This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

Let K be an algebraically closed field and let G be a group.
A representation of G is a representation (V, ρ) of the group algebra $K[G]$.
Equivalently, a G-representation is a pair (V, ρ) such that $\rho: G \rightarrow \mathrm{GL}(V)$ is a group homomorphism.
In this case $\rho(K[G]) \subseteq \operatorname{End}(V)$ and $\rho(G) \subseteq \mathrm{GL}(V)$.
Assume G is a finite group.
Theorem 1.1 (Maschke's theorem). The group algebra $K[G]$ is semisimple (meaning that all irreducible G-representations are finite-dimensional and finite-dimensional G-representations are direct sums of irreducible representations) if and only if $\operatorname{char}(K)$ does not divide $|G|$.
Assume (V, ρ) is a finite dimensional G-representation.
The character of (V, ρ) is a linear map $\chi_{(V, \rho)}: K[G] \rightarrow K$ sending $g \mapsto \operatorname{tr}(\rho(g))$ for all $g \in G$.
In this case $\operatorname{dim} V=\chi_{(V, \rho)}(1)$ and we sometimes call this number the degree of the character.
We say that $\chi_{(V, \rho)}$ is irreducible if (V, ρ) is an irreducible representation.
Let $\operatorname{Irr}(G)$ denote the set of irreducible characters of G.

Remark 1.2. For any G-representations (V, ρ) and $\left(V^{\prime}, \rho^{\prime}\right)$, the following properties hold:
(1) If $(V, \rho) \cong\left(V^{\prime}, \rho^{\prime}\right)$ then $\chi_{(V, \rho)}=\chi_{\left(V^{\prime}, \rho^{\prime}\right)}$.
(2) The character $\chi=\chi_{(V, \rho)}$ is a class function on G, meaning that it is constant on conjugacy classes.

When $K[G]$ is semisimple, some additional properties hold:
(3) $\operatorname{Irr}(G)$ is a basis for the K-vector space of class functions $G \rightarrow K$.
(4) If $\operatorname{char}(K)=0$, then $\chi_{(V, \rho)}=\chi_{\left(V^{\prime}, \rho^{\prime}\right)}$ if and only if $(V, \rho) \cong\left(V^{\prime}, \rho^{\prime}\right)$.
(5) $\sum_{\chi \in \operatorname{Irr}(G)} \chi(1)^{2}=|G|$.

Example 1.3. If (V, ρ) is a G-representation with $\operatorname{dim} V=1$, then $\chi_{(V, \rho)}=\rho$.
Example 1.4. Suppose $K=\mathbb{C}$ and G is a cyclic group of order $n \geq 1$ generated by an element x. Let χ_{m} be the map $\mathbb{C}[G] \rightarrow \mathbb{C}$ with $x^{j} \mapsto \zeta^{m j}$ where $\zeta=e^{2 \pi \sqrt{-1} / n}$. Then $\operatorname{Irr}(G)=\left\{\chi_{0}, \chi_{1}, \chi_{2}, \ldots, \chi_{n-1}\right\}$.
When a finite group is abelian (so that the group algebra is commutative), every irreducible representation is 1-dimensional. This is true of all commutative algebras.

Suppose V is a K-vector space. Write V^{*} for the vector space of linear maps $V \rightarrow K$.
If $f: V \rightarrow W$ is a linear map then let $f^{*}: W^{*} \rightarrow V^{*}$ be the linear map with $f^{*}(\lambda)=\lambda \circ f$.
If (V, ρ) is a G-representation, then its dual representation is $\left(V^{*}, \rho^{*}\right)$ where $\rho^{*}: G \rightarrow \mathrm{GL}\left(V^{*}\right)$ is defined by the formula $\rho^{*}(g)=\left(\rho(g)^{*}\right)^{-1}=\rho\left(g^{-1}\right)^{*}$ for $g \in G$.

