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Olympiad Corner 
 
Below are the problems of the 2014 
Bulgarian National Math Olympiad on 
May 17-18, 2014. 

 
Problem 1.  (Teodosi Vitanov, Emil 
Kolev) Given is a circle k and a point A 
outside it. The segment BC is a 
diameter of k. Find the locus of the 
orthocenter of ABC, when BC is 
changing. 
 
Problem 2. (Nikolay Beluhov) 
Consider a rectangular n×m table 
where n  2 and m  2 are positive 
integers. Each cell is colored in one of 
the four colors: white, green, red or 
blue. Call such a coloring interesting if 
any 2×2 square contains every color 
exactly once. Find the number of 
interesting colorings. 
 
Problem 3. (Alexander Ivanov) A real 
nonzero number is assigned to every 
point in space. It is known that for any 
tetrahedron  the number written in the 
incenter equals the product of the four 
numbers written in the vertices of . 
Prove that all numbers equal 1. 
 
Problem 4. (Peter Boyvalenkov) Find 
all prime numbers p and q such that  
 

p2 | q3 + 1   and   q2 | p6  1. 
 
                                 (continued on page 4) 

IMO2014 and Beyond (II) 
 

Leung Tat-Wing 
    
To discuss the IMO2014 problems, 
let’s proceed from the easier problems 
to the harder problems. 

Problem 1. Let a0 < a1< a2 <  be an 
infinite sequence of positive integers. 
Prove that there exists a unique integer 
n  1 such that   

0 1
1

... .n
n n

a a aa a
n

 

 
This problem is nice and easy. It gave us 
no problem. All of us got full scores in 
this problem. Nevertheless the problem 
is not entirely trivial, and indeed about 
100 contestants scored nothing in this 
problem! First notice the middle term is 
not an arithmetical mean. Really during 
the question and answer period, some 
contestants did ask why the sequence 
doesn’t start at index 1. Moreover the 
problem is not exactly an algebra 
problem, as it involves a strictly 
increasing sequence of integers. Try 
small cases, say n = 1. Then we need a1 
< a0+a1 sure, but not necessarily a0+a1  
a2, why is that so? For n = 2, then we 
need a2 < (a0+a1+a2)/2, or a2< a0+a1, not 
necessarily true, but say when compared 
with the case of n = 1, if it is false, then 
a0+a1  a2 is true and we have an n 
satisfying the inequality! And the other 
side a0+a1+a2  2a3, why true again? If it 
is false, look at the left hand side for the 
case of n = 3. After several attempts, we 
really see what is going on. Indeed the 
inequality is equivalent to nan < 
a0+a1+ +an  nan+1. The left hand 
inequality corresponds to (a0+a1+ +an ) 

 nan >0, while the right hand inequality 
corresponds to (a0+a1+ +an) nan+1  0, 
same as (a0+a1+ +an+1) (n+1)an+1  0. 
Alas, if we define dn=(a0+a1+ +an )  
nan, then we just have to show there 
exists a unique n such that  dn > 0  dn+1! 
The proof is then complete if we can see 
(prove) dn is a strictly decreasing 
sequence of integers. Not too bad. 
 
Using induction, or other measures on 
the expression (a0+a1+ +an)/n, our 
team members managed to solve the 
problem. 
 

Problem 4. Points P and Q lie on side 
BC of acute-angled triangle ABC such 
that PAB = BCA and CAQ = 

ABC. Points M and N lie on lines AP 
and AQ, respectively, such that P is the 
midpoint of AM, and Q is the midpoint 
of AN. Prove that lines BM and CN 
intersect on the circumcircle of triangle 
ABC.  
 
This is the easiest problem in the 
competition, yet about 30 contestants 
did not get anything from it. Altogether 
more than 10 solutions were received, 
using synthetic geometry, coordinate 
geometry, complex numbers and the 
like. Some of us did it by coordinate 
geometry, setting the foot of A be (0,0), 
and coordinates A(0,a), B(b,0) and 
C(c,0). Then get everything out of it via 
complicated calculations. But indeed if 
we can draw the picture properly, and do 
the angle tracings correctly, the problem 
is really not hard at all.  

