as } A \text{-representations}\} = \operatorname{Hom}_A(A, A).$

Schur's lemma tells us that

- $\operatorname{End}_A(V_i) = \mathbb{K}$ so $\operatorname{End}_A(d_i V_i) \cong \operatorname{Mat}_{d_i}(\mathbb{K})$, and
- Hom_A $(V_i, V_j) = 0$ if $i \neq j$, so Hom_A $(d_i V_i, d_j V_j) = 0$ if $i \neq j$.

Thus, we compute $\operatorname{End}_A(A) = \operatorname{Hom}_A(A, A) = \bigoplus_{i,j} \operatorname{Hom}(d_i V_i, d_j V_j) \cong \bigoplus_i \operatorname{Mat}_{d_i}(\mathbb{K}).$

Exercise: Show that $(\operatorname{End}_A(A))^{\mathsf{op}} \cong A$ or equivalently that $\operatorname{End}_A(A) \cong A^{\mathsf{op}}$.

Last time: There is an isomorphism $(\bigoplus_i \operatorname{Mat}_{d_i}(\mathbb{K}))^{\mathsf{op}} \cong \bigoplus_i \operatorname{Mat}_{d_i}(\mathbb{K})$ afforded by the transpose map. Thus we have $A \cong (\operatorname{End}_A(A))^{\mathsf{op}} \cong (\bigoplus_i \operatorname{Mat}_{d_i}(\mathbb{K}))^{\mathsf{op}} \cong \bigoplus_i \operatorname{Mat}_{d_i}(\mathbb{K}).$

This is property (3), so $(5) \implies (3)$ as desired.

3 Characters

Let A be an algebra. Suppose (V, ρ) is a finite-dimensional representation of A.

Definition 3.1. The *character* of (V, ρ) is the linear map $\chi_{(V,\rho)} : A \to \mathbb{K}$ with the formula

$$\chi_{(V,\rho)}(a) = \operatorname{tr}(\rho(a)) \quad \text{for } a \in A.$$

How can we compute the trace of $\phi \in \text{End}(V)$?

First choose a basis e_1, e_2, \ldots, e_n of V. Then $\operatorname{tr}(\phi) = \sum_{i=1}^n (\text{coefficient of } e_i \text{ in } \phi(e_i)).$

Some basic and well-known facts about traces:

- (1) The method just given to compute the trace does not depend on the choice of basis.
- (2) We have $\operatorname{tr}(\phi_1\phi_2) = \operatorname{tr}(\phi_2\phi_1)$ for all $\phi_1, \phi_2 \in \operatorname{End}(V)$, so $\operatorname{tr}(\phi_1\phi_2\phi_1^{-1}) = \operatorname{tr}(\phi_2)$ if ϕ_1 is invertible.
- (3) If $(V_1, \rho_1) \cong (V_2, \rho_2)$ are finite-dimensional A-representations then $\chi_{(V_1, \rho_1)} = \chi_{(V_2, \rho_2)}$.

To abbreviate, we will sometimes write χ_V instead of $\chi_{(V,\rho)}$.

Let $[A, A] = \mathbb{K}$ -span $\left\{ [a, b] \stackrel{\text{def}}{=} ab - ba : a, b \in A \right\}$. We view this as just a vector space.

Fact 3.2. We always have $[A, A] \subseteq \ker(\chi_{(V,\rho)})$

Proof. Let
$$\chi = \chi_{(V,\rho)}$$
. Then $\chi(ab - ba) = \operatorname{tr}(\rho(ab)) - \operatorname{tr}(\rho(ba)) = \operatorname{tr}(\rho(a)\rho(b)) - \operatorname{tr}(\rho(b)\rho(a)) = 0$

In the following theorem, $\dim A$ is not required to be finite.

Theorem 3.3. The characters of any list of non-isomorphic irreducible finite-dimensional A-representations are linearly independent (and, in particular, are distinct).

Proof. Suppose $(V_1, \rho_1), (V_2, \rho_2), \ldots, (V_r, \rho_r)$ are pairwise non-isomorphic irreducible finite-dimensional A-representations. Let $\chi_i = \chi_{(V_i, \rho_i)}$. By the density theorem, the map

$$\rho_1 \oplus \cdots \oplus \rho_r : A \to \operatorname{End}(V_1) \oplus \cdots \oplus \operatorname{End}(V_r)$$

is surjective. Therefore, if $\sum_{i=1}^{r} \lambda_i \chi_i(a) = 0$ for all $a \in A$ for some coefficients $\lambda_1, \lambda_2, \ldots, \lambda_r \in \mathbb{K}$, then

$$\sum_{i=1}^{r} \lambda_i \operatorname{tr}(M_i) = 0 \quad \text{for any } M_i \in \operatorname{End}(V_i) \text{ chosen independently},$$

which is only possible if $\lambda_1 = \lambda_2 = \cdots = \lambda_r = 0$.

