MATH 5112 (Spring 2024) Lecture 8 (transcribed by MA Junwei)

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

As usual we start with quick review of the previous lecture.

1.1 Semisimple algebras

Throughout, let K be an algebraically closed field.
Suppose A is a finite-dimensional algebra over K.

Then every irreducible A-representation V' has dim V' < oo since if 0 # z € V then Az =V but

dim(Az) < dim A < oo.

Recall that an A-representation is semisimple if it is a direct sum of irreducible subrepresentations.

The algebra A is semisimple if any (and hence all) of the following equivalent properties hold:

(1) Rad(A4) def {elements in A that act as zero on every irreducible A-representation} is zero.

(2) If V4, Va,. .., V, is a complete list of representatives of the distinct isomorphism classes of irreducible
A-representations, then dim A = "7 (dim V;)%.

(3) A is isomorphic to a finite direct sum of matrix algebras Maty, (K) & Matg, (K) @ - - - & Matg, (K).
(4) Every A-representation of finite dimension is semisimple.

(5) The regular representation of A is semisimple.

1.2 Characters of A-representations

Let A be any K-algebra (not necessarily of finite dimension).
Assume (V, p) is an A-representation with dim V' < co.

The character of (V, p) is the linear map x(v,) : A — K with the formula

X(v,p)(a) = tr(p(a)) o Yo, (coefficient of e; in p(a)(e;))  for any basis eq, es, ..., e, of V.

Fact 1.1. If (V, p) and (V" p’) are isomorphic finite-dimensional A-representations then x(v,,) = X (v,
We say that x(v,, is irreducible when (V, p) is irreducible.

Theorem 1.2. The characters of non-isomorphic irreducible finite-dimensional A-representations are
linearly independent (and therefore distinct).

Fact 1.3. It always holds that ker(x(v,,)) D [A, 4] & K-span{ab — ba : a,b € A}
This means we can view a character as a linear map A/[A, A] — K.
Theorem 1.4. If A is finite-dimensional and semisimple, then the irreducible characters of A are a

basis for the dual space (A/[4, A])*. If char(K) = 0, the two finite-dimensional A-representations are
isomorphic if and only if they have same characters.
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2 Two general theorems

Our goal today is to establish two general theorems about representations of an algebra A that is not
necessarily semisimple. We proved the first of these theorems last time:

Theorem 2.1 (Jordan-Hélder theorem). If V is an A-representation with dim V' < oo then there exists
a filtration 0 = Vo C V; C --- C V,, = V where each V; is a subrepresentation and each quotient V;/V;_
is irreducible. Moreover, any other filtration with these properties has same length n and the same
irreducible quotients up to isomorphism and permutations of indices.

Today we will supply the proof of the next theorem:
Theorem 2.2 (Krull-Schmidt theorem). If V is an A-representation with dim V' < oo then there exists

a decomposition V' = P, ; Vi where each V; is an indecomposable subrepresentation, and this decompo-
sition is unique up to isomorphism and rearrangement of factors.

Remember that when A is semisimple, every indecomposable representation is irreducible, but for a
general algebra we may not be able to decompose a representation into a direct sum of irreducible
subrepresentations. The Krull-Schmidt theorem is relevant to the latter setting.

We will prove the Krull-Schmidt theorem after establishing a few lemmas.

A linear map 0 : W — W is nilpotent if 6V 96 ho-.- 00 is zero for some N > 0.

Lemma 2.3. Let W be an indecomposable A-representation where dim W < oo. Suppose 6 : W — W
is a morphism of A-representations. Then 6 is either an isomorphism or nilpotent.
Proof. For \ € K, the generalized \-eigenspace of 0 is

W/\déf{er:(H—A)N(x)zoforsomeN>O}.

The subspace W) is nonzero if and only if A is an eigenvalue of 6.

By standard linear algebra over algebraically closed fields, we know that W = @, W where the direct
sum is over the eigenvalues of §. Observe that each W), is an A-subrepresentation.

Since W is indecomposable, # must only have one eigenvalue A. If A = 0 then 0 is nilpotent since W = W

If A # 0 then 0 is invertible, and hence an isomorphism of A-representations. O

Lemma 2.4. Let W be an indecomposable A-representation where dim W < oo. Suppose 0, : W — W
for s =1,2,...,n are nilpotent morphisms of A-representations. Then 6 def 01+ -+0, is also nilpotent.

Proof. We argue by contradiction. Let n be minimal such that the lemma fails.

Then we must have n > 1 and 6 is not nilpotent. Hence @ is invertible by previous lemma.

Therefore we can write 1 =071 =>""_ 60716,.

Since ker(67105) = 0~ (ker(65)) # 0, each 8716, is not invertible and therefore nilpotent by the lemma.

