
MATH 5112 (Spring 2024) Lecture 7 (transcribed by MA Junwei)

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

Let K be an algebraically closed field.

For integers n > 0, let Matn(K) be the algebra of n× n matrices over K.

Remember that if V is an n-dimensional K-vector space, then End(V ) ∼= Matn(K).

Theorem 1.1. Suppose A =
⊕r

i=1 Matdi(K) for some integers d1, d2, . . . , dr > 0. For each index
i ∈ {1, 2, . . . , r}, A has an irreducible representation Vi of dimension di, and every finite-dimensional
representation of A is a direct sum of copies of V1, V2, . . . , Vr, which are pairwise non-isomorphic.

If we view A ⊆ Matn(K) as a subalgebra of block diagonal n× n matrices where n = d1 + d2 + · · ·+ dr,
then we can construct Vi as the subspace of vectors in Kn with zeros outside the rows indexed by

(d1 + d2 + · · ·+ di−1) + {1, 2, . . . , di}.

Lemma 1.2. Suppose A is any K-algebra with a finite-dimensional representation V . There exists a
finite filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V where each Vi is a subrepresentation with Vi/Vi−1 irreducible.

Let A be any K-algebra with dim(A) <∞. The radical of A is

Rad(A)
def
= {the elements in A that act as zero in every irreducible representation of A}
= (the largest nilpotent 2-sided ideal in A) .

Theorem 1.3. A finite-dimensional algebra A has finitely many irreducible representations V1, . . . , Vr
up to isomorphism, each representation Vi has finite dimension di = dim(Vi), and it holds that

A/Rad(A) ∼=
r⊕
i=1

End(Vi) ∼=
r⊕
i=1

Matdi(K).

Since each End(Vi) has dimension d2i = dim(Vi)
2, it follows that:

Corollary 1.4. If dimA <∞, then dimA− dim Rad(A) =
∑r
i=1 dim(Vi)

2 ≤ dimA.

Example 1.5. Suppose A = K[x]/(xn) where n ≥ 1. Then we can view A as the vector space

A = K-span{1, x, . . . , xn−1}.

The fact that

xn = 0 in A =⇒ if (ρ, V ) is a finite-dimensional representation of A, then exists a basis for V

in which matrix of ρ(x) is strictly upper triangular

=⇒ if V is irreducible, then ρ(x) = 0 and dimV = 1.

Thus A/Rad(A) ∼= End(K) = K.

Note that we can see directly that Rad(A) = (x) as this is the largest nilpotent two-sided ideal in A.

Example 1.6. Suppose A is the subalgebra of upper-triangular matrices in Matn(K).

Let (Vi, ρi) be the representation of A in which Vi = K and ρi : A → End(K) = K sends a ∈ A to the
scalar ρi(a) = aii (the diagonal entry of a in row i) for i = 1, 2, . . . , n.
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One can check that representations are irreducible and pairwise-non-isomorphic.

They give all irreducible representations of A (up to isomorphism) since

Rad(A) = {strictly upper-triangular matrices in Matn(K)},

as this is the largest nilpotent two-sided ideal in A, and so

A/Rad(A) ∼= Kn =⇒ there are exactly n isomorphism classes of irreducible A-representations.

2 Semisimple algebras

Our main new results today concern the following class of algebras.

Definition 2.1. A finite-dimensional algebra A is called semisimple if Rad(A) = 0.

Recall that a representation is semisimple if it is a direct sum of irreducible representations.

Proposition 2.2. Assume A is an algebra over K with dimA <∞. The following are equivalent:

(1) A is semisimple.

(2)
∑r
i=1 dim(Vi)

2 = dimA where Vi are the distinct isomorphism classes of irreducibleA-representations.

(3) A ∼=
⊕r

i=1 Matdi(K) for some integers d1, d2, . . . , dr > 0

(4) Any finite-dimensional representation of A is semisimple.

(5) The regular representation of A is semisimple.

Proof. We have (1) ⇐⇒ (2) since dimA− dim Rad(A) =
∑r
i=1 dim(Vi)

2.

The implication (1) =⇒ (3) is Theorem 1.3. Conversely, (3) + Theorem 1.1 =⇒ (2) =⇒ (1).

We conclude that (1) ⇐⇒ (3).

Now we claim that (3) =⇒ (4) =⇒ (5) =⇒ (3).

The implication (3) =⇒ (4) holds by Theorem 1.1 and (4) =⇒ (5) is trivial.

To show that (5) =⇒ (3), assume (5). Then we can write A =
⊕r

i=1 diVi where V1, V2, . . . , Vr are
irreducible and pairwise-non-isomorphic, since the regular representation of A is semisimple.

Now consider EndA(A) = {morphisms A→ A as A-representations} = HomA(A,A).

Schur’s lemma tells us that

• EndA(Vi) = K so EndA(diVi) ∼= Matdi(K), and

• HomA(Vi, Vj) = 0 if i 6= j, so HomA(diVi, djVj) = 0 if i 6= j.

Thus, we compute EndA(A) = HomA(A,A) =
⊕

i,j Hom(diVi, djVj) ∼=
⊕

i Matdi(K).

Exercise: Show that (EndA(A))
op ∼= A or equivalently that EndA(A) ∼= Aop.

Last time: There is an isomorphism (
⊕

i Matdi(K))
op ∼=

⊕
i Matdi(K) afforded by the transpose map.

Thus we have A ∼= (EndA(A))
op ∼= (

⊕
i Matdi(K))

op ∼=
⊕

i Matdi(K).

