This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

As usual we start with quick review of the previous lecture.

1.1 Semisimple algebras

Throughout, let \mathbb{K} be an algebraically closed field.
Suppose A is a finite-dimensional algebra over \mathbb{K}.
Then every irreducible A-representation V has $\operatorname{dim} V<\infty$ since if $0 \neq x \in V$ then $A x=V$ but

$$
\operatorname{dim}(A x) \leq \operatorname{dim} A<\infty
$$

Recall that an A-representation is semisimple if it is a direct sum of irreducible subrepresentations.
The algebra A is semisimple if any (and hence all) of the following equivalent properties hold:
(1) $\operatorname{Rad}(A) \stackrel{\text { def }}{=}\{$ elements in A that act as zero on every irreducible A-representation $\}$ is zero.
(2) If $V_{1}, V_{2}, \ldots, V_{r}$ is a complete list of representatives of the distinct isomorphism classes of irreducible A-representations, then $\operatorname{dim} A=\sum_{i=1}^{r}\left(\operatorname{dim} V_{i}\right)^{2}$.
(3) A is isomorphic to a finite direct sum of matrix algebras $\operatorname{Mat}_{d_{1}}(\mathbb{K}) \oplus \operatorname{Mat}_{d_{2}}(\mathbb{K}) \oplus \cdots \oplus \operatorname{Mat}_{d_{r}}(\mathbb{K})$.
(4) Every A-representation of finite dimension is semisimple.
(5) The regular representation of A is semisimple.

1.2 Characters of A-representations

Let A be any \mathbb{K}-algebra (not necessarily of finite dimension).
Assume (V, ρ) is an A-representation with $\operatorname{dim} V<\infty$.
The character of (V, ρ) is the linear map $\chi_{(V, \rho)}: A \rightarrow \mathbb{K}$ with the formula

$$
\chi_{(V, \rho)}(a)=\operatorname{tr}(\rho(a)) \stackrel{\text { def }}{=} \sum_{i=1}^{n}\left(\text { coefficient of } e_{i} \text { in } \rho(a)\left(e_{i}\right)\right) \quad \text { for any basis } e_{1}, e_{2}, \ldots, e_{n} \text { of } V .
$$

Fact 1.1. If (V, ρ) and $\left(V^{\prime}, \rho^{\prime}\right)$ are isomorphic finite-dimensional A-representations then $\chi_{(V, \rho)}=\chi_{\left(V^{\prime}, \rho^{\prime}\right)}$. We say that $\chi_{(V, \rho)}$ is irreducible when (V, ρ) is irreducible.

Theorem 1.2. The characters of non-isomorphic irreducible finite-dimensional A-representations are linearly independent (and therefore distinct).

Fact 1.3. It always holds that $\operatorname{ker}\left(\chi_{(V, \rho)}\right) \supset[A, A] \stackrel{\text { def }}{=} \mathbb{K}-\operatorname{span}\{a b-b a: a, b \in A\}$
This means we can view a character as a linear map $A /[A, A] \rightarrow \mathbb{K}$.
Theorem 1.4. If A is finite-dimensional and semisimple, then the irreducible characters of A are a basis for the dual space $(A /[A, A])^{*}$. If $\operatorname{char}(\mathbb{K})=0$, the two finite-dimensional A-representations are isomorphic if and only if they have same characters.

2 Two general theorems

Our goal today is to establish two general theorems about representations of an algebra A that is not necessarily semisimple. We proved the first of these theorems last time:

Theorem 2.1 (Jordan-Hölder theorem). If V is an A-representation with $\operatorname{dim} V<\infty$ then there exists a filtration $0=V_{0} \subset V_{1} \subset \cdots \subset V_{n}=V$ where each V_{i} is a subrepresentation and each quotient V_{i} / V_{i-1} is irreducible. Moreover, any other filtration with these properties has same length n and the same irreducible quotients up to isomorphism and permutations of indices.

Today we will supply the proof of the next theorem:
Theorem 2.2 (Krull-Schmidt theorem). If V is an A-representation with $\operatorname{dim} V<\infty$ then there exists a decomposition $V=\bigoplus_{i \in I} V_{i}$ where each V_{i} is an indecomposable subrepresentation, and this decomposition is unique up to isomorphism and rearrangement of factors.

Remember that when A is semisimple, every indecomposable representation is irreducible, but for a general algebra we may not be able to decompose a representation into a direct sum of irreducible subrepresentations. The Krull-Schmidt theorem is relevant to the latter setting.

We will prove the Krull-Schmidt theorem after establishing a few lemmas.
A linear map $\theta: W \rightarrow W$ is nilpotent if $\theta^{N} \stackrel{\text { def }}{=} \theta \circ \theta \circ \cdots \circ \theta$ is zero for some $N>0$.
Lemma 2.3. Let W be an indecomposable A-representation where $\operatorname{dim} W<\infty$. Suppose θ : $W \rightarrow W$ is a morphism of A-representations. Then θ is either an isomorphism or nilpotent.

