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Harmonic Series (I)  
Leung Tat-Wing 

 
Olympiad Corner 
 
Below are the problems of the 2011 
Canadian Math Olympiad, which was 
held on March 23, 2011. 

 
Problem 1. Consider 70-digit numbers 
n, with the property that each of the 
digits 1, 2, 3, …, 7 appears in the 
decimal expansion of n ten times (and 
8, 9 and 0 do not appear).  Show that no 
number of this form can divide another 
number of this form. 

 
Problem 2. Let ABCD be a cyclic 
quadrilateral whose opposite sides are 
not parallel, X the intersection of AB 
and CD, and Y the intersection of AD 
and BC.  Let the angle bisector of 
∠AXD intersect AD, BC at E, F 
respectively and let the angle bisector 
of ∠AYB intersect AB, CD at G, H 
respectively.  Prove that EGFH is a 
parallelogram. 
 
Problem 3.  Amy has divided a square 
up into finitely many white and red 
rectangles, each with sides parallel to 
the sides of the square.  Within each 
white rectangle, she writes down its 
width divided by its height.  Within 
each red rectangle, she writes down its 
height divided by its width. Finally, she 
calculates x, the sum of these numbers.   
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     A series of the form 
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where m, d are numbers such that the 
denominators are never zero, is called a 
harmonic series. For example, the series
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 is a harmonic series, or more generally 
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1
H m n

m m n
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is also a harmonic series.  Below we 
always assume 1 ≤ m < n.  There are 
many interesting properties concerning 
this kind of series. 
 
Example 1: H(1,n) is unbounded, i.e. 
for any positive number A, we can find n 
big enough, so that H(1,n) ≥ A.  
 
Solution For any positive integer r, note 
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which can be proved by induction. 
Hence we can take enough pieces of 
these fractions to make H(1,n) as large 
as possible. 
 
Example 2: H(m,n) is never an integer. 
 
Solution (i)  For the special case m = 1, 
let s be such that 2s ≤ n < 2s+1.  We then 
multiply H(1,n) by 2s–1Q, where Q is the 
product of all odd integers in [1, n].  All 
terms in H(1,n) will become an integer 
except the term 2s will become an 
integer divided by 2 (a half integer). 
This implies H(1,n) is not an integer. 
 
(ii) Alternatively, for the case m =1, let p 
be the greatest prime number not 
exceeding n.  By Bertrand’s postulate 
there is a prime q with p < q < 2p.  
Therefore we have n < 2p. If H(1,n) is 
an integer, then   

1

!! ( )
n

i

nn H n
i=

= ∑  

 
is an integer divisible by p. However the 
term n!/p  (an addend) is not divisible by 
p but all other addends are. 

(iii) We deal with the case m > 1. 
Suppose 2α | k but 2α+1 does not divide k 
(write this as 2α || k), then we call α the 
“parity order” of k.  Now observe 2α, 
3·2α, 5·2α, ⋯ all have the same parity 
order.  Between these numbers, there are 
2·2α, 4·2α, 6·2α, ⋯, all have greater 
parity orders.  Hence, between any two 
numbers of the same parity order, there 
is one with greater parity order.  This 
implies among m, m+1, …, n, there is a 
unique integer with the greatest parity 
order, say q of parity order μ.  Now 
multiply 
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1m m n
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by 2μL, where L is the product of all odd 
integers in [m, n]. Then 2μL·H(m,n) is an 
odd number.  Hence  
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where p is even and q is odd and so is 
not an integer. 
 
Example 3 (APMO 1997):  Given that  

1 1 11 ... ,1 1 1 1 1 11 1 1 ...
3 3 6 3 6 1993006

S = + + + +
+ + + + + + +

 
where the denominators contains partial 
sum of the sequence of reciprocals of 
triangular numbers. Prove that S > 1001.
 
