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                 The Method of Infinite Descent 
 
                                            Leung Tat-Wing 

 

Olympiad Corner 
 
Below is the Bulgarian selection test 

for the 46
th

 IMO given on May 18 – 

19, 2005. 
 

Problem 1.    An acute triangle ABC is 

given. Find the locus of points M in the 

interior of the triangle such that AB−FG 

= (MF·AG+MG·BF)/CM, where F and 

G are the feet of perpendiculars from M 

to the lines BC and AC, respectively. 
 

Problem 2. Find the number of subsets 

B of the set {1, 2, …, 2005} such that the 

sum of the elements of B is congruent to 

2006 modulo 2048. 
 

Problem 3. Let R* be the set of non-zero 

real numbers. Find all functions f : R* → 

R* such that  
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for all x, y ∈R*,  y ≠ −x
2. 

 
Problem 4. Let a1, a2, …, a2005, b1, b2, 

⋯, b2005 be real numbers such that 
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for any real number x and i = 1, 2, …, 

2005. What is the maximal number of 

positive ai’s and bi’s? 
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The technique of infinite descent 

(descent infini) was developed by the 

great amateur mathematician Pierre de 

Fermat (1601-1665). Besides using the 

technique to prove negative results such 

as the equation x
4 + y

4 = z
2 has no 

nontrivial integer solution, he also used 

the technique to prove positive results.  

 

For instance, he knew that an odd prime 

p can be expressed as the sum of two 

integer squares if and only if p is of the 

form    4k + 1. To show that a prime of 

the form 4k + 3 is not a sum of two 

squares is not hard. In fact, every square 

equals 0 or 1 mod 4, thus no matter what 

possibilities, the sum of two squares 

cannot be of the form 4k + 3 ≡ 3 (mod 

4). To prove a prime of the form 4k + 1 

is the sum of two squares, he assumed 

that if there is a prime of the form 4k + 1 

which is not the sum of two squares, 

then there will be another (smaller) 

prime of the same nature, and hence a 

third one, and so on. Eventually he 

would come to the number 5, which 

should not be the sum of two squares. 

But we know 5 = 12 + 22 a sum of two 

squares, a contradiction! 

 

The idea of infinite descent may be 

described as follows. Mainly it is 

because a finite subset of natural 

numbers must have a smallest member. 

So if A is a subset of the natural numbers 

N, and if we need to prove, for every      

a ∈ A, the statement P(a) is valid. 

Suppose by contradiction, the statement 

is  not  valid  for all a ∈ A, i.e. there 

exists a non-empty subset of A, denoted 

by B, and such that P(x) is not true for 

any x ∈ B. Now because B is 

non-empty, there exists a smallest 

element of B, denoted by b and such that 

P(b) is not valid. Using the given 

conditions, if we can find a still smaller 

c ∈ A ( c < b ), and such that P(c) is not 

valid, then this will contradict the 

assumption of b. The conclusion is that 

P(a) must be valid for all a ∈ A. 

 

There are variations of this scenario. For 

instance, suppose there is a positive 

integer a1 such that P(a1) is valid, and 

from this, if we can find a smaller 

positive integer a2 such that P(a2) is 

valid, then we can find a still smaller 

positive integer a3 such that P(a3) is 

valid, and so on. Hence we can find an 

infinite and decreasing chain of positive 

integers (infinite descent) a1 > a2 > a3 > 

⋯. This is clearly impossible. So the 

initial hypothesis P(a1) cannot be valid.  

 

So the method of descent is essentially 

another form of induction. Recall that  

in mathematical induction, we start 

from a smallest element a of a subset of 

natural numbers, (initial step), and 

prove the so-called inductive step. So 

we can go from P(a) to P(a + 1), then 

P(a + 2) and so on.  

 

Many problems in mathematics 

competition require the uses of the 

method of descent. We give a few 

examples. First we use the method of 

infinite descent to prove the well-known 

result that 2  is irrational. Of course 

the classical proof is essentially a 

descent argument. 