Fact 1.5. When V is finite dimensional, we have $\chi_{V^{*}}(g)=\chi_{V}\left(g^{-1}\right)$ for any $g \in G$. If we further assume that $K=\mathbb{C}$, then $\chi_{V^{*}}(g)=\chi_{V}\left(g^{-1}\right)=\overline{\chi_{V}(g)}$ for all $g \in G$.

Suppose $\left(V, \rho_{V}\right)$ and $\left(W, \rho_{W}\right)$ are G-representations.
Their tensor product is the G-representation $\left(V \otimes W, \rho_{V \otimes W}\right)$ where $\rho_{V \otimes W}(g)$ for $g \in G$ is the linear map $V \otimes W \rightarrow V \otimes W$ sending $v \otimes w \mapsto \rho_{V}(g) v \otimes \rho_{W}(g) w$ for all $v \in V$ and $w \in W$.

Fact 1.6. If $\operatorname{dim} V<\infty$ and $\operatorname{dim} W<\infty$ then $\chi_{\left(V \otimes W, \rho_{V \otimes W)}\right.}=\chi_{\left(V, \rho_{V}\right)} \chi_{\left(W, \rho_{V}\right)}$.
Remark 1.7. A G-representation is a left $K[G]$-module. The algebra $K[G]$ is often noncommutative.
Earlier, we emphasized that if A is a noncommutative algebra then the tensor product of two left A modules is not a well-defined left A-module in general.

So how do we explain the existence of a tensor product for group representations?
Solution: the tensor product of two left A-modules does have the structure of a left $A \times A$-module. In particular, the tensor product of $\left(V, \rho_{V}\right)$ and $\left(W, \rho_{W}\right)$ is a representation of $K[G] \otimes K[G]$.

A special property of group algebras is that $K[G] \otimes K[G]$ has a subalgebra K-span $\{g \otimes g: g \in G\} \cong K[G]$.
By identifying $K[G]$ with this subalgebra, any $K[G] \otimes K[G]$-representation can be viewed as a $K[G]$ representation, and this is how we define the G-representation $\left(V, \rho_{V}\right) \otimes\left(W, \rho_{W}\right)$.

2 More special properties of characters

For the rest of today, we assume that G is a finite group.
Suppose V and W are G-representations. Let $\operatorname{Hom}_{K}(W, V)$ denote the set of linear maps $W \rightarrow V$.
The vector space $\operatorname{Hom}_{K}(W, V)$ is a left $K[G] \otimes K[G]$-module for the action

$$
(g \otimes h) \cdot \varphi: w \mapsto g \varphi\left(h^{-1} w\right) \quad \text { for } g, h \in G
$$

Indeed, notice that if $\phi: W \rightarrow V$ is linear and $w \in W$ then

$$
\left(\left(g_{1} g_{2} \otimes h_{1} h_{2}\right) \cdot \varphi\right)(w)=g_{1} g_{2} \varphi\left(h_{2}^{-1} h_{1}^{-1} w\right)=g_{1}\left(g_{2} \otimes h_{2} \cdot \varphi\right)\left(h_{1}^{-1} w\right)=\left(\left(g_{1} \otimes h_{1}\right)\left(g_{2} \otimes h_{2}\right) \cdot \varphi\right)(w)
$$

for any $g_{1}, g_{2}, h_{1}, h_{2} \in G$. Now assume that V and W are finite-dimensional.
Proposition 2.1. It holds that $V \otimes W^{*} \cong \operatorname{Hom}_{K}(W, V)$ as $K[G] \otimes K[G]$-modules.
Proof. Let $F: V \otimes_{K} W^{*} \rightarrow \operatorname{Hom}_{K}(W, V)$ be the linear map sending

$$
v \otimes \varphi \mapsto(w \mapsto \varphi(w) v) \quad \text { for } v \in V \text { and } \varphi \in W^{*}
$$

Notice that if $\left\{v_{i}\right\}$ is a basis for $V,\left\{w_{j}\right\}$ is basis for W, and $\left\{\delta_{j}\right\}$ is the dual basis for W^{*}, then F sends $v_{i} \otimes \delta_{j}$ to the linear map $W \rightarrow V$ whose matrix in the chosen bases has a one in position (i, j) and zeros elsewhere. Any linear map $W \rightarrow V$ is a linear combination of such images $F\left(v_{i} \otimes \delta_{j}\right)$, so F is surjective.
Because $\operatorname{dim}\left(V \otimes_{K} W^{*}\right)=\operatorname{dim} V \operatorname{dim} W^{*}=\operatorname{dim} V \operatorname{dim} W=\operatorname{dim}\left(\operatorname{Hom}_{K}(W, V)\right)$, as V and W are finitedimensional, the map F is an isomorphism of K-vector spaces.