Solution  Let Tn be the nth triangular 
number.  Then Tn=n(n+1)/2 and hence   

1 2

1 1 1 2 2 2... ...
1 2 2 3 ( 1)

1 1 1 1 1 1 22(1 ... ) 2(1 ) .
2 2 3 1 1 1

nT T T n n
n

n n n n

+ + + = + + +
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= − + − + + − = − =
+ + +

 
Since 1993006=1996·1997/2, we get 
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Hence, S > (1996+6)/2=1001 using 
example 1 that H(r+1,2r) ≥ 1/2 for r = 2, 
4, 8, 16, 32, 64, 128, 256, 512. 
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        Congruence relations of harmonic 
series are of some interest.  First, let us 
look at an example. 
 
Example 4 (IMO 1979): Let p, q be 
natural numbers such that 

1 1 1 1 11 ... .
2 3 4 1318 1319

p
q
= − + − + − +  

Prove that p is divisible by 1979. 
 
Solution We will prove the famous 
Catalan identity (due to N. Botez (1872) 
and later used by Catalan): 
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It is proved as follows: 
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Thus  

1 1 1 1...
660 661 1318 1319

1 1 1 1 1 1 1( ... )
2 660 1319 661 1318 1319 660
1 1979 1979 1979( ... )
2 660 1319 661 1318 1319 660
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p
q
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= + + +
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where B is the product of some positive 
integers less than 1319.  However, 
1979 is prime, hence 1979| p. 
 
For another proof using congruence 
relations, observe that if (k,1979) =1, 
then by Fermat’s little theorem, k1978 ≡ 
1 (mod 1979).  Hence, we can consider 
1/k ≡ k1977 (mod 1979).  Then 
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Note that 1/k (mod p) (as well as many 
fraction mod p) makes sense if k ≢ 0 (mod 
p).  Also, as a generalization, we have 
 
Example 5:  If H(m,n) = q/p and m+n is an 
odd prime number, then m+n | q.  
 
Solution Note that H(m,n) has an even 
number of terms and it equals  
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where gcd(s,r) = 1.  Since m+n is prime, 
gcd(r,m+n) = 1.  Then q/p = (m+n)s/r  and 
m+n | q. 
 
       The Catalan identity is also used in 
the following example. 
 
Example 6 (Rom Math Magazine, July 
1998): Let 

1 1 1...
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A = + + +
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and  

1 1 1... .
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B = + + +
⋅ ⋅ ⋅

 

Evaluate A/B.  
 
Solution   
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Example 7: Given any proper fraction 
m/n, where m, n are positive integers 
satisfying 0 < m < n, then prove it is the 
sum of fractions of the form  
 

1 2

1 1 1... ,
kx x x

+ + +  

where x1, x2, …, xk are distinct positive 
integers. 
 
Solution We use the “greedy method”. 
Let x1 be the positive integer such that  
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i.e. x1 is the least integer greater than or 
equal to n/m.  If 1/x1 = m/n, then the 
problem is done. Otherwise   
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where m1=mx1−n < m (due to m/n < 
1/(x1 −1) ) and obviously nx1> n.  Let x2 
be another positive integer such that  
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The procedure can be repeated until m 
> m1 > m2 > ⋯ > mk > 0 and 
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where 1 ≤ k ≤ m. (Note: writing 
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 we observe actually there are infinitely 
many ways of writing any proper 
fractions as sum of fractions of this 
kind.  These fractions are called unit 
fractions or Egyptian fractions.) 
 
Example 8:  Remove those terms in  
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such that its denominator in decimal 
expansion contains the digit “9”, then 
prove that the sequence is bounded. 
 
Solution  The integers without the digit 
9 in the interval [10m−1, 10m−1] are 
m-digit numbers.  The first digit from 
the left cannot be the digits “0” and “9”, 
(8 choices), the other digits cannot 
contain “9”, hence nine choices 0, 1, 2, 
3, 4, 5, 6, 7 and 8.  Altogether there are 
8·9m−1 such integers.  The sum of their 
reciprocals is less than  
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is May 29, 2011. 
 