 

Example 1: Show that 2  is irrational. 

 
Solution. We need to show that there do 

not exist positive integers x and y such 

that x/y = 2  or by taking squares, we 

need to show the equation x2 = 2y
2 has 

no positive integer solution.   

 

Suppose otherwise, let x = m, y = n be a 

solution of the equation and such that m 

is the smallest possible value of x that 

satisfies the equation. Then m
2 = 2n

2  

and this is possible only if m is even, 

hence m=2m1. Thus, 4m1
2 = (2m1)

2=2n
2, 

so n
2 = 2m1

2. This implies n is also a 

possible value of x in the equation x2 = 

2y
2. However, n < m, contradicting the 

minimality of m. 
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Example 2 (Hungarian MO 2000): 

Find all positive primes p for which 

there exist positive integers x, y and n 

such that pn = x3 + y3. 

 

Solution. Observe 21 = 13 + 13 and 32 = 

23 + 13. After many trials we found no 

more primes with this property. So we 

suspect the only answers are  p = 2 or  p 

= 3. Thus, we need to prove there exists 

no prime p ( p > 3 ) satisfying pn = x3 + 

y
3. Clearly we need to prove by 

contradiction and one possibility is to 

make use of the descent method. (In 

this case we make descent on n and it 

works.)  

 

So we assume pn = x3 + y3 with x, y, n 

positive integers and n of the smallest 

possible value. Now p ≥ 5. Hence at 

least one of x and y is greater than 1. 

Also 
 

     3 3 2 2( )( ),x y x y x xy y+ = + − +   

 

with x + y ≥ 3  and 

 
      2 2 2( ) 2.x xy y x y xy− + = − + ≥   
 
Hence both x y+ and x2 – xy + y2 are 

divisible by p. Therefore 
 

      2 2 2( ) ( ) 3x y x xy y xy+ − − + =   

 
is also divisible by p. However, 3 is not 

divisible by p, so at least one of x or y 

must be divisible by p. As x + y is 

divisible by p, both x and y are divisible 

by p. Then x3 + y3 
≥ 2p

3. So we must 

have n > 3 and 
3 33 3

3

3 3 3
.

n
n p x y x y

p
p p p p p

−
   

= = + = +   
   

This contradicts the minimality of n.  

 

Example 3 (Putnam Exam 1973): Let 

a1, a2, ⋯, a2n+1 be a set of integers such 

that, if any one of them is removed, the 

remaining ones can be divided into two 

sets of n integers with equal sums. 

Prove a1 = a2 = ⋯ = a2n+1. 

 

Solution. Assume a1 ≤ a2 ≤ ⋯ ≤ a2n+1. 

By subtracting the smallest number 

from the sequence we observe the new 

sequence still maintain the property. So 

we may assume a1 = 0. The sum of any 

2n members equals 0 mod 2, so any 

two members must be of the same 

parity, (otherwise we may swap two 

members to form two groups of 2n 

elements which are of different parity). 

Therefore  
 
       0 = a1 ≡ a2 ≡ ⋯ ≡ a2n+1 (mod 2).  
 

Dividing by 2, we note the new sequence 

will maintain the same property. Using the 

same reasoning we see that 0 = a1 ≡ a2 ≡ ⋯ 

≡ a2n+1 (mod 22). We may descent to 0 = a1 

≡ a2 ≡ ⋯ ≡ a2n+1 (mod 2m) for all m ≥ 1. 

This is possible only if the initial numbers 

are all equal to others.  

 

Example 4: Starting from a vertex of an 

acute triangle, the perpendicular is drawn, 

meeting the opposite side (side 1) at A1. 

From A1, a perpendicular is drawn to meet 

another side (side 2) at A2. Starting from 

A2, the perpendicular is drawn to meet the 

third side (side 3) at A3. The  

perpendicular from A3 is then drawn to 

meet side 1 at A4 and then back to side 2, 

and so on.  

 

Prove that the points A1, A2, … are all 

distinct. 