Proof. For $\lambda \in \mathbb{K}$, the generalized λ-eigenspace of θ is

$$
W_{\lambda} \stackrel{\text { def }}{=}\left\{x \in W:(\theta-\lambda)^{N}(x)=0 \text { for some } N>0\right\} .
$$

The subspace W_{λ} is nonzero if and only if λ is an eigenvalue of θ.
By standard linear algebra over algebraically closed fields, we know that $W=\bigoplus_{\lambda} W_{\lambda}$ where the direct sum is over the eigenvalues of θ. Observe that each W_{λ} is an A-subrepresentation.

Since W is indecomposable, θ must only have one eigenvalue λ. If $\lambda=0$ then θ is nilpotent since $W=W_{\lambda}$.
If $\lambda \neq 0$ then θ is invertible, and hence an isomorphism of A-representations.

Lemma 2.4. Let W be an indecomposable A-representation where $\operatorname{dim} W<\infty$. Suppose $\theta_{s}: W \rightarrow W$ for $s=1,2, \ldots, n$ are nilpotent morphisms of A-representations. Then $\theta \stackrel{\text { def }}{=} \theta_{1}+\cdots+\theta_{n}$ is also nilpotent.

Proof. We argue by contradiction. Let n be minimal such that the lemma fails.
Then we must have $n>1$ and θ is not nilpotent. Hence θ is invertible by previous lemma.
Therefore we can write $1=\theta^{-1} \theta=\sum_{s=1}^{n} \theta^{-1} \theta_{s}$.
Since $\operatorname{ker}\left(\theta^{-1} \theta_{s}\right)=\theta^{-1}\left(\operatorname{ker}\left(\theta_{s}\right)\right) \neq 0$, each $\theta^{-1} \theta_{s}$ is not invertible and therefore nilpotent by the lemma.
But then $1-\theta^{-1} \theta_{n}=\sum_{s=1}^{n-1} \theta^{-1} \theta_{s}$ is invertible, and therefore not nilpotent, since if X is nilpotent then

$$
(1-X)^{-1}=1+X+X^{2}+\ldots
$$

This contradicts the minimality of n, so we conclude that the lemma actually holds for all n.

We now return to the proof of the Krull-Schmidt theorem.

Proof of Theorem 2.2. To show the existence of an indecomposable decomposition $V=\bigoplus_{i \in I} V_{i}$, note that if V is not indecomposable then must exist nonzero subrepresentations U and W with $V=U \oplus W$, and by induction on dimension we can assume that U and W already have indecomposable decompositions.

The hard part is showing the uniqueness of the resulting decomposition.
Suppose $V=\bigoplus_{s=1}^{m} V_{s}=\bigoplus_{s=1}^{n} W_{s}$ where each V_{s} and W_{s} is an indecomposable subrepresentation. Let

$$
\begin{aligned}
& i_{s}: V_{s} \hookrightarrow V \\
& j_{s}: W_{s} \hookrightarrow V
\end{aligned} \quad \text { and } \quad \begin{aligned}
& p_{s}: V \rightarrow V_{s} \\
& q_{s}: V \rightarrow W_{s}
\end{aligned}
$$

be the natural inclusion and projection maps.
Define $\theta_{s}=p_{1} \circ j_{s} \circ q_{s} \circ i_{1}$ so that

$$
\theta_{s}: V_{1} \xrightarrow{i_{1}} V \xrightarrow{q_{s}} W_{s} \stackrel{j_{s}}{\longrightarrow} V \xrightarrow{p_{1}} V_{1} .
$$

Note that $i_{s}, p_{s}, j_{s}, q_{s}$, and θ_{s} are all morphisms of A-representations.
Also, notice that the sum $\theta_{1}+\theta_{2}+\cdots+\theta_{n}$ is the identity map $V_{1} \rightarrow V_{1}$.
Each θ_{s} is either nilpotent or an isomorphism by Lemma 2.3 .
Since $\sum_{s=1}^{n} \theta_{s}$ is not nilpotent, some θ_{s} is an isomorphism by Lemma 2.4 .
Without loss of generality we can assume that $\theta_{1}: V_{1} \rightarrow V_{1}$ is an isomorphism. Since

$$
\theta_{1}: V_{1} \xrightarrow{q_{1} \circ i_{1}} W_{1} \xrightarrow{p_{1} \circ j_{1}} V_{1}
$$

is an isomorphism, we must have $W_{1}=\operatorname{image}\left(q_{1} \circ i_{1}\right) \oplus \operatorname{ker}\left(p_{1} \circ j_{1}\right)$.
As W_{1} is indecomposable, both $p_{1} \circ j_{1}: W_{1} \rightarrow V_{1}$ and $q_{1} \circ i_{1}: V_{1} \rightarrow W_{1}$ must be isomorphisms.
Let $V^{\prime}=\bigoplus_{s=2}^{m} V_{s}$ and $W^{\prime}=\bigoplus_{s=2}^{n} W_{s}$ so that $V=V_{1} \oplus V^{\prime}=W_{1} \oplus W^{\prime}$. Let