Problem 366.  Let n be a positive 
integer in base 10.  For i =1,2,…,9, let 
a(i) be the number of digits of n that 
equal i.  Prove that  
 

110932 )9()8()2()1( +≤ naaaa L  
 
and determine all equality cases. 
  
Problem 367.  For n = 1,2,3,…, let xn 
and yn be positive real numbers such 
that   

2
12 ++ += nnn xxx  

and 
.1

2
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If x1, x2, y1, y2 are all greater than 1, 
then prove that there exists a positive 
integer N such that for all n > N, we 
have xn > yn.  
 
Problem 368. Let C be a circle, A1, 
A2, …, An be distinct points inside C 
and B1, B2, …, Bn be distinct points on 
C such that no two of the segments 
A1B1, A2B2,…, AnBn intersect. A 
grasshopper can jump from Ar to As if 
the line segment ArAs does not intersect 
any line segment AtBt (t≠r,s).  Prove 
that after a certain number of jumps, 
the grasshopper can jump from any Au 
to any Av. 
 
Problem 369. ABC is a triangle with 
BC > CA > AB. D is a point on side BC 
and E is a point on ray BA beyond A so 
that BD=BE=CA.  Let P be a point on 
side AC such that E, B, D, P are 
concyclic.  Let Q be the intersection 
point of ray BP and the circumcircle of 
ΔABC different from B.  Prove that 
AQ+CQ=BP.  
 
Problem 370.  On the coordinate plane, 
at every lattice point (x,y) (these are 
points where x, y are integers), there is 
a light.  At time t = 0, exactly one light 
is turned on.  For n = 1, 2, 3, …, at time 

t = n, every light at a lattice point is turned 
on if it is at a distance 2005 from a light 
that was turned on at time t = n − 1.  Prove 
that every light at a lattice point will 
eventually be turned on at some time. 
 
 

***************** 
Solutions 

**************** 
 
Problem 361.  Among all real numbers a 
and b satisfying the property that the 
equation x4+ax3+bx2+ax+1=0 has a real 
root, determine the minimum possible 
value of a2+b2 with proof.   
  
Solution.  U. BATZORIG (National 
University of Mongolia) and Evangelos 
MOUROUKOS (Agrinio, Greece). 
 
Consider all a,b such that the equation has 
x as a real root.  The equation implies x ≠ 0. 
Using the Cauchy-Schwarz inequality (or 
looking at the equation as the line (x3 + x)a 
+ x2b + (x4 + 1) = 0 in the (a,b)-plane and 
computing its distance from the origin), as 
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if and only if x = ±1 (at which both sides 
are 4/5).  For x = 1, (a,b) = (−4/5, −2/5). 
For x = −1, (a,b) = (−2/5,4/5).  Finally, 
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by calculus or rewriting it as 
 
            5(x4 + 1)2 − 4(2x6 + x4 + 2x2) 
         = (x2 − 1)2(5x4 + 2x2 + 5) ≥ 0. 
 
So the minimum of a2 + b2 is 4/5.  
 
Other commended solvers: CHAN Long 
Tin (Diocesan Boys’ School), Hong 
Kong Joint School Math Society, LI 
Pak Hin (PLK Vicwood K. T. Chong 
Sixth Form College), LKL Excalibur 
(Madam Lau Kam Lung Secondary 
School of MFBM), Raymond LO 
(King’s College), Paolo PERFETTI 
(Math Dept, Università degli studi di Tor 
Vergata Roma, via della ricerca scientifica, 
Roma, Italy), Anna PUN Ying (HKU 
Math), The 7B Math Group (Carmel 
Alison Lam Foundation Secondary School) 
and Alice WONG Sze Nga (Diocesan 
Girls’ School). 
 
Problem 362. Determine all positive 
rational numbers x,y,z such that  

zyx
xyzzyx 111,, ++++  

are integers. 
 
Solution.  CHAN Long Tin (Diocesan 
Boys’ School), Hong Kong Joint 
School Math Society, Raymond LO 
(King’s College), Anna PUN Ying 
(HKU Math) and The 7B Math Group 
(Carmel Alison Lam Foundation 
Secondary School). 
 