 

Solution. First note that because the 

triangle is acute, all the points Ai, i ≥ 1 lie 

on the sides of the triangle, instead of 

going outside or coincide with the vertices 

of the triangle. This implies Ai and Ai+1 

will not coincide because they lie on 

adjacent sides of the triangle. Suppose 

now Ai coincides with Aj (i < j), and i is the 

smallest index with this property. Then in 

fact i = 1. For otherwise Ai−1 will coincide 

with Aj−1, contradicting the minimality of i. 

Finally suppose A1 coincides with Aj,  j ≥3, 

this happens precisely when Aj−1 is the 

vertex of the triangle facing side 1. But  

we know that no vertices of the triangle 

are in the list, so again impossible.  

 

The following example was a problem of 

Sylvester (1814-1897). Accordingly 

Sylvester was annoyed to find that he 

was unable to tackle this deceptively 

simple problem. It was later solved by 

the technique of descent. The idea is to 

consider the smallest possible element 

with a certain property. 

 

Example 5 (Sylvester’s Problem): 

Given n (n ≥ 3) points on the plane. If a 

line passing through any two points 

also passes through a third point of the 

set, then prove that all the points lie on 

the same line. 

 

Solution. We prove an equivalent 

statement. Namely if there are n (n ≥ 3) 

points on the plane and such that they 

are not on the same line, then there 

exists a line passing through exactly 

two points.  

 

Now there are finitely many lines that 

may be formed by the points of the 

point set. Given such a line, there is at 

least one point of the set which does 

not lie on the line. We then consider  

the distance between the point and the 

line. Finally we list all such distances 

as d1 ≤ d2 ≤ ⋯ ≤ dm, namely d1 is the 

minimum distance between all possible 

points and all possible lines, say it is 

the distance between A and the line l. 

We now proceed to show that l contains 

exactly two points of the point set.  

 

Suppose not, say points B, C and D of 

the point set also lie on l. From A, draw 

the line AE perpendicular to l, with E 

on l. If E is one of the B, C or D, say E 

and B coincide, we have the picture 

 

Now AB = d1. However if we draw a 

perpendicular line from B to AC, then 

we will get a distance d0 less than d1, 

contradicting its minimality. Similarly 

if E coincides with C or D, we can also 

obtain a smaller distance.   

  
                      (continued on page 4) 
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Problem Corner 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is December 10, 

2005. 

 

Problem 236. Alice and Barbara order 

a pizza. They choose an arbitrary point 

P, different from the center of the pizza 

and they do three straight cuts through 

P, which pairwise intersect at 60˚ and 

divide the pizza into 6 pieces. The 

center of the pizza is not on the cuts. 

Alice chooses one piece and then the 

pieces are taken clockwise by Barbara, 

Alice, Barbara, Alice and Barbara. 

Which piece should Alice choose first 

in order to get more pizza than Barbara?  

(Source: 2002 Slovenian National 

Math Olympiad) 
 
Problem 237.  Determine (with proof) 

all polynomials p with real coefficients 

such that p(x) p(x+1) = p(x2) holds for 

every real number x. 

(Source: 2000 Bulgarian Math 

Olympiad) 
 
Problem 238. For which positive 

integers n, does there exist a 

permutation (x1, x2, …, xn) of the 

numbers 1, 2, …, n such that the 

number x1 + x2+ ⋯+xk is divisible by k 

for every k∈{1,2, …, n}?  

(Source: 1998 Nordic Mathematics 

Contest) 
 
Problem 239. (Due to José Luis 

Díaz-Barrero, Universitat Politècnica 

de Catalunya, Barcelona, Spain) In 

any acute triangle ABC, prove that  
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Problem 240. Nine judges 
independently award the ranks of 1 to 
20 to twenty figure-skaters, with no 
ties. No two of the rankings awarded  
to any figure-skater differ by more than 

3. The nine rankings of each are added. 
What is the maximum of the lowest of the 
sums? Prove your answer is correct. 
 
 

***************** 

Solutions 

**************** 

 

Problem 231. On each planet of a star 

system, there is an astronomer observing 

the nearest planet. The number of planets 

is odd, and pairwise distances between 

them are different. Prove that at least one 

planet is not under observation. 

