
MATH 5112 (Spring 2024) Lecture 8 (transcribed by MA Junwei)

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

As usual we start with quick review of the previous lecture.

1.1 Semisimple algebras

Throughout, let K be an algebraically closed field.

Suppose A is a finite-dimensional algebra over K.

Then every irreducible A-representation V has dimV <∞ since if 0 6= x ∈ V then Ax = V but

dim(Ax) ≤ dimA <∞.

Recall that an A-representation is semisimple if it is a direct sum of irreducible subrepresentations.

The algebra A is semisimple if any (and hence all) of the following equivalent properties hold:

(1) Rad(A)
def
= {elements in A that act as zero on every irreducible A-representation} is zero.

(2) If V1, V2, . . . , Vr is a complete list of representatives of the distinct isomorphism classes of irreducible
A-representations, then dimA =

∑r
i=1(dimVi)

2.

(3) A is isomorphic to a finite direct sum of matrix algebras Matd1(K)⊕Matd2(K)⊕ · · · ⊕Matdr (K).

(4) Every A-representation of finite dimension is semisimple.

(5) The regular representation of A is semisimple.

1.2 Characters of A-representations

Let A be any K-algebra (not necessarily of finite dimension).

Assume (V, ρ) is an A-representation with dimV <∞.

The character of (V, ρ) is the linear map χ(V,ρ) : A→ K with the formula

χ(V,ρ)(a) = tr(ρ(a))
def
=

∑n
i=1 (coefficient of ei in ρ(a)(ei)) for any basis e1, e2, . . . , en of V .

Fact 1.1. If (V, ρ) and (V ′, ρ′) are isomorphic finite-dimensional A-representations then χ(V,ρ) = χ(V ′,ρ′).

We say that χ(V,ρ) is irreducible when (V, ρ) is irreducible.

Theorem 1.2. The characters of non-isomorphic irreducible finite-dimensional A-representations are
linearly independent (and therefore distinct).

Fact 1.3. It always holds that ker(χ(V,ρ)) ⊃ [A,A]
def
= K-span{ab− ba : a, b ∈ A}

This means we can view a character as a linear map A/[A,A]→ K.

Theorem 1.4. If A is finite-dimensional and semisimple, then the irreducible characters of A are a
basis for the dual space (A/[A,A])∗. If char(K) = 0, the two finite-dimensional A-representations are
isomorphic if and only if they have same characters.
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2 Two general theorems

Our goal today is to establish two general theorems about representations of an algebra A that is not
necessarily semisimple. We proved the first of these theorems last time:

Theorem 2.1 (Jordan-Hölder theorem). If V is an A-representation with dimV <∞ then there exists
a filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V where each Vi is a subrepresentation and each quotient Vi/Vi−1
is irreducible. Moreover, any other filtration with these properties has same length n and the same
irreducible quotients up to isomorphism and permutations of indices.

Today we will supply the proof of the next theorem:

Theorem 2.2 (Krull-Schmidt theorem). If V is an A-representation with dimV <∞ then there exists
a decomposition V =

⊕
i∈I Vi where each Vi is an indecomposable subrepresentation, and this decompo-

sition is unique up to isomorphism and rearrangement of factors.

Remember that when A is semisimple, every indecomposable representation is irreducible, but for a
general algebra we may not be able to decompose a representation into a direct sum of irreducible
subrepresentations. The Krull-Schmidt theorem is relevant to the latter setting.

We will prove the Krull-Schmidt theorem after establishing a few lemmas.

A linear map θ : W →W is nilpotent if θN
def
= θ ◦ θ ◦ · · · ◦ θ is zero for some N > 0.

Lemma 2.3. Let W be an indecomposable A-representation where dimW < ∞. Suppose θ : W → W
is a morphism of A-representations. Then θ is either an isomorphism or nilpotent.

Proof. For λ ∈ K, the generalized λ-eigenspace of θ is

Wλ
def
= {x ∈W : (θ − λ)N (x) = 0 for some N > 0}.

The subspace Wλ is nonzero if and only if λ is an eigenvalue of θ.

By standard linear algebra over algebraically closed fields, we know that W =
⊕

λWλ where the direct
sum is over the eigenvalues of θ. Observe that each Wλ is an A-subrepresentation.

Since W is indecomposable, θ must only have one eigenvalue λ. If λ = 0 then θ is nilpotent since W = Wλ.

If λ 6= 0 then θ is invertible, and hence an isomorphism of A-representations.

Lemma 2.4. Let W be an indecomposable A-representation where dimW <∞. Suppose θs : W → W

for s = 1, 2, . . . , n are nilpotent morphisms of A-representations. Then θ
def
= θ1 + · · ·+θn is also nilpotent.

Proof. We argue by contradiction. Let n be minimal such that the lemma fails.

Then we must have n > 1 and θ is not nilpotent. Hence θ is invertible by previous lemma.

Therefore we can write 1 = θ−1θ =
∑n
s=1 θ

−1θs.

Since ker(θ−1θs) = θ−1(ker(θs)) 6= 0, each θ−1θs is not invertible and therefore nilpotent by the lemma.

But then 1− θ−1θn =
∑n−1
s=1 θ

−1θs is invertible, and therefore not nilpotent, since if X is nilpotent then

(1−X)−1 = 1 +X +X2 + . . . .

This contradicts the minimality of n, so we conclude that the lemma actually holds for all n.