For any $g, h \in G, v \in V, w \in W$, and $\varphi \in W^{*}$, we have

$$
((g \otimes h) \cdot F(v \otimes \varphi))(w)=g \varphi\left(h^{-1} w\right) v
$$

and

$$
F((g \otimes h) \cdot(v \otimes \varphi))(w)=F\left((g v) \otimes\left(\varphi \circ h^{-1}\right)\right)(w)=\varphi\left(h^{-1} w\right)(g v)=g \varphi\left(h^{-1} w\right) v
$$

Hence, F is an isomorphism of $K[G] \otimes K[G]$-modules.

By letting $g \in G$ act as $g \otimes g$, we can view $V \otimes_{K[G]} W^{*} \cong \operatorname{Hom}_{K}(W, V)$ as isomorphic G-modules.
Proposition 2.2. The set $\left(\operatorname{Hom}_{K}(W, V)\right)^{G}$ of elements in $\operatorname{Hom}_{K}(W, V)$ fixed by all $g \in G$ is $\operatorname{Hom}_{G}(W, V)$.
Proof. Notice that if $\varphi \in \operatorname{Hom}_{G}(W, V)$, then for any $g \in G$, we have the following commutative diagram

Since the vertical map is invertible, we have $\varphi(w)=g\left(\varphi\left(g^{-1} w\right)\right)=(g \cdot \varphi)(w)$ for any $w \in W$.
Thus, $\operatorname{Hom}_{G}(W, V) \subseteq\left(\operatorname{Hom}_{K}(W, V)\right)^{G}$.
Conversely, if $\varphi \in\left(\operatorname{Hom}_{K}(W, V)\right)^{G}$, then for any $g \in G$ and $w \in W$, we have

$$
\varphi(g w)=(g \cdot \varphi)(g w)=g \varphi\left(g^{-1} g w\right)=g \varphi(w)
$$

Thus, $\varphi \in \operatorname{Hom}_{G}(W, V)$ and $\left(\operatorname{Hom}_{K}(W, V)\right)^{G} \subseteq \operatorname{Hom}_{G}(W, V)$.
Combining the preceding results lets us deduce that:
Corollary 2.3. There is an isomorphism $\left(V \otimes_{K[G]} W^{*}\right)^{G} \cong \operatorname{Hom}_{G}(W, V)$ as G-modules.

From now on, we assume $K=\mathbb{C}$.
For any maps $f_{1}, f_{2}: G \rightarrow \mathbb{C}$, we define a positive-definite Hermitian form

$$
\left(f_{1}, f_{2}\right):=\frac{1}{|G|} \sum_{g \in G} f_{1}(g) \overline{f_{2}(g)}
$$

Theorem 2.4. The set $\operatorname{Irr}(G)$ is an orthonormal basis for the class functions on G with respect to (\cdot, \cdot). In other words, we have $(\chi, \psi)=\delta_{\chi \psi}$ for any $\chi, \psi \in \operatorname{Irr}(G)$.

