This document is a **transcript** of the lecture, so is more like an abbreviated set of lecture slides than complete lecture notes. For the latter, **consult the textbook** listed on the course webpage.

1 Review from last time

As usual we start with quick review of the previous lecture.

1.1 Semisimple algebras

Throughout, let \mathbb{K} be an algebraically closed field.

Suppose A is a finite-dimensional algebra over \mathbb{K} .

Then every irreducible A-representation V has dim $V < \infty$ since if $0 \neq x \in V$ then Ax = V but

 $\dim(Ax) \le \dim A < \infty.$

Recall that an A-representation is *semisimple* if it is a direct sum of irreducible subrepresentations.

The algebra A is *semisimple* if any (and hence all) of the following equivalent properties hold:

- (1) $\operatorname{\mathsf{Rad}}(A) \stackrel{\text{def}}{=} \{ \text{elements in } A \text{ that act as zero on every irreducible } A \text{-representation} \} \text{ is zero.}$
- (2) If V_1, V_2, \ldots, V_r is a complete list of representatives of the distinct isomorphism classes of irreducible *A*-representations, then dim $A = \sum_{i=1}^{r} (\dim V_i)^2$.
- (3) A is isomorphic to a finite direct sum of matrix algebras $\operatorname{Mat}_{d_1}(\mathbb{K}) \oplus \operatorname{Mat}_{d_2}(\mathbb{K}) \oplus \cdots \oplus \operatorname{Mat}_{d_r}(\mathbb{K})$.
- (4) Every A-representation of finite dimension is semisimple.
- (5) The regular representation of A is semisimple.

1.2 Characters of *A*-representations

Let A be any \mathbb{K} -algebra (not necessarily of finite dimension).

Assume (V, ρ) is an A-representation with dim $V < \infty$.

The *character* of (V, ρ) is the linear map $\chi_{(V,\rho)} : A \to \mathbb{K}$ with the formula

$$\chi_{(V,\rho)}(a) = \operatorname{tr}(\rho(a)) \stackrel{\text{def}}{=} \sum_{i=1}^{n} (\text{coefficient of } e_i \text{ in } \rho(a)(e_i)) \quad \text{for any basis } e_1, e_2, \dots, e_n \text{ of } V.$$

Fact 1.1. If (V, ρ) and (V', ρ') are isomorphic finite-dimensional A-representations then $\chi_{(V,\rho)} = \chi_{(V',\rho')}$. We say that $\chi_{(V,\rho)}$ is *irreducible* when (V, ρ) is irreducible.

Theorem 1.2. The characters of non-isomorphic irreducible finite-dimensional A-representations are linearly independent (and therefore distinct).

Fact 1.3. It always holds that $\ker(\chi_{(V,\rho)}) \supset [A,A] \stackrel{\text{def}}{=} \mathbb{K}\operatorname{-span}\{ab - ba : a, b \in A\}$

This means we can view a character as a linear map $A/[A, A] \to \mathbb{K}$.

Theorem 1.4. If A is finite-dimensional and semisimple, then the irreducible characters of A are a basis for the dual space $(A/[A, A])^*$. If char $(\mathbb{K}) = 0$, the two finite-dimensional A-representations are isomorphic if and only if they have same characters.

2 Two general theorems

Our goal today is to establish two general theorems about representations of an algebra A that is not necessarily semisimple. We proved the first of these theorems last time:

Theorem 2.1 (Jordan-Hölder theorem). If V is an A-representation with dim $V < \infty$ then there exists a filtration $0 = V_0 \subset V_1 \subset \cdots \subset V_n = V$ where each V_i is a subrepresentation and each quotient V_i/V_{i-1} is irreducible. Moreover, any other filtration with these properties has same length n and the same irreducible quotients up to isomorphism and permutations of indices.

Today we will supply the proof of the next theorem:

Theorem 2.2 (*Krull-Schmidt theorem*). If V is an A-representation with dim $V < \infty$ then there exists a decomposition $V = \bigoplus_{i \in I} V_i$ where each V_i is an indecomposable subrepresentation, and this decomposition is unique up to isomorphism and rearrangement of factors.

Remember that when A is semisimple, every indecomposable representation is irreducible, but for a general algebra we may not be able to decompose a representation into a direct sum of irreducible subrepresentations. The Krull-Schmidt theorem is relevant to the latter setting.

We will prove the Krull-Schmidt theorem after establishing a few lemmas.

A linear map $\theta: W \to W$ is *nilpotent* if $\theta^N \stackrel{\text{def}}{=} \theta \circ \theta \circ \cdots \circ \theta$ is zero for some N > 0.