We now return to the proof of the Krull-Schmidt theorem.
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Proof of Theorem 2.2. To show the existence of an indecomposable decomposition V =
⊕

i∈I Vi, note
that if V is not indecomposable then must exist nonzero subrepresentations U andW with V = U⊕W , and
by induction on dimension we can assume that U and W already have indecomposable decompositions.

The hard part is showing the uniqueness of the resulting decomposition.

Suppose V =
⊕m

s=1 Vs =
⊕n

s=1Ws where each Vs and Ws is an indecomposable subrepresentation. Let

is : Vs ↪→ V

js : Ws ↪→ V
and

ps : V � Vs

qs : V �Ws

be the natural inclusion and projection maps.

Define θs = p1 ◦ js ◦ qs ◦ i1 so that

θs : V1 V Ws V V1.
i1 qs js p1

Note that is, ps, js, qs, and θs are all morphisms of A-representations.

Also, notice that the sum θ1 + θ2 + · · ·+ θn is the identity map V1 → V1.

Each θs is either nilpotent or an isomorphism by Lemma 2.3.

Since
∑n
s=1 θs is not nilpotent, some θs is an isomorphism by Lemma 2.4.

Without loss of generality we can assume that θ1 : V1 → V1 is an isomorphism. Since

θ1 : V1 W1 V1
q1◦i1 p1◦j1

is an isomorphism, we must have W1 = image(q1 ◦ i1)⊕ ker(p1 ◦ j1).

As W1 is indecomposable, both p1 ◦ j1 : W1 → V1 and q1 ◦ i1 : V1 →W1 must be isomorphisms.

Let V ′ =
⊕m

s=2 Vs and W ′ =
⊕n

s=2Ws so that V = V1 ⊕ V ′ = W1 ⊕W ′. Let

h : V ′ V W ′

be the composition of the obvious inclusion and projection maps.

Clearly ker(h) = V ′ ∩W1, but (p1 ◦ j1)(V ′ ∩W1) = 0.

Since p1 ◦ j1 : W1 → V1 is isomorphism, must have ker(h) = 0 so h : V ′ →W ′ is isomorphism.

Now by induction applied to the decompositions

V ′ =

m⊕
s=2

Vs ∼=
n⊕
s=2

Ws = W ′, (1)

we must have m = n and there must exist a permutation σ with Vs ∼= Wσ(s) for all s.

This establishes that the same holds for our starting decompositions V =
⊕m

s=1 Vs =
⊕n

s=1Ws.

3 Tensor products of algebras and representations

To finish today’s lecture, we briefly discuss representations of tensor product algebras.

Let A and B be K-algebras and write ⊗ = ⊗K for the usual tensor product for K-vector spaces.

Since A and B are vector spaces, we can consider the vector space A⊗B. It has more structure:
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Fact 3.1. The vector space A⊗B is itself a K-algebra for the product given by the bilinear operation

(A⊗B)× (A⊗B)→ A⊗B

satisfying (a⊗ b)(a′ ⊗ b′) def
= aa′ ⊗ bb′ for a, a′ ∈ A, b, b′ ∈ B. The unit for this product is 1A ⊗ 1B .

Let V be an A-representation and let W be a B-representation. Then V ⊗W has a unique structure as

an A⊗B-representation in which (a⊗ b)(v ⊗ w)
def
= av ⊗ bw for a ∈ A, b ∈ B, v ∈ V , w ∈W .

Theorem 3.2. Assume dimV < ∞ and dimW < ∞. Then V ⊗ W is irreducible (as an A ⊗ B-
representation) if V and W are irreducible (as A- and B-representations).

Proof. Assume V and W are both irreducible and of finite dimension.

By the density theorem, we have surjective maps ρV : A→ End(V ) and ρW : A→ End(W ).

Check that ρV ⊗ ρW : A⊗B → End(V )⊗ End(W ) is also surjective.

If dimV <∞ and dimW <∞ then there is an isomorphism End(V )⊗ End(W ) ∼= End(V ⊗W ).

But the map ρV⊗W : A⊗B → End(V ⊗W ) is thus surjective as it is the composition

A⊗B End(V )⊗ End(W ) End(V ⊗W ).
ρV ⊗ρW ∼=

Hence V ⊗W is irreducible, since ρV⊗W being surjective implies that every 0 6= x ∈ V ⊗W is cyclic.

The previous theorem has a converse.

Theorem 3.3. Suppose M is an irreducible A⊗B-representation of finite dimension. Then M ∼= V ⊗W
for some irreducible A-representation V and irreducible B-representation W .

Proof sketch. We can assume A and B are finite-dimensional by replacing each algebra by its image under

A A⊗B End(M) and B A⊗B End(M)

where the inclusions send a 7→ a⊗ 1B and b 7→ 1A ⊗ b. Next, check that

Rad(A⊗B) = Rad(A)⊗B +A⊗ Rad(B)

so (A⊗B)/Rad(A⊗B) ∼= A/Rad(A)⊗B/Rad(B) and M is an irreducible representation of this quotient.

Finally, the result can be deduced by identifying the quotient algebras A/Rad(A) and B/Rad(B) with
explicit (direct sums of) matrix algebras, using the classification of irreducible representations for such
algebras and the homework exercise checking that Matn(K)⊗Matm(K) ∼= Matmn(K).
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