This is property (3), so (5) =⇒ (3) as desired.
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3 Characters

Let A be an algebra. Suppose (V, ρ) is a finite-dimensional representation of A.

Definition 3.1. The character of (V, ρ) is the linear map χ(V,ρ) : A→ K with the formula

χ(V,ρ)(a) = tr(ρ(a)) for a ∈ A.

How can we compute the trace of φ ∈ End(V )?

First choose a basis e1, e2, . . . , en of V . Then tr(φ) =
∑n
i=1(coefficient of ei in φ(ei)).

Some basic and well-known facts about traces:

(1) The method just given to compute the trace does not depend on the choice of basis.

(2) We have tr(φ1φ2) = tr(φ2φ1) for all φ1, φ2 ∈ End(V ), so tr(φ1φ2φ
−1
1 ) = tr(φ2) if φ1 is invertible.

(3) If (V1, ρ1) ∼= (V2, ρ2) are finite-dimensional A-representations then χ(V1,ρ1) = χ(V2,ρ2).

To abbreviate, we will sometimes write χV instead of χ(V,ρ).

Let [A,A] = K-span
{

[a, b]
def
= ab− ba : a, b ∈ A

}
. We view this as just a vector space.

Fact 3.2. We always have [A,A] ⊆ ker(χ(V,ρ))

Proof. Let χ = χ(V,ρ). Then χ(ab− ba) = tr(ρ(ab))− tr(ρ(ba)) = tr(ρ(a)ρ(b))− tr(ρ(b)ρ(a)) = 0

In the following theorem, dimA is not required to be finite.

Theorem 3.3. The characters of any list of non-isomorphic irreducible finite-dimensionalA-representations
are linearly independent (and, in particular, are distinct).

Proof. Suppose (V1, ρ1), (V2, ρ2), . . . , (Vr, ρr) are pairwise non-isomorphic irreducible finite-dimensional
A-representations. Let χi = χ(Vi,ρi). By the density theorem, the map

ρ1 ⊕ · · · ⊕ ρr : A→ End(V1)⊕ · · · ⊕ End(Vr)

is surjective. Therefore, if
∑r
i=1 λiχi(a) = 0 for all a ∈ A for some coefficients λ1, λ2, . . . , λr ∈ K, then

r∑
i=1

λitr(Mi) = 0 for any Mi ∈ End(Vi) chosen independently,

which is only possible if λ1 = λ2 = · · · = λr = 0.

We say that a character χ(V,ρ) is irreducible if (V, ρ) is irreducible.

Theorem 3.4. Assume A is semisimple and dimA < ∞. Then the irreducible characters of A are a
basis for the vector space (A/[A,A])∗ of linear maps A/[A,A]→ K.

Proof. Each character χ has [A,A] ⊂ ker(χ), so χ belongs to (A/[A,A])∗.

Since A = Matd1(K)⊕ · · · ⊕Matdr (K) it follows that [A,A] =
⊕r

i=1[Matdi(K),Matdi(K)].

We claim that [Matd(K),Matd(K)] = sld(K), where sld(K) is the vector space of d × d matrices over K
with zero trace. To prove the claim, note that the trace map certainly vanishes on [Matd(K),Matd(K)]
and that sld(K) is spanned by the commutators

Eij = [Eik, Ekj ] for i 6= j and Eii − Ei+1,i+1 = [Ei,i+1, Ei+1,i]
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where Eij is the elementary matrix with 1 in entry (i, j) and 0 elsewhere.

With the claim proved, we have A/[A,A] ∼= Kr since Matd(K)/sld(K) ∼= K.

Finally, we know that A has r distinct irreducible characters (by Theorem 1.1), and these are linearly
independent elements of (A/[A,A])∗, so they must be a basis as dim(A/[A,A])∗ = dim(A/[A,A]) = r.

4 Two general results

We finish today with two general results that can be applied to algebras A that are not necessarily
semisimple. Assume dimA <∞. Let V be a finite-dimensional representation of A.

Theorem 4.1. (Jordan-Hölder theorem) Suppose we have filtrations

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V and 0 = V ′0 ⊂ V ′1 ⊂ · · · ⊂ V ′m = V

where Vi and V ′i are subrepresentations such that the quotients Wi
def
= Vi/Vi−1 and W ′i

def
= V ′i /V

′
i−1 are

irreducible. Then n = m and there exists a permutation σ of {1, 2, . . . , n} such that Wσ(i)
∼= W ′i for all i.

We call the common length m = n of these filtrations the length of the representation V .

Proof. We can give a simple proof when char(K) = 0. In this case, it follows by a homework exercise
that χV = χW + χV/W if A is any subrepresentation of V , and so we have χV =

∑n
i=1 χWi

=
∑m
i=1 χW ′

i
.

Then we can deduce the theorem by the linear independence of the irreducible characters of A.

This argument does not work for char(K) = p > 0, because the multiplicities of the irreducible characters
in the decomposition of χV could be multiples of p. One can handle this case by a more involved inductive
argument; see the textbook for the details.

We maintain the same setup for A and V in the next theorem.

Theorem 4.2. (Krull-Schmidt theorem) There is a decomposition of V , which is unique up to isomor-
phism and rearrangement of factors, as a direct sum of indecomposable A-representations.

We will give the proof next time. While the existence of such a decomposition follows pretty easily by
induction on dimV , the uniqueness claim in the theorem is nontrivial.
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