
MATH 5112 (Spring 2024) Lecture 10 (transcribed by Jiayi Wen)

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Review from last time

Let K be an algebraically closed field and let G be a group.

A representation of G is a representation (V, ρ) of the group algebra K[G].

Equivalently, a G-representation is a pair (V, ρ) such that ρ : G→ GL(V ) is a group homomorphism.

In this case ρ(K[G]) ⊆ End(V ) and ρ(G) ⊆ GL(V ).

Assume G is a finite group.

Theorem 1.1 (Maschke’s theorem). The group algebra K[G] is semisimple (meaning that all irreducible
G-representations are finite-dimensional and finite-dimensional G-representations are direct sums of irre-
ducible representations) if and only if char(K) does not divide |G|.

Assume (V, ρ) is a finite dimensional G-representation.

The character of (V, ρ) is a linear map χ(V,ρ) : K[G]→ K sending g 7→ tr(ρ(g)) for all g ∈ G.

In this case dimV = χ(V,ρ)(1) and we sometimes call this number the degree of the character.

We say that χ(V,ρ) is irreducible if (V, ρ) is an irreducible representation.

Let Irr(G) denote the set of irreducible characters of G.

Remark 1.2. For any G-representations (V, ρ) and (V ′, ρ′), the following properties hold:

(1) If (V, ρ) ∼= (V ′, ρ′) then χ(V,ρ) = χ(V ′,ρ′).

(2) The character χ = χ(V,ρ) is a class function on G, meaning that it is constant on conjugacy classes.

When K[G] is semisimple, some additional properties hold:

(3) Irr(G) is a basis for the K-vector space of class functions G→ K.

(4) If char(K) = 0, then χ(V,ρ) = χ(V ′,ρ′) if and only if (V, ρ) ∼= (V ′, ρ′).

(5)
∑
χ∈Irr(G) χ(1)2 = |G|.

Example 1.3. If (V, ρ) is a G-representation with dimV = 1, then χ(V,ρ) = ρ.

Example 1.4. Suppose K = C and G is a cyclic group of order n ≥ 1 generated by an element x. Let
χm be the map C[G]→ C with xj 7→ ζmj where ζ = e2π

√
−1/n. Then Irr(G) = {χ0, χ1, χ2, . . . , χn−1}.

When a finite group is abelian (so that the group algebra is commutative), every irreducible representation
is 1-dimensional. This is true of all commutative algebras.

Suppose V is a K-vector space. Write V ∗ for the vector space of linear maps V → K.

If f : V →W is a linear map then let f∗ : W ∗ → V ∗ be the linear map with f∗(λ) = λ ◦ f .

If (V, ρ) is a G-representation, then its dual representation is (V ∗, ρ∗) where ρ∗ : G→ GL(V ∗) is defined
by the formula ρ∗(g) = (ρ(g)∗)−1 = ρ(g−1)∗ for g ∈ G.

Fact 1.5. When V is finite dimensional, we have χV ∗(g) = χV (g−1) for any g ∈ G. If we further assume
that K = C, then χV ∗(g) = χV (g−1) = χV (g) for all g ∈ G.
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Suppose (V, ρV ) and (W,ρW ) are G-representations.

Their tensor product is the G-representation (V ⊗W,ρV⊗W ) where ρV⊗W (g) for g ∈ G is the linear map
V ⊗W → V ⊗W sending v ⊗ w 7→ ρV (g)v ⊗ ρW (g)w for all v ∈ V and w ∈W .

Fact 1.6. If dimV <∞ and dimW <∞ then χ(V⊗W,ρV⊗W ) = χ(V,ρV )χ(W,ρV ).

Remark 1.7. A G-representation is a left K[G]-module. The algebra K[G] is often noncommutative.

Earlier, we emphasized that if A is a noncommutative algebra then the tensor product of two left A-
modules is not a well-defined left A-module in general.

So how do we explain the existence of a tensor product for group representations?

Solution: the tensor product of two left A-modules does have the structure of a left A × A-module. In
particular, the tensor product of (V, ρV ) and (W,ρW ) is a representation of K[G]⊗K[G].

A special property of group algebras is that K[G]⊗K[G] has a subalgebra K-span{g⊗g : g ∈ G} ∼= K[G].

By identifying K[G] with this subalgebra, any K[G] ⊗ K[G]-representation can be viewed as a K[G]-
representation, and this is how we define the G-representation (V, ρV )⊗ (W,ρW ).

2 More special properties of characters

For the rest of today, we assume that G is a finite group.

Suppose V and W are G-representations. Let HomK(W,V ) denote the set of linear maps W → V .

The vector space HomK(W,V ) is a left K[G]⊗K[G]-module for the action

(g ⊗ h) · ϕ : w 7→ gϕ(h−1w) for g, h ∈ G.