Let A = x + y + z, B = xyz and C = 1/x + 
1/y +1/z, then A, B, C are integers.  Since 
xy + yz + zx = BC, so x,y,z are the roots 
of the equation t3−At2 + BCt −B = 0.  
Since the coefficients are integers and the 
coefficient of t3 is 1, by Gauss lemma or 
the rational root theorem, the roots x, y, z 
are integers. 
 
Since they are positive, without loss of 
generality, we may assume z ≥ y ≥ x ≥ 1. 
Now 1 ≤ 1/x +1/y +1/z ≤ 3/x lead to x=1, 
2 or 3.  For x = 1, 1/y + 1/z = 1 or 2, 
which yields (y,z) = (1,1) or (2,2).  For x 
= 2, 1/y + 1/z = 1/2, which yields (y,z) = 
(3,6) or (4,4).  For x = 3, 1/y + 1/z = 2/3, 
which yields (y,z) = (3,3). So the 
solutions are (x,y,z) = (1,1,1), (1,2,2), 
(2,3,6), (2,4,4), (3,3,3) and permutations 
of coordinates.   
 
Other commended solvers: LI Pak 
Hin (PLK Vicwood K. T. Chong Sixth 
Form College) and Alice WONG Sze 
Nga (Diocesan Girls’ School). 
 
Problem 363. Extend side CB of 
triangle ABC beyond B to a point D 
such that DB=AB. Let M be the 
midpoint of side AC.  Let the bisector 
of ∠ABC intersect line DM at P.  Prove 
that ∠BAP =∠ACB. 
  
Solution. Raymond LO (King’s 
College). 

A

B CD

M
P

F E

 
Construct line BF || line CA with F on 
line AD.  Let DM intersect BF at E.  
 
Since BD=AB, we get ∠BDF =∠BAF 
= ½∠ABC =∠ABP =∠CBP.  Then line 
FD || line PB.  Hence, ΔDFE is similar 
to ΔPBE.  
 
Since BF||CA and M is the midpoint of 
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AC, so E is the midpoint of FB, i.e. 
FE=BE.  Then ΔDFE is congruent to 
ΔPBE.  Hence, FD=PB. 
 
This along with DB = BA and ∠BDF 
=∠ABP imply ΔBDF is congruent to 
Δ ABP. Therefore, ∠BAP =∠DBF 
=∠ACB. 
 
Other commended solvers: U. 
BATZORIG (National University of 
Mongolia), CHAN Long Tin 
(Diocesan Boys’ School), Hong Kong 
Joint School Math Society, Abby 
LEE Shing Chi (SKH Lam Woo 
Memorial Secondary School), LI Pak 
Hin (PLK Vicwood K. T. Chong Sixth 
Form College), LKL Excalibur 
(Madam Lau Kam Lung Secondary 
School of MFBM), Anna PUN Ying 
(HKU Math), The 7B Math Group 
(Carmel Alison Lam Foundation 
Secondary School), Ercole SUPPA 
(Liceo Scientifico Statale E.Einstein, 
Teramo, Italy) and Alice WONG Sze 
Nga (Diocesan Girls’ School). 
 
Problem 364.  Eleven robbers own a 
treasure box.  What is the least number 
of locks they can put on the box so that 
there is a way to distribute the keys of 
the locks to the eleven robbers with no 
five of them can open all the locks, but 
every six of them can open all the locks? 
The robbers agree to make enough 
duplicate keys of the locks for this plan 
to work.   
 
Solution. CHAN Long Tin (Diocesan 
Boys’ School), Hong Kong Joint 
School Math Society, LI Pak Hin 
(PLK Vicwood K. T. Chong Sixth 
Form College), LKL Excalibur 
(Madam Lau Kam Lung Secondary 
School of MFBM), Raymond LO 
(King’s College), Emanuele 
NATALE (Università di Roma “Tor 
Vergata”, Roma, Italy), Anna PUN 
Ying (HKU Math), The 7B Math 
Group (Carmel Alison Lam Foundation 
Secondary School) and Alice WONG 
Sze Nga (Diocesan Girls’ School). 
 
