
 1

Sets and Subsets      T. W. Leung 
 

 It is well known that a set with n elements contains altogether 2n  subsets, (including the empty 
set and itself as subsets). However if we put restrictions on the choices of subsets, say each subset may 
contain at most k elements, or any two chosen subsets may have non-trivial (or trivial) intersection, 
then our choices will be more limited. Conversely if we can select from the subsets of a set with n 
elements a certain number of subsets, and these subsets satisfy some pre-defined properties, then n 
probably cannot be too small. Or perhaps we can deduce any two of these subsets must have non-trivial 
intersection, etc. 
 
 There have already been many results relating sets and subsets. On the other hand, as problems 
of this kind may test students’ analytical ability, and the required knowledge in solving this kind of 
problems is usually minimal, they appear in mathematical contests quite frequently. 
 
Example 1: (Soviet Union Mathematical Olympiad 1965) A committee had 40 meetings, with 10 
committee members attended each meeting. Every two committee members attended a meeting 
together at most once. Show that there are more than 60 members in the committee. 
Solution: Every meeting was attended by 10 members. Thus there were 10

2 45C =  pairs of committee 
members. According to the condition given each pair would not appear in another meeting, hence for 
40 meetings, there were 40 45 1800× =  distinct pairs of committee members. Now the committee had n 

members and there were 2
( 1)

2
n n nC −
=  distinct pairs. We must have ( 1)1800 ,

2
n n −

≤  solve to get 

60.n >  �  
 
Using the set language, the committee members form a set. Members attending a particular meeting is a 
subset of this set. The condition implies the intersection of any two of these subsets contains at most 1 
element. Now we have altogether 40 such subsets, and we can deduce that the size of the committee 
cannot be too small. One strategy is solving this type of problems is to look for a suitable observable 
quantity, then investigate this quantity using different perspectives. In this case the quantity we look for 
is the number of “pairs” of committee members attending a same meeting. 
 
Alternative Solution of Example 1: The problem may be tackled as follows. Each committee was 
consisted of 10 members, hence altogether 40 10 400× =  “persons” attended the meetings. Suppose the 

committee had at most 60 members, since 400 6.67,
60

≈  we must have 1 member in the committee who 

attended at least 7 meetings. But from the condition given, the members (except this fellow) attending 
these 7 or more meeting must not be the same. Thus there are at least 7 9 63× =  members, a 
contradiction! (Note implicitly we have used the pigeon hole principle.) �  
 
Example 2: (Austrian-Polish Mathematics Competition 1978) There are given 1978 sets, each 
containing 40 elements. Every two sets have exactly one element in common. Prove that all 1978 sets 
have a common element. 
Solution: Suppose A is one of the sets. Consider the other 1977 sets, each set has a common element 

with A. Since 1977 49.43,
40

≈  there exists x A∈  which also belongs to 50 other sets 1 2 50, , ,A A AL  say, 

and x is the only common element of these sets. Consider now another set B. If ,x B∉  as B intersects 
non-trivially with 1 2 50, , ,A A AL  and the intersecting elements cannot be common, hence B contains at 
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least 50 elements, a contradiction. Thus we must have .x B∈  B is arbitrary, hence x is in every other 
subset. The proof is complete. �  
 
The result can be extended and the proof is entirely analogous: Suppose there are n sets, with each set 
containing k elements. Every two sets contain exactly one common element. If 2 1,n k k> − +  then the 
n sets contain a common element. 
 
We now consider a more difficult example. 
 
Example: (Soviet Union Mathematical Olympiad 1996) 16000 committees were formed with members 
coming from 1600 councillors. Each committee consisted of exactly 80 members. Show that there exist 
two committees, and they had at least 4 common members. 
Solution: In this problem we do not consider pairs of members in each committee. Instead we consider 
from the perspective an individual councillor, and see how many pairs of committees he joined. 
Suppose councillors 1, 2, …, 1600 joined respectively 1 2 1600, , ,k k kL  committees. Hence altogether 
there are 16001 2

2 2 2... kk kC C C+ + + ”committee pairs”. Now there are N committees, ( 16000),N =  then 

1 2 1600 80 .k k k N+ + + =L  We estimate these committee pairs 

16001 2 1600 16001 1 2 2
2 2 2

2 2 2 2
1 2 1600 1 2 1600 1 2 1600 1 2 1600

( 1)( 1) ( 1)... ...
2 2 2

... ... ( ... ) ...1
2 2 2 1600 2

kk k k kk k k kC C C

k k k k k k k k k k k k

−− −
+ + + = + + +

+ + + + + + + + + + + +
= − ≥ −

 

( ) ( )
2

2801 80 2 40 2 20
2 1600 2

N N N N N N= − = − = −  

Suppose now every two committee have at most three common members, then can only be at most 

2
3 ( 1)3

2
N N NC −
=  committee pairs. Hence 32 ( 20) ( 1),

2
N N N N− ≤ −  or 77,N ≤  contradicting 

16000.N = �  
(Note that in the estimate we have made use of the Cauchy-Schwarz Inequality.) 
 