Indeed, notice that if φ : W → V is linear and w ∈W then(
(g1g2 ⊗ h1h2) · ϕ

)
(w) = g1g2ϕ(h−12 h−11 w) = g1

(
g2 ⊗ h2 · ϕ

)
(h−11 w) =

(
(g1 ⊗ h1)(g2 ⊗ h2) · ϕ

)
(w)

for any g1, g2, h1, h2 ∈ G. Now assume that V and W are finite-dimensional.

Proposition 2.1. It holds that V ⊗W ∗ ∼= HomK(W,V ) as K[G]⊗K[G]-modules.

Proof. Let F : V ⊗K W ∗ → HomK(W,V ) be the linear map sending

v ⊗ ϕ 7→ (w 7→ ϕ(w)v) for v ∈ V and ϕ ∈W ∗.

Notice that if {vi} is a basis for V , {wj} is basis for W , and {δj} is the dual basis for W ∗, then F sends
vi ⊗ δj to the linear map W → V whose matrix in the chosen bases has a one in position (i, j) and zeros
elsewhere. Any linear map W → V is a linear combination of such images F (vi ⊗ δj), so F is surjective.

Because dim(V ⊗K W ∗) = dimV dimW ∗ = dimV dimW = dim(HomK(W,V )), as V and W are finite-
dimensional, the map F is an isomorphism of K-vector spaces.

For any g, h ∈ G, v ∈ V , w ∈W , and ϕ ∈W ∗, we have(
(g ⊗ h) · F (v ⊗ ϕ)

)
(w) = gϕ(h−1w)v

and
F
(
(g ⊗ h) · (v ⊗ ϕ)

)
(w) = F ((gv)⊗ (ϕ ◦ h−1))(w) = ϕ(h−1w)(gv) = gϕ(h−1w)v.

Hence, F is an isomorphism of K[G]⊗K[G]-modules.
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By letting g ∈ G act as g ⊗ g, we can view V ⊗K[G] W
∗ ∼= HomK(W,V ) as isomorphic G-modules.

Proposition 2.2. The set (HomK(W,V ))G of elements in HomK(W,V ) fixed by all g ∈ G is HomG(W,V ).

Proof. Notice that if ϕ ∈ HomG(W,V ), then for any g ∈ G, we have the following commutative diagram

V V

V V

ϕ

g g

ϕ

.

Since the vertical map is invertible, we have ϕ(w) = g(ϕ(g−1w)) = (g · ϕ)(w) for any w ∈W .

Thus, HomG(W,V ) ⊆ (HomK(W,V ))G.

Conversely, if ϕ ∈ (HomK(W,V ))G, then for any g ∈ G and w ∈W , we have

ϕ(gw) = (g · ϕ)(gw) = gϕ(g−1gw) = gϕ(w).

Thus, ϕ ∈ HomG(W,V ) and (HomK(W,V ))G ⊆ HomG(W,V ).

Combining the preceding results lets us deduce that:

Corollary 2.3. There is an isomorphism (V ⊗K[G] W
∗)G ∼= HomG(W,V ) as G-modules.

From now on, we assume K = C.

For any maps f1, f2 : G→ C, we define a positive-definite Hermitian form

(f1, f2) :=
1

|G|
∑
g∈G

f1(g)f2(g).

Theorem 2.4. The set Irr(G) is an orthonormal basis for the class functions on G with respect to (·, ·).

In other words, we have (χ, ψ) = δχψ for any χ, ψ ∈ Irr(G).

Proof. By Schur’s Lemma, it suffices to prove that for any G-representations V and W , we have

(χV , χW ) = dim HomG(W,V ).

Let π := 1
|G|
∑
g∈G ∈ K[G]. By Fact 1.5, we have

(χV , χW ) =
1

|G|
∑
g∈G

χV (g)χW (g) =
1

|G|
∑
g∈G

χV (g)χW∗(g) =
1

|G|
∑
g∈G

χV⊗K[G]W∗(g) = χV⊗K[G]W∗(π).

If X is any G-representation, then XG := {x ∈ X : gx = x} is a subrepresentation of G.

Notice that gπ = 1
|G|
∑
h∈G gh = 1

|G|
∑
gh∈G gh = π for any g ∈ G.

Therefore, we have πx ∈ XG for any x ∈ X and π : X � XG is a projection map.

Thus dim(XG) = χX(π). Restricting to the case when X = V ⊗K[G] W
∗, we get

χV⊗K[G]W∗(π) = dim(V ⊗K[G] W
∗)G = dim(HomG(W,V ))

by Corollary 2.3.

For g ∈ G, let Zg := {h ∈ G : hgh−1 = g} be the centralizer of g.