(Source: 1966 Soviet Union Math 

Olympiad) 
 
Solution. CHAN Pak Woon (HKU Math, 
Year 1), LEE Kai Seng (HKUST), WONG 
Kwok Cheung (Carmel Alison Lam 
Foundation Secondary School, Form 7) and 
YEUNG Wai Kit (STFA Leung Kau Kui 
College, Form 5). 
 
Let there be n planets. The case of n = 1 is 

clear. For n ≥ 3, suppose the case n–2 is 

true. For the two closest planets, the 

astronomers on them observe each other. 

If any of the remaining n – 2 astronomers 

observes one of these two planets, then we 

do not have enough astronomers to 

observe the n – 2 remaining planets. 

Otherwise, we can discard these two 

closest planets and apply the case n – 2.  

  

Commended Solvers: Roger CHAN 
(Vancouver, Canada) and Anna Ying PUN 
(STFA Leung Kau Kui College). 
 
Problem 232.  B and C are points on the 

segment AD. If AB = CD, prove that 

PA+PD ≥ PB+PC for any point P. 

(Source: 1966 Soviet Union Math 

Olympiad) 
 
Solution 1. Anna Ying PUN (STFA 
Leung Kau Kui College). 
 
Suppose P is not on line AD. Let P’ be such 

that PAP’D is a parallelogram. Now AB=CD 

implies PBP’C is a parallelogram. By 

interchanging B and C, we may assume B is 

between A and C. Let line PB intersect AP’ 

at F. Then PA+PD = PA+AP’ = PA+AF 

+FP’ > PF + FP’ = PB + BF + FP’ > PB 

+BP’ = PB + PC. The case P is on line AD 

is easy to check. 
 
Solution 2. LEE Kai Seng (HKUST).  
 
Consider the complex plane with line AD as the 

real axis and the origin at the midpoint O of 

segment AD. Let the complex numbers 

correspond to A, B, P be a, b, p, respectively. 

Since | p ± a |2  = |p|2 ± 2Re ap + a2, so (PA + 

PD)2 = 2( |p|2 + |p2–a
2| + a2) . Then 

 

            (PA + PD)2 – (PB + PC)2 

        = 2( |p2–a
2| + a2 – b2 – | p2–b

2| ) ≥ 0  
 
by the triangle inequality. So PA+PD ≥ 

PB+PC. 
 
Also equality holds if and only if  the ratio of 

p
2 – a2  and  a2 – b2 is a nonnegative number, 

which is the same as  p ≥ a  or  p ≤ –a.  
 
Commended Solvers: CHAN Wai 
Hung (Carmel Divine Grace Foundation 
Secondary School, Form 7), WONG 
Kwok Cheung (Carmel Alison Lam 
Foundation Secondary School, Form 7) and 
YEUNG Wai Kit (STFA Leung Kau 
Kui College, Form 5). 

 

Problem 233. Prove that every 

positive integer not exceeding n! can 

be expressed as the sum of at most n 

distinct positive integers each of which 

is a divisor of n!.   
 
Solution. CHAN Ka Lok (STFA Leung 
Kau Kui College, Form 6), G.R.A. 20 
Math Problem Group (Roma, Italy), 
LEE Kai Seng (HKUST) and YEUNG 
Wai Kit (STFA Leung Kau Kui 
College, Form 5). 
 
We prove by induction on n.  The case         

n = 1 is clear. Suppose case n – 1 is           

true. For n > 1, let 1 ≤ k ≤ n! and let q        

and r be such that k = qn + r with 0 ≤ r          

< n. Then 0 ≤ q ≤ (n–1)! . By the case      

n –1, q can be expressed as d1 + d2 +  ⋯       

+ dm, where m ≤ n – 1 and di is a divisor   

of (n – 1)! and di’s are distinct. Omitting       

r if r = 0, we see d1n + d2n + ⋯ + dmn + r is 

a desired expansion of k. 