Proof. By Schur's Lemma, it suffices to prove that for any G-representations V and W, we have

$$
\left(\chi_{V}, \chi_{W}\right)=\operatorname{dim} \operatorname{Hom}_{G}(W, V)
$$

Let $\pi:=\frac{1}{|G|} \sum_{g \in G} \in K[G]$. By Fact 1.5 , we have

$$
\left(\chi_{V}, \chi_{W}\right)=\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \overline{\chi_{W}(g)}=\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \chi_{W^{*}}(g)=\frac{1}{|G|} \sum_{g \in G} \chi_{V \otimes_{K[G]} W^{*}}(g)=\chi_{V \otimes_{K[G]} W^{*}}(\pi)
$$

If X is any G-representation, then $X^{G}:=\{x \in X: g x=x\}$ is a subrepresentation of G.
Notice that $g \pi=\frac{1}{|G|} \sum_{h \in G} g h=\frac{1}{|G|} \sum_{g h \in G} g h=\pi$ for any $g \in G$.
Therefore, we have $\pi x \in X^{G}$ for any $x \in X$ and $\pi: X \rightarrow X^{G}$ is a projection map.
Thus $\operatorname{dim}\left(X^{G}\right)=\chi_{X}(\pi)$. Restricting to the case when $X=V \otimes_{K[G]} W^{*}$, we get

$$
\chi_{V \otimes_{K[G]} W^{*}}(\pi)=\operatorname{dim}\left(V \otimes_{K[G]} W^{*}\right)^{G}=\operatorname{dim}\left(\operatorname{Hom}_{G}(W, V)\right)
$$

by Corollary 2.3 .
For $g \in G$, let $Z_{g}:=\left\{h \in G: h g h^{-1}=g\right\}$ be the centralizer of g.
Also let $K_{g}:=\left\{h g h^{-1}: h \in G\right\}$ be the conjugacy class of g.

Fact 2.5. By the Orbit-Stabilizer Theorem it holds that $\left|K_{g}\right|=\frac{|G|}{\left|Z_{g}\right|}$.
Theorem 2.6. Let $g, h \in G$. Then

$$
\sum_{\psi \in \operatorname{Irr}(G)} \psi(g) \overline{\psi(h)}= \begin{cases}\left|Z_{g}\right| & K_{g}=K_{h} \\ 0 & K_{g} \neq K_{h}\end{cases}
$$

Proof sketch. We want to describe this sum as the trace of a \mathbb{C}-endomorphism of $\mathbb{C}[G]$.
If we write V_{ψ} for an irreducible representation with character ψ, then we have

$$
\begin{aligned}
\sum_{\psi \in \operatorname{Irr}(G)} \psi(g) \overline{\psi(h)} & =\sum_{\psi \in \operatorname{Irr}(G)} \chi_{V_{\psi}}(g) \chi_{V_{\psi}^{*}}(h) \\
& =\sum_{\psi \in \operatorname{Irr}(G)} \chi_{V_{\psi} \otimes V_{\psi}^{*}}(g \otimes h) \\
& =\operatorname{tr}\left(\left(\oplus_{\psi \in \operatorname{Irr}(G)} \rho_{V_{\psi}} \otimes V_{\psi}^{*}\right)(g \otimes h)\right)
\end{aligned}
$$

We have an isomorphism $\bigoplus_{\psi \in \operatorname{Irr}(G)} V_{\psi} \otimes V_{\psi}^{*} \cong \oplus_{\psi \in \operatorname{Irr}(G)} \operatorname{End}\left(V_{\psi}\right) \cong \mathbb{C}[G]$ of $\mathbb{C}[G] \otimes \mathbb{C}[G]$ representations.
Under this isomorphism, $g \otimes h$ acts on $\mathbb{C}[G]$ as the linear map sending $x \in G$ to $g x h^{-1}$.
Thus $\sum_{\psi \in \operatorname{Irr}(G)} \psi(g) \overline{\psi(h)}$ is the trace of $x \mapsto g x h^{-1}$, which is

$$
\left|\left\{x \in G: x=g x h^{-1}\right\}\right|=\left|\left\{x \in G: g=x h x^{-1}\right\}\right|= \begin{cases}\left|Z_{g}\right| & \text { if } K_{g}=K_{h} \\ 0 & \text { if } K_{g} \neq K_{h}\end{cases}
$$

3 Unitary representations

A finite-dimensional representation (V, ρ) of a group G (over \mathbb{C}) is unitary if there is a G-invariant positive definite Hermitian form $(\cdot, \cdot): V \times V \rightarrow \mathbb{C}$ with

$$
(\rho(g) v, \rho(g) w)=(v, w) \text { for any } v, w \in V \text { and } g \in G .
$$