$$
h: V^{\prime} \longleftrightarrow V \longrightarrow W^{\prime}
$$

be the composition of the obvious inclusion and projection maps.
Clearly $\operatorname{ker}(h)=V^{\prime} \cap W_{1}$, but $\left(p_{1} \circ j_{1}\right)\left(V^{\prime} \cap W_{1}\right)=0$.
Since $p_{1} \circ j_{1}: W_{1} \rightarrow V_{1}$ is isomorphism, must have $\operatorname{ker}(h)=0$ so $h: V^{\prime} \rightarrow W^{\prime}$ is isomorphism.
Now by induction applied to the decompositions

$$
\begin{equation*}
V^{\prime}=\bigoplus_{s=2}^{m} V_{s} \cong \bigoplus_{s=2}^{n} W_{s}=W^{\prime} \tag{1}
\end{equation*}
$$

we must have $m=n$ and there must exist a permutation σ with $V_{s} \cong W_{\sigma(s)}$ for all s.
This establishes that the same holds for our starting decompositions $V=\bigoplus_{s=1}^{m} V_{s}=\bigoplus_{s=1}^{n} W_{s}$.

3 Tensor products of algebras and representations

To finish today's lecture, we briefly discuss representations of tensor product algebras.
Let A and B be \mathbb{K}-algebras and write $\otimes=\otimes_{\mathbb{K}}$ for the usual tensor product for \mathbb{K}-vector spaces.
Since A and B are vector spaces, we can consider the vector space $A \otimes B$. It has more structure:

Fact 3.1. The vector space $A \otimes B$ is itself a \mathbb{K}-algebra for the product given by the bilinear operation

$$
(A \otimes B) \times(A \otimes B) \rightarrow A \otimes B
$$

satisfying $(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right) \stackrel{\text { def }}{=} a a^{\prime} \otimes b b^{\prime}$ for $a, a^{\prime} \in A, b, b^{\prime} \in B$. The unit for this product is $1_{A} \otimes 1_{B}$.

Let V be an A-representation and let W be a B-representation. Then $V \otimes W$ has a unique structure as an $A \otimes B$-representation in which $(a \otimes b)(v \otimes w) \stackrel{\text { def }}{=} a v \otimes b w$ for $a \in A, b \in B, v \in V, w \in W$.

Theorem 3.2. Assume $\operatorname{dim} V<\infty$ and $\operatorname{dim} W<\infty$. Then $V \otimes W$ is irreducible (as an $A \otimes B$ representation) if V and W are irreducible (as A - and B-representations).

Proof. Assume V and W are both irreducible and of finite dimension.
By the density theorem, we have surjective maps $\rho_{V}: A \rightarrow \operatorname{End}(V)$ and $\rho_{W}: A \rightarrow \operatorname{End}(W)$.
Check that $\rho_{V} \otimes \rho_{W}: A \otimes B \rightarrow \operatorname{End}(V) \otimes \operatorname{End}(W)$ is also surjective.
If $\operatorname{dim} V<\infty$ and $\operatorname{dim} W<\infty$ then there is an isomorphism $\operatorname{End}(V) \otimes \operatorname{End}(W) \cong \operatorname{End}(V \otimes W)$.
But the map $\rho_{V \otimes W}: A \otimes B \rightarrow \operatorname{End}(V \otimes W)$ is thus surjective as it is the composition

$$
A \otimes B \xrightarrow{\rho_{V} \otimes \rho_{W}} \operatorname{End}(V) \otimes \operatorname{End}(W) \xrightarrow{\cong} \operatorname{End}(V \otimes W)
$$

Hence $V \otimes W$ is irreducible, since $\rho_{V \otimes W}$ being surjective implies that every $0 \neq x \in V \otimes W$ is cyclic.
The previous theorem has a converse.
Theorem 3.3. Suppose M is an irreducible $A \otimes B$-representation of finite dimension. Then $M \cong V \otimes W$ for some irreducible A-representation V and irreducible B-representation W.

Proof sketch. We can assume A and B are finite-dimensional by replacing each algebra by its image under

$$
A \longleftrightarrow A \otimes B \longrightarrow \operatorname{End}(M) \quad \text { and } \quad B \longleftrightarrow A \otimes B \longrightarrow \operatorname{End}(M)
$$

where the inclusions send $a \mapsto a \otimes 1_{B}$ and $b \mapsto 1_{A} \otimes b$. Next, check that

$$
\operatorname{Rad}(A \otimes B)=\operatorname{Rad}(A) \otimes B+A \otimes \operatorname{Rad}(B)
$$

so $(A \otimes B) / \operatorname{Rad}(A \otimes B) \cong A / \operatorname{Rad}(A) \otimes B / \operatorname{Rad}(B)$ and M is an irreducible representation of this quotient.
Finally, the result can be deduced by identifying the quotient algebras $A / \operatorname{Rad}(A)$ and $B / \operatorname{Rad}(B)$ with explicit (direct sums of) matrix algebras, using the classification of irreducible representations for such algebras and the homework exercise checking that $\operatorname{Mat}_{n}(\mathbb{K}) \otimes \operatorname{Mat}_{m}(\mathbb{K}) \cong \operatorname{Mat}_{m n}(\mathbb{K})$.