We say that a character $\chi_{(V,\rho)}$ is *irreducible* if (V,ρ) is irreducible.

Theorem 3.4. Assume A is semisimple and dim $A < \infty$. Then the irreducible characters of A are a basis for the vector space $(A/[A, A])^*$ of linear maps $A/[A, A] \to \mathbb{K}$.

Proof. Each character χ has $[A, A] \subset \ker(\chi)$, so χ belongs to $(A/[A, A])^*$.

Since $A = \operatorname{Mat}_{d_1}(\mathbb{K}) \oplus \cdots \oplus \operatorname{Mat}_{d_r}(\mathbb{K})$ it follows that $[A, A] = \bigoplus_{i=1}^r [\operatorname{Mat}_{d_i}(\mathbb{K}), \operatorname{Mat}_{d_i}(\mathbb{K})].$

We claim that $[\operatorname{Mat}_d(\mathbb{K}), \operatorname{Mat}_d(\mathbb{K})] = \mathfrak{sl}_d(\mathbb{K})$, where $\mathfrak{sl}_d(\mathbb{K})$ is the vector space of $d \times d$ matrices over \mathbb{K} with zero trace. To prove the claim, note that the trace map certainly vanishes on $[\operatorname{Mat}_d(\mathbb{K}), \operatorname{Mat}_d(\mathbb{K})]$ and that $\mathfrak{sl}_d(\mathbb{K})$ is spanned by the commutators

$$E_{ij} = [E_{ik}, E_{kj}]$$
 for $i \neq j$ and $E_{ii} - E_{i+1,i+1} = [E_{i,i+1}, E_{i+1,i}]$

where E_{ij} is the elementary matrix with 1 in entry (i, j) and 0 elsewhere.

With the claim proved, we have $A/[A, A] \cong \mathbb{K}^r$ since $\operatorname{Mat}_d(\mathbb{K})/\mathfrak{sl}_d(\mathbb{K}) \cong \mathbb{K}$.

Finally, we know that A has r distinct irreducible characters (by Theorem 1.1), and these are linearly independent elements of $(A/[A, A])^*$, so they must be a basis as $\dim(A/[A, A])^* = \dim(A/[A, A]) = r$. \Box

4 Two general results

We finish today with two general results that can be applied to algebras A that are not necessarily semisimple. Assume dim $A < \infty$. Let V be a finite-dimensional representation of A.

Theorem 4.1. (*Jordan-Hölder theorem*) Suppose we have filtrations

 $0 = V_0 \subset V_1 \subset \cdots \subset V_n = V$ and $0 = V'_0 \subset V'_1 \subset \cdots \subset V'_m = V$

where V_i and V'_i are subrepresentations such that the quotients $W_i \stackrel{\text{def}}{=} V_i/V_{i-1}$ and $W'_i \stackrel{\text{def}}{=} V'_i/V'_{i-1}$ are irreducible. Then n = m and there exists a permutation σ of $\{1, 2, \ldots, n\}$ such that $W_{\sigma(i)} \cong W'_i$ for all i.

We call the common length m = n of these filtrations the *length* of the representation V.

Proof. We can give a simple proof when char(\mathbb{K}) = 0. In this case, it follows by a homework exercise that $\chi_V = \chi_W + \chi_{V/W}$ if A is any subrepresentation of V, and so we have $\chi_V = \sum_{i=1}^n \chi_{W_i} = \sum_{i=1}^m \chi_{W'_i}$.

Then we can deduce the theorem by the linear independence of the irreducible characters of A.

This argument does not work for char(\mathbb{K}) = p > 0, because the multiplicities of the irreducible characters in the decomposition of χ_V could be multiples of p. One can handle this case by a more involved inductive argument; see the textbook for the details.

We maintain the same setup for A and V in the next theorem.

Theorem 4.2. (*Krull-Schmidt theorem*) There is a decomposition of V, which is unique up to isomorphism and rearrangement of factors, as a direct sum of indecomposable A-representations.

We will give the proof next time. While the existence of such a decomposition follows pretty easily by induction on dim V, the uniqueness claim in the theorem is nontrivial.