But then 1 —0716,, = Z;:ll 0716, is invertible, and therefore not nilpotent, since if X is nilpotent then
1-X)'=14+X+X>+....

This contradicts the minimality of n, so we conclude that the lemma actually holds for all n. O

We now return to the proof of the Krull-Schmidt theorem.



MATH 5112 (Spring 2024) Lecture 8 (transcribed by MA Junwei)

Proof of Theorem[2.3 To show the existence of an indecomposable decomposition V = @;c; Vi, note
that if V' is not indecomposable then must exist nonzero subrepresentations U and W with V= U®W , and
by induction on dimension we can assume that U and W already have indecomposable decompositions.

The hard part is showing the uniqueness of the resulting decomposition.

Suppose V = @ZL:I Vs = @Zzl W, where each V; and Wy is an indecomposable subrepresentation. Let

is: Vo=V ps:V =V
an
Js W=V qs : V. — Wy

be the natural inclusion and projection maps.

Define 65 = py o js 0 g5 0 i1 so that

0,: V) <y v Ly, Ly Py

Note that ig, ps, js, gs, and € are all morphisms of A-representations.
Also, notice that the sum 61 4+ 05 + - - - 4+ 8,, is the identity map V; — V3.
Each 6, is either nilpotent or an isomorphism by Lemma [2.3

Since Y, 05 is not nilpotent, some 6, is an isomorphism by Lemma

Without loss of generality we can assume that 6; : V1 — V; is an isomorphism. Since
01 . Vl q1071 Wl P19J1 Vl

is an isomorphism, we must have Wy = image(q; o i1) @ ker(py © j1).
As W7 is indecomposable, both p; o j; : W7 — Vi and ¢ o 41 : V1 — W3 must be isomorphisms.
Let V! =@, Vo and W =P, _, Wy sothat V=V, & V' =W; & W'. Let

h:Vie—sV —» W
be the composition of the obvious inclusion and projection maps.
Clearly ker(h) = V' N Wy, but (p1 0 j1)(V' NnWp) =0.
Since py o j1 : Wi — V; is isomorphism, must have ker(h) = 0 so h: V' — W' is isomorphism.

Now by induction applied to the decompositions

V’:EEI@%QEWS:W’, (1)

we must have m = n and there must exist a permutation o with Vi = W, for all s.

This establishes that the same holds for our starting decompositions V. =@, Vs = @_, W,. O

3 Tensor products of algebras and representations

To finish today’s lecture, we briefly discuss representations of tensor product algebras.
Let A and B be K-algebras and write ® = ®g for the usual tensor product for K-vector spaces.

Since A and B are vector spaces, we can consider the vector space A ® B. It has more structure:
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Fact 3.1. The vector space A ® B is itself a K-algebra for the product given by the bilinear operation
(A B)x (A®B) > A®B

def

satisfying (a @ b)(a’ @ V') = ad’ @ bV’ for a,a’ € A, b,b’ € B. The unit for this product is 14 ® 15.

Let V' be an A-representation and let W be a B-representation. Then V ® W has a unique structure as
an A ® B-representation in which (a ® b)(v ® w) ' 40 @ bw for a € AbeBveV, weW.

Theorem 3.2. Assume dimV < oo and dimW < oco. Then V ® W is irreducible (as an A ® B-
representation) if V and W are irreducible (as A- and B-representations).

Proof. Assume V and W are both irreducible and of finite dimension.
By the density theorem, we have surjective maps py : A — End(V) and pw : A — End(W).
Check that py ® pw : A® B — End(V) ® End(W) is also surjective.
If dimV < oo and dim W < oo then there is an isomorphism End(V) @ End(W) = End(V @ W).
But the map pygw : A ® B — End(V ® W) is thus surjective as it is the composition
A® B™EY End(V) @ End(W) —— End(V @ W).
Hence V ® W is irreducible, since pygw being surjective implies that every 0 # x € V@ W is cyclic. O

The previous theorem has a converse.

Theorem 3.3. Suppose M is an irreducible A ® B-representation of finite dimension. Then M = V@ W
for some irreducible A-representation V' and irreducible B-representation W.

Proof sketch. We can assume A and B are finite-dimensional by replacing each algebra by its image under
A—— A®B —» End(M) and B —— A® B — End(M)

where the inclusions send a — a ® 1g and b +— 14 ® b. Next, check that
Rad(A® B) = Rad(4) ® B+ A ® Rad(B)

so (A® B)/Rad(A® B) = A/Rad(A) ® B/Rad(B) and M is an irreducible representation of this quotient.

Finally, the result can be deduced by identifying the quotient algebras A/Rad(A) and B/Rad(B) with
explicit (direct sums of) matrix algebras, using the classification of irreducible representations for such
algebras and the homework exercise checking that Mat,, (K) @ Mat,, (K) & Mat,,, (K). O
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