 

Problem 234.  Determine all 

polynomials P(x) of the smallest 

possible degree with the following 

properties:  
 
a) The coefficient of the highest power 

is 200. 

b) The coefficient of the lowest power 

for which it is not equal to zero is 2. 

c) The sum of all its coefficients is 4. 

d) P(−1) = 0, P(2) = 6 and P(3) = 8. 
 
(Source: 2002 Austrian National 

Competition)     
 
Solution.  CHAN Pak Woon (HKU 
Math, Year 1), G.R.A. 20 Math Problem 
Group (Roma, Italy), WONG Kwok 
Cheung (Carmel Alison Lam Foundation 
Secondary School, Form 7) and YEUNG 
Wai Kit (STFA Leung Kau Kui 
College, Form 5). 
 
Note c) is the same as P(1) = 4. For  
 
P(x)=200x(x+1)(x–1)(x–2)(x–3)+2x+2            

       =200x
5–1000x

4+1000x
3 

                         +1000x
2–1198x+2, 
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all conditions are satisfied. Assume R 

is another such polynomial with degree 

at most 5. Then P and R agree at –1, 1, 

2, 3. So  
 
P(x)–R(x) = (x+1)(x–1)(x–2)(x–3)S(x) 
 
with degree of S at most 1. If S is 

constant, then b) implies P(0)–R(0) is 0 

or 2. Then S(x) = –1/3 and we get  
 
R(x) = P(x)+(x+1)(x–1)(x–2)(x–3)/3  

        = 200x
5 + ⋯ –1196⅓x,  

 
which fails b). If S is of degree 1, then a) 

and b) imply S(x)=200x–1/3 and we 

will get   R(x) =  
 
P(x) – (x+1)(x–1)(x–2)(x–3)(200x–1/3) 

        = x4/3 + ⋯,  
 
which fails a).  So no such R exists and 

P is the unique answer. 

 

Problem 235. Forty-nine students 

solve a set of three problems. The  

score for each problem is an integer 

from 0 to 7. Prove that there exist two 

students A and B such that, for each 

problem, A will score at least as many 

points as B. 

(Source: 29
th

 IMO Unused Problem)  
 
Solution. LEE Kai Seng (HKUST) and 
Anna Ying PUN (STFA Leung Kau Kui 
College). 
 
For n = 0,1,2,3, let Sn be the set of 

ordered pairs (0,n),(1,n),⋯,(7–n,n) and 

(7 – n, n + 1),⋯, (7 – n, 7). Let S4 =          

{(x,y): x=2 or 3; y= 4,5,6 or 7} and S5 = 

{(x,y): x=0 or 1; y=4,5,6 or 7}.  
 
For each student, let his/her score on the 

first problem be x and on the second 

problem be y. Note if two students have 

both of their (x,y) pairs in one of S0, S1, 

S2 or S3, then one of them will score at 

least as many point as the other in each 

of the first two problems.  
 
Of the 49 pairs (x,y), there are [49/6]+1 

= 9 of them belong to the same Sn. If  

this Sn is S4 or S5, which has 8 elements, 

then two of the 9 pairs are the same and 

the two students will satisfy the desired 

condition. If the Sn is S0, S1, S2 or S3, then 

two of these 9 students will have the 

same score on the third problem and 

they will satisfy the desired condition by 

the note in the last paragraph. 
 
Commended Solvers: CHAN Pak Woon 
(HKU Math, Year 1), LAW Yan Pui 
(Carmel Divine Grace Foundation 
Secondary School, Form 7) and YEUNG 
Wai Kit (STFA Leung Kau Kui College, 
Form 5). 

 
 

 

Olympiad Corner 
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Problem 5.  Let ABC be an acute triangle 

with orthocenter H, incenter I and AC ≠ 

BC. The lines CH and CI meet the 

circumcircle of △ABC for the second 

time at points D and L, respectively.  