Proposition 3.1. If G is a finite group, then any finite dimensional G-representation is unitary.
Proof. Pick any basis $\left\{v_{i}\right\}$ for V. We define a positive-definite Hermitian form $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ with

$$
\left\langle v_{i}, v_{j}\right\rangle= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Then the form $\left(v_{i}, v_{j}\right):=\sum_{g \in G}\left\langle g v_{i}, g v_{j}\right\rangle$ is positive-definite and Hermitian.

Proposition 3.2. If (V, ρ) is a finite-dimensional unitary representation of a (not necessarily finite) group G, then (V, ρ) is semisimple.

Proof. Any irreducible representation is semisimple so assume V is reducible. Choose an irreducible subrepresentation of $U \subsetneq V$. Write (\cdot, \cdot) for the form that makes V unitary.
Let $U^{\perp}=\{v \in V:(v, u)=0$ for all $u \in U\}$. Then $V=U \oplus U^{\perp}$ and U^{\perp} is a subrepresentation since the relevant form is G-invariant, so the result follows by induction on dimension.

4 Matrix elements

Continue to assume that G is a finite group and V is a finite dimensional irreducible $\mathbb{C}[G]$-module.
Choose a G-invariant positive definite Hermitian form (\cdot, \cdot) on V and let $\left\{v_{i}\right\}$ be an orthonormal basis on V with respect to (\cdot, \cdot). Define $t_{i j}^{V}(g):=\left(g v_{i}, v_{j}\right)$ for any $g \in G$.
For each pair (i, j) with $1 \leq i, j \leq \operatorname{dim} V$, the $\operatorname{map} t_{i j}^{V}: G \rightarrow \mathbb{C}$ is a called a matrix element.
Proposition 4.1. The rescaled matrix elements $\frac{1}{\sqrt{\operatorname{dim} V}} t_{i j}^{V}: G \rightarrow \mathbb{C}$ (as V ranges over all isomorphism classes of finite dimensional irreducible G-representations and i, j range over the indices of an orthonormal basis of V) give an orthonormal basis of the space of all functions $G \rightarrow \mathbb{C}$.

We won't present the proof in class, but this can be found in the textbook.
Note that number of distinct matrix elements is $\sum_{V}(\operatorname{dim} V)^{2}=|G|$.

4.1 Character tables

Suppose G is a finite group. Choose representatives $1=g_{1}, g_{2}, \cdots, g_{r}$ for distinct conjugacy classes in G.
Suppose $\mathbf{1}=\chi_{1}, \chi_{2}, \cdots, \chi_{r}$ are the distinct elements in $\operatorname{Irr}(G)$.
Here 1 denotes the irreducible character $G \rightarrow\{1\}$.
Then everything you want to know about $\operatorname{Irr}(G)$ is encoded by the matrix

$\operatorname{Irr}(G)$	$1=g_{1}$	g_{2}	\cdots	g_{r}
$\mathbf{1}=\chi_{1}$	1	1	\cdots	1
χ_{2}	$\chi_{2}(1)$	$\chi_{2}\left(g_{2}\right)$	\cdots	$\chi_{2}\left(g_{r}\right)$
\vdots	\vdots	\vdots	\vdots	\vdots
χ_{r}	$\chi_{r}(1)$	$\chi_{r}\left(g_{2}\right)$	\cdots	$\left.\chi_{(} g_{r}\right)$

called the character table of G.

Example 4.2. If $G=S_{3}$, then the character table of G is

$\operatorname{Irr}\left(S_{3}\right)$	1	$(1,2)$	$(1,2,3)$
$1=\chi_{(3)}$	1	1	1
$\chi_{(2,1)}$	2	0	-1
$\chi_{(1,1,1)}$	1	-1	1

Using the character table orthogonality relations from today, you can compute the sizes of all conjugacy classes in G. Then you can decompose arbitrary products of characters into irreducibles.