Also let Kg := {hgh−1 : h ∈ G} be the conjugacy class of g.
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Fact 2.5. By the Orbit-Stabilizer Theorem it holds that |Kg| = |G|
|Zg| .

Theorem 2.6. Let g, h ∈ G. Then

∑
ψ∈Irr(G)

ψ(g)ψ(h) =

{
|Zg| Kg = Kh,

0 Kg 6= Kh.

Proof sketch. We want to describe this sum as the trace of a C-endomorphism of C[G].

If we write Vψ for an irreducible representation with character ψ, then we have∑
ψ∈Irr(G)

ψ(g)ψ(h) =
∑

ψ∈Irr(G)

χVψ (g)χV ∗ψ (h)

=
∑

ψ∈Irr(G)

χVψ⊗V ∗ψ (g ⊗ h)

= tr
(
(⊕ψ∈Irr(G)ρVψ⊗V ∗ψ )(g ⊗ h)

)
.

We have an isomorphism
⊕

ψ∈Irr(G) Vψ⊗V ∗ψ ∼= ⊕ψ∈Irr(G)End(Vψ) ∼= C[G] of C[G]⊗C[G] representations.

Under this isomorphism, g ⊗ h acts on C[G] as the linear map sending x ∈ G to gxh−1.

Thus
∑
ψ∈Irr(G) ψ(g)ψ(h) is the trace of x 7→ gxh−1, which is

|{x ∈ G : x = gxh−1}| = |{x ∈ G : g = xhx−1}| =

{
|Zg| if Kg = Kh

0 if Kg 6= Kh.

3 Unitary representations

A finite-dimensional representation (V, ρ) of a group G (over C) is unitary if there is a G-invariant positive
definite Hermitian form (·, ·) : V × V → C with

(ρ(g)v, ρ(g)w) = (v, w) for any v, w ∈ V and g ∈ G.

Proposition 3.1. If G is a finite group, then any finite dimensional G-representation is unitary.

Proof. Pick any basis {vi} for V . We define a positive-definite Hermitian form 〈·, ·〉 : V × V → C with

〈vi, vj〉 =

{
1 if i = j

0 if i 6= j.

Then the form (vi, vj) :=
∑
g∈G〈gvi, gvj〉 is positive-definite and Hermitian.

Proposition 3.2. If (V, ρ) is a finite-dimensional unitary representation of a (not necessarily finite)
group G , then (V, ρ) is semisimple.

Proof. Any irreducible representation is semisimple so assume V is reducible. Choose an irreducible
subrepresentation of U ( V . Write (·, ·) for the form that makes V unitary.

Let U⊥ = {v ∈ V : (v, u) = 0 for all u ∈ U}. Then V = U ⊕U⊥ and U⊥ is a subrepresentation since the
relevant form is G-invariant, so the result follows by induction on dimension.
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4 Matrix elements

Continue to assume that G is a finite group and V is a finite dimensional irreducible C[G]-module.

Choose a G-invariant positive definite Hermitian form (·, ·) on V and let {vi} be an orthonormal basis
on V with respect to (·, ·). Define tVij(g) := (gvi, vj) for any g ∈ G.

For each pair (i, j) with 1 ≤ i, j ≤ dimV , the map tVij : G→ C is a called a matrix element .

Proposition 4.1. The rescaled matrix elements 1√
dimV

tVij : G → C (as V ranges over all isomorphism

classes of finite dimensional irreducible G-representations and i, j range over the indices of an orthonormal
basis of V ) give an orthonormal basis of the space of all functions G→ C.

We won’t present the proof in class, but this can be found in the textbook.

Note that number of distinct matrix elements is
∑
V (dimV )2 = |G|.

4.1 Character tables

Suppose G is a finite group. Choose representatives 1 = g1, g2, · · · , gr for distinct conjugacy classes in G.

Suppose 1 = χ1, χ2, · · · , χr are the distinct elements in Irr(G).

Here 1 denotes the irreducible character G→ {1}.

Then everything you want to know about Irr(G) is encoded by the matrix

Irr(G) 1 = g1 g2 · · · gr
1 = χ1 1 1 · · · 1
χ2 χ2(1) χ2(g2) · · · χ2(gr)
...

...
...

...
...

χr χr(1) χr(g2) · · · χ(gr)

called the character table of G.

Example 4.2. If G = S3, then the character table of G is

Irr(S3) 1 (1, 2) (1, 2, 3)
1 = χ(3) 1 1 1
χ(2,1) 2 0 −1
χ(1,1,1) 1 −1 1

Using the character table orthogonality relations from today, you can compute the sizes of all conjugacy
classes in G. Then you can decompose arbitrary products of characters into irreducibles.
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