Prove that ∠CIH = 90˚ if and only if       

∠IDL = 90˚. 
 
Problem 6. In a group of nine people 

there are no four every two of which know 

each other. Prove that the group can be 

partitioned into four groups such that the 

people in every group do not know each 

other. 

 

 
 

The Method of Infinite Descent 

(continued from page 2) 
 
 
Now if the perpendicular from A to l does 

not meet any of B, C or D, then by the 

pigeonhole principle, there are two points 

(say C and D) which lie on one side of the 

perpendicular. Again from the diagram 
 

We draw perpendiculars from E and C to 

AD, and we observe the distances d0 < d < 

d1, again contradicting the minimality of 

d1. From the above arguments, we 

conclude that l contains exactly two 

points.  
 
From the above example, we have 
 
Example 6 (Polish MO 1967-68): Given 

n (n ≥ 3) points on the plane and these 

points are not on the same line. From any 

two of these points a line is drawn and 

altogether k distinct lines are formed. 

Show that k ≥ n. 
 

Solution. We proceed by induction. 

Clearly three distinct lines may be drawn 

from three points not on a line. Hence the 

statement is true for n = 3. Suppose the 

statement is valid for some n ≥ 3. Now let 

A1, A2, …, An, An+1 be n + 1 distinct points 

which are not on the same line. By 

Sylvester’s “theorem”, there exists a 

line containing exactly two points of 

the point set, say A1An+1.  
 

Let’s consider the sets Z1 ={A1, A2, …, 

An}and Z2 ={A2, A3, …, An, An+1} 

Clearly at least one of the point sets 

does not lie on a line.  If A1, A2, …, An 

do not lie on a line, by the inductive 

hypothesis, we can form at least n lines 

using these points. As An+1 is not one  

of the members of Z1, so A1An+1 will  

form a new line, (A1An+1 contains no  

other points of the set) and we have at 

least n + 1 lines. If A2, A3, …, An, An+1 

do not lie on a line, then again we can 

form at least n lines using these points. 

As A1 is not one of the members of Z2, 

so A1An+1 will form a new line, (A1An+1 

contains no other points of the set) and 

we have at least n + 1 lines.  

 

The method of infinite descent was 

used to prove a hard IMO problem. 
 

Example 7 (IMO 1988): Prove that if 

positive integers a and b are such that 

ab + 1 divides a
2 + b

2, then (a2 + 

b
2)/(ab + 1) is a perfect square. 

 
Solution.  Assume (a2 + b2)/(ab + 1) = 

k and k is not a perfect square. After 

rearranging we have a2 − kab + b2 = k, 

with a > 0 and b > 0. Assume now (a0, 

b0) is a solution of the Diophantine 

equation and such that a0 + b0 is as 

small as possible. By symmetry we 

may assume a0 ≥ b0 > 0. Fixing b0 and k, 

we may assume a0 is a solution of the 

quadratic equation  
 

              x
2 − kb0x + b0

2 − k = 0.  
 
Now let the other root of the equation 

be a′. Using sum and product of roots, 

we have a0 + a′ = kb0 and a0a′ = b0
2

 − k. 

The first equation implies a′ is an 

integer. The second equation implies a′ 

≠ 0, otherwise k is a perfect square, 

contradicting our hypothesis. Now a′ 

also cannot be negative, otherwise  
 
  a′ 2 − ka′b0 + b0

2 
≥ a′ 2 + k + b0

2 > k.  
 
Hence a′ > 0. Finally 

        
2 2 2

0 0 0
0

0 0 0

1 1
' .

b k b a
a a

a a a

− − −
= ≤ ≤ <

  

This implies (a′, b0) is a positive 

integer solution of a
2 − kab + b

2 = k, 

and a′ + b0 < a0 + b0, contradicting the 

minimality of a0 + b0. Therefore k  

must be a perfect square.  
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