Let n be the least number of locks 
required. If for every group of 5 
robbers, we put a new lock on the box 
and give a key to each of 6 other 
robbers only, then the plan works. Thus 
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      Conversely, in the case when there 
are n locks, for every group G of 5 

robbers, there exists a lock L(G), which 
they do not have the key, but the other 6 
robbers all have keys to L(G).  Assume 
there exist G ≠G’ such that L(G)=L(G’). 
Then there is a robber in G and not in G’. 
Since G is one of the 6 robbers not in G’, 
he has a key to L(G’), which is L(G), 
contradiction.  So G ≠ G’ implies L(G) ≠ 
L(G’).  Then the number of locks is at 
least as many groups of 5 robbers.  So  
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Problem 365. For nonnegative real 
numbers a,b,c satisfying ab+bc+ca = 1, 
prove that 
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Solution. CHAN Long Tin (Diocesan 
Boys’ School) and Alice WONG Sze Nga 
(Diocesan Girls’ School). 
 
Since a, b, c ≥ 0 and ab+bc+ca = 1, none 
of the denominators can be zero. 
Multiplying both sides by a+b+c, we need 
to show  
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This follows from using the Cauchy- 
Schwarz inequality and expanding 
(c+a+b−2)2 ≥ 0 as shown below  
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Other commended solvers: Andrea 
FANCHINI (Cantu, Italy), D. Kipp 
JOHNSON (Valley Catholic School, 
Teacher, Beaverton, Oregon, USA), LI 
Pak Hin (PLK Vicwood K. T. Chong 
Sixth Form College), Paolo PERFETTI 
(Math Dept, Università degli studi di Tor 
Vergata Roma, via della ricerca scientifica, 
Roma, Italy), Anna PUN Ying (HKU 
Math) and The 7B Math Group (Carmel 
Alison Lam Foundation Secondary School).  
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Problem 3. (Cont.)  If the total area of the 
white rectangles equals the total area of 

the red rectangles, what is the smallest 
possible value of x? 
 
Problem 4.  Show that there exists a 
positive integer N such that for all 
integers a > N, there exists a 
contiguous substring of the decimal 
expansion of a which is divisible by 
2011. (For instance, if a = 153204, then 
15, 532, and 0 are all contiguous 
substrings of a.  Note that 0 is divisible 
by 2011.) 
 
Problem 5.  Let d be a positive integer. 
Show that for every integer S there 
exists an integer n > 0 and a sequence 
ε1, ε2, …, εn, where for any k, εk = 1 or 
εk = −1, such that  
 
     S = ε1(1+d)2 + ε2(1+2d)2 + ε3(1+3d)2 

                             + ⋯ + εn(1+nd)2. 
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The sum of reciprocals of all such 
numbers is therefore less than 

0
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Example 9:  Let m > 1 be a positive 
integer.  Show that 1/m is the sum of 
consecutive terms in the sequence 

1

1 .
( 1)j j j

∞

= +∑  

Solution   Since   

1 1 1 ,
( 1) 1j j j j

= −
+ +

 

the problem is reduced to finding 
integers a and b such that   

1 1 1 (*).
m a b
= −  

One obvious solution is a = m−1 and b 
= m(m−1).  To find other solutions of 
(*), we note that 1/a > 1/m, so m > a. 
 
Let a = m−c, then b = (m2/c)−m.  For 
each c satisfying c | m2 and 1 ≤ c ≤ m, 
there exists one and only one pair of a 
and b satisfying (*), and because a < b, 
the representation is unique.  Let d(n) 
count the number of factors of n.  Now 
consider all factors of m2 except m, 
there are d(m2)−1 of them.  If c is one 
of them, then exactly one of c or m2/c 
will be less than m.  Hence the number 
of solutions of (*) is [d(m2)−1]/2. 