Lemma 2.3. Let W be an indecomposable A-representation where dim $W < \infty$. Suppose $\theta : W \to W$ is a morphism of A-representations. Then θ is either an isomorphism or nilpotent.

Proof. For $\lambda \in \mathbb{K}$, the generalized λ -eigenspace of θ is

$$W_{\lambda} \stackrel{\text{def}}{=} \{ x \in W : (\theta - \lambda)^N(x) = 0 \text{ for some } N > 0 \}.$$

The subspace W_{λ} is nonzero if and only if λ is an eigenvalue of θ .

By standard linear algebra over algebraically closed fields, we know that $W = \bigoplus_{\lambda} W_{\lambda}$ where the direct sum is over the eigenvalues of θ . Observe that each W_{λ} is an A-subrepresentation.

Since W is indecomposable, θ must only have one eigenvalue λ . If $\lambda = 0$ then θ is nilpotent since $W = W_{\lambda}$. If $\lambda \neq 0$ then θ is invertible, and hence an isomorphism of A-representations.

Lemma 2.4. Let W be an indecomposable A-representation where dim $W < \infty$. Suppose $\theta_s : W \to W$ for $s = 1, 2, \ldots, n$ are nilpotent morphisms of A-representations. Then $\theta \stackrel{\text{def}}{=} \theta_1 + \cdots + \theta_n$ is also nilpotent.

Proof. We argue by contradiction. Let n be minimal such that the lemma fails.

Then we must have n > 1 and θ is not nilpotent. Hence θ is invertible by previous lemma.

Therefore we can write $1 = \theta^{-1}\theta = \sum_{s=1}^{n} \theta^{-1}\theta_s$.

Since $\ker(\theta^{-1}\theta_s) = \theta^{-1}(\ker(\theta_s)) \neq 0$, each $\theta^{-1}\theta_s$ is not invertible and therefore nilpotent by the lemma. But then $1 - \theta^{-1}\theta_n = \sum_{s=1}^{n-1} \theta^{-1}\theta_s$ is invertible, and therefore not nilpotent, since if X is nilpotent then

$$(1-X)^{-1} = 1 + X + X^2 + \dots$$

This contradicts the minimality of n, so we conclude that the lemma actually holds for all n.

We now return to the proof of the Krull-Schmidt theorem.

Proof of Theorem 2.2. To show the existence of an indecomposable decomposition $V = \bigoplus_{i \in I} V_i$, note that if V is not indecomposable then must exist nonzero subrepresentations U and W with $V = U \oplus W$, and by induction on dimension we can assume that U and W already have indecomposable decompositions.

The hard part is showing the uniqueness of the resulting decomposition.

Suppose $V = \bigoplus_{s=1}^{m} V_s = \bigoplus_{s=1}^{n} W_s$ where each V_s and W_s is an indecomposable subrepresentation. Let

$$\begin{array}{ll} i_s: V_s \hookrightarrow V \\ j_s: W_s \hookrightarrow V \end{array} \quad \text{and} \quad \begin{array}{ll} p_s: V \twoheadrightarrow V_s \\ q_s: V \twoheadrightarrow W_s \end{array}$$

be the natural inclusion and projection maps.

Define $\theta_s = p_1 \circ j_s \circ q_s \circ i_1$ so that

$$\theta_s: V_1 \stackrel{i_1}{\longrightarrow} V \stackrel{q_s}{\longrightarrow} W_s \stackrel{j_s}{\longrightarrow} V \stackrel{p_1}{\longrightarrow} V_1.$$

Note that i_s , p_s , j_s , q_s , and θ_s are all morphisms of A-representations.

Also, notice that the sum $\theta_1 + \theta_2 + \cdots + \theta_n$ is the identity map $V_1 \to V_1$.

Each θ_s is either nilpotent or an isomorphism by Lemma 2.3.

Since $\sum_{s=1}^{n} \theta_s$ is not nilpotent, some θ_s is an isomorphism by Lemma 2.4.

Without loss of generality we can assume that $\theta_1: V_1 \to V_1$ is an isomorphism. Since

$$\theta_1: V_1 \xrightarrow{q_1 \circ i_1} W_1 \xrightarrow{p_1 \circ j_1} V_1$$

is an isomorphism, we must have $W_1 = \mathsf{image}(q_1 \circ i_1) \oplus \mathsf{ker}(p_1 \circ j_1)$.

As W_1 is indecomposable, both $p_1 \circ j_1 : W_1 \to V_1$ and $q_1 \circ i_1 : V_1 \to W_1$ must be isomorphisms. Let $V' = \bigoplus_{s=2}^m V_s$ and $W' = \bigoplus_{s=2}^n W_s$ so that $V = V_1 \oplus V' = W_1 \oplus W'$. Let

 $h: V' \longleftrightarrow V \longrightarrow W'$

be the composition of the obvious inclusion and projection maps.