Curiously enough, we found a similar example. 
 
Example 4: (International Mathematical Olympiad 1998) In a contest there are m candidates and n 
judges, where 3n ≥  is an odd integer. Each candidate is evaluated by each judge as either pass or fail. 

Suppose that each pair of judges agrees on at most k candidates. Prove that 1.
2

k n
m n

−
≥  

Solution: The problem has reminded us to consider pairs of judges who agree on particular candidates. 
Consider candidate i, 1 ,i m≤ ≤  suppose ix  judges consider him pass and iy  judges think he fail. Then 
the number of pairs of judges that agree on this candidate is  

( ) ( ) ( )22 2

2 2

1 1 1
2 2 2 2 2 2 2

i i i i i i i ix y i i i i i ix x y y x yx y x y x yC C
− − ++ + +

+ = + = − ≥ −  

( )221 1 1 1
4 2 4

nn n⎡ ⎤= − = − −⎣ ⎦ . 
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Now n  is odd and 2 2
i ix yC C+  is an integer, hence 2 2

i ix yC C+  is at least 21 ( 1) .
4

n −  Also there are n judges 

and any pair of judges agree on at most k candidates, there are at most 2
nkC  pairs that agree on certain 

candidates. Thus ( )2

2 2 2
1

1
4

i i

m
x yn

i

m n
kC C C

=

−
⎡ ⎤≥ + ≥⎣ ⎦∑ , simplify to obtain the desired result. �  

 
We now consider a problem of slightly different flavor. Consider sequences of length n and such that 
each sequence contains only 0s or 1s. Define the “distance” between two such sequences as the number 
of positions they differ. For example 1101011 and 1011000 are two sequences of length 7, and they 
differ on positions 2, 3, 6 and 7, hence the distance between them is 4. Using set language, we say that 
a set contains 7 elements 1, 2, 3, 4, 5, 6 and 7, as sequence 1 are non-zero at positions 1, 2, 4, 6, and 7, 
and we may consider sequence 1 as a subset containing elements 1, 2, 4, 6 and 7. Likewise sequence 2 
is a subset containing 1, 3 and 4. Elements belong to sequence 1 or sequence 2, but not both, in this 
case consist of 2, 3, 6 and 7, together form a subset, called the “symmetric difference” of the two 
subsets. One can verifies easily that the distance between the sequences corresponds precisely to the 
number of elements in the symmetric difference. Now our concern is, given n and a restriction on the 
distances between the sequences, at most how many sequences we can get? 
 
Example 5: Given m sequences of length n and the sequences contain only 0s and 1s. Suppose the 

distance between any two such sequences is at least d, then 2 .
2

dm
d n

≤
−

 

Solution: Consider any two sequences and the corresponding pairs that differ. First we note that there 
are 2

mC  pairs of sequences. For any pair of sequences, the number of pairs that differ or “distance” 
between them is at least d. Hence the sum of total distances between all possible pairs of sequences is 
at least 2 .mdC  Now we list all of these m sequences as m rows. Then each column j, 1 ,j n≤ ≤  
correspond to the jth position of these m sequence. If the thj  column contains jx  0s, then it will contain 

jm x−  1s. This column will contribute ( )j jx m x−  pairs of positions that the sequences differ. Observe 

( ) ( ) 2
2

,
2 4

j j
j j

x m x mx m x
⎡ ⎤+ −

− ≤ =⎢ ⎥
⎢ ⎥⎣ ⎦

 

thus  ( )
2 2

2
1 1 4 4

n n
m

j j
j j

m nmdC x m x
= =

≤ − ≤ =∑ ∑ . Simplify to get 2
2

dm
d n

≤
−

. �  

 

For instance, if 7,n = 4,d = then 
2 8.

2
d

d n
=

−
 It is impossible to construct 9 sequences if the minimum 

distance between any pair is 4. (Our readers perhaps would like to construct 8 such sequences.)  In fact 
this result is a special case of a theorem in Coding Theory, usually referred as a Plotkin Bound.  
 
There are many interesting results concerning sets and subsets for us to investigate. 
 
 
 
 