Clearly $\operatorname{ker}(h) = V' \cap W_1$, but $(p_1 \circ j_1)(V' \cap W_1) = 0$.

Since $p_1 \circ j_1 : W_1 \to V_1$ is isomorphism, must have $\ker(h) = 0$ so $h : V' \to W'$ is isomorphism. Now by induction applied to the decompositions

$$V' = \bigoplus_{s=2}^{m} V_s \cong \bigoplus_{s=2}^{n} W_s = W', \tag{1}$$

we must have m = n and there must exist a permutation σ with $V_s \cong W_{\sigma(s)}$ for all s. This establishes that the same holds for our starting decompositions $V = \bigoplus_{s=1}^{m} V_s = \bigoplus_{s=1}^{n} W_s$. \Box

3 Tensor products of algebras and representations

To finish today's lecture, we briefly discuss representations of tensor product algebras.

Let A and B be K-algebras and write $\otimes = \otimes_{\mathbb{K}}$ for the usual tensor product for K-vector spaces.

Since A and B are vector spaces, we can consider the vector space $A \otimes B$. It has more structure:

Fact 3.1. The vector space $A \otimes B$ is itself a K-algebra for the product given by the bilinear operation

$$(A \otimes B) \times (A \otimes B) \to A \otimes B$$

satisfying $(a \otimes b)(a' \otimes b') \stackrel{\text{def}}{=} aa' \otimes bb'$ for $a, a' \in A, b, b' \in B$. The unit for this product is $1_A \otimes 1_B$.

Let V be an A-representation and let W be a B-representation. Then $V \otimes W$ has a unique structure as an $A \otimes B$ -representation in which $(a \otimes b)(v \otimes w) \stackrel{\text{def}}{=} av \otimes bw$ for $a \in A, b \in B, v \in V, w \in W$.

Theorem 3.2. Assume dim $V < \infty$ and dim $W < \infty$. Then $V \otimes W$ is irreducible (as an $A \otimes B$ -representation) if V and W are irreducible (as A- and B-representations).

Proof. Assume V and W are both irreducible and of finite dimension.

By the density theorem, we have surjective maps $\rho_V : A \to \operatorname{End}(V)$ and $\rho_W : A \to \operatorname{End}(W)$.

Check that $\rho_V \otimes \rho_W : A \otimes B \to \operatorname{End}(V) \otimes \operatorname{End}(W)$ is also surjective.

If dim $V < \infty$ and dim $W < \infty$ then there is an isomorphism $\operatorname{End}(V) \otimes \operatorname{End}(W) \cong \operatorname{End}(V \otimes W)$.

But the map $\rho_{V\otimes W}: A\otimes B \to \operatorname{End}(V\otimes W)$ is thus surjective as it is the composition

 $A \otimes B \xrightarrow{\rho_V \otimes \rho_W} \operatorname{End}(V) \otimes \operatorname{End}(W) \xrightarrow{\cong} \operatorname{End}(V \otimes W).$

Hence $V \otimes W$ is irreducible, since $\rho_{V \otimes W}$ being surjective implies that every $0 \neq x \in V \otimes W$ is cyclic. \Box

The previous theorem has a converse.

Theorem 3.3. Suppose M is an irreducible $A \otimes B$ -representation of finite dimension. Then $M \cong V \otimes W$ for some irreducible A-representation V and irreducible B-representation W.

Proof sketch. We can assume A and B are finite-dimensional by replacing each algebra by its image under

 $A \longleftrightarrow A \otimes B \longrightarrow \operatorname{End}(M)$ and $B \longleftrightarrow A \otimes B \longrightarrow \operatorname{End}(M)$

where the inclusions send $a \mapsto a \otimes 1_B$ and $b \mapsto 1_A \otimes b$. Next, check that

$$\mathsf{Rad}(A \otimes B) = \mathsf{Rad}(A) \otimes B + A \otimes \mathsf{Rad}(B)$$

so $(A \otimes B)/\mathsf{Rad}(A \otimes B) \cong A/\mathsf{Rad}(A) \otimes B/\mathsf{Rad}(B)$ and M is an irreducible representation of this quotient.

Finally, the result can be deduced by identifying the quotient algebras $A/\operatorname{Rad}(A)$ and $B/\operatorname{Rad}(B)$ with explicit (direct sums of) matrix algebras, using the classification of irreducible representations for such algebras and the homework exercise checking that $\operatorname{Mat}_n(\mathbb{K}) \otimes \operatorname{Mat}_m(\mathbb{K}) \cong \operatorname{Mat}_m(\mathbb{K})$. \Box