 

Indeed suppose BM and NC meet at S. 
Let ABC= CAQ=  and ACB= 

BAP = , then ABP~ CAQ. Hence
 

.BP BP AQ QN
PM PA QC QC

 

 
Also, NQC= BQA= APC= BPM.
The last two statements imply BPM ~

NQC, hence BMP= NCQ. Then 
we also have BPM ~ BSC!  
 
Finally, we have CSB = MPB = +  
=180° ABC. So CSB+ BAC=180° 
and we are done. 
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Problem 2. Let n  2 be an integer. 
Consider a n×n chessboard consisting 
of n2 unit squares. A configuration of n 
rooks on this board is peaceful if every 
row and every column contains exactly 
one rook. Find the greatest positive 
integer k such that, for each peaceful 
configuration of n rooks, there is a k×k 
square which does not contain a rook 
on any of its k2 unit squares. 
 
All of us managed to give (basically) 
the correct answer ( 1n   ) and 
knew essentially how to tackle the 
question. There were gaps here and 
there and few points eventually 
deducted, but in my opinion, not really 
serious mistakes. Here n rooks are 
placed in a n×n board so that they are 
not attacking each other, and this time 
we ask for the largest possible gap 
(square with no rook). Of course the k2 
squares should be congruent to others 
and the “gap” square should be in one 
piece. Indeed several candidates had 
the same concern. This is really a 
classical chess board problem and I am 
not at all sure if the question was asked 
before somewhere.  
 
First, given a n×n board with n rooks 
non-attacking (peaceful configuration). 
Suppose l is such that  l2 < n, then we 
can find a l×l square with no rook in it. 
Indeed there is a rook in the first 
column, consider the l consecutive 
rows starting with the row where the 
particular rook is placed. Now remove 
the first n  l2 columns of this piece 
(hence at least one rook is removed). 
The remaining l×l2 piece can be 
decomposed into l l×l pieces of 
squares, but contain at most l 1 rooks, 
hence we have an empty l×l square.  
 
Now we want to construct a peaceful 
configuration with largest possible 
square of size 1n  × 1n . 
Most of us see what the configuration 
should look like. We first let n be of the 
form l2. Label the square with row i  
and column j as (i,j),  with 0  i  l 1 
and 0  j  l 1. The rooks are then 
placed on the positions (il+j,jl+i), 0  
i,j  l 1. One can easily check that any 
l×l square contains a rook.  
 
Now comes where the most common 
gap lies. If n < l2, we need to produce a 
peaceful configuration with no rook in 
any l×l  square. The idea is of course to 
remove columns and rows from the 
previous construction. Only when (say) 

the top row and the leftmost column 
removed, two rooks may be removed, we 
have to put a rook back to an appropriate 
position (naturally where it should be) to 
return to a peaceful configuration! 
 
(A 9×9 peaceful configuration with 2×2 
squares as largest possible empty 
squares.) 

 

 
Problem 5. For each positive integer n, 
the Bank of Cape Town issues coins of 
denomination 1/n.Given a finite collection 
of such coins (of not necessarily different 
denominations) with total value at most 
99+½, prove that it is possible to split the 
collection into 100 or fewer groups, such 
that each group has total value at most 1.  
 
I am happy to see how our students 
handled this problem. In short, they used 
various grouping and induction 
techniques and tricks, and changed the 
problem to a format they can handle, thus 
solved the problems. Even though our 
arguments were sometimes rather unclear 
and convoluted, thus some points 
deducted because of gaps and other things, 
four of us essentially solved the problem. 
Indeed the main idea of solving the 
problem is by “merging” or “cleaning” the 
set of coins. Clearly if the process can still 
be completed after merging the coins, it 
can be done before merging! 
 
Indeed the problem can be generalized as 
follows. Given coins of total value at most 
N ½, they can be split into N groups each 
of value at most 1. The problem then can 
be completed by the following steps.  
 
(i) Two coins of values 1/(2k) may be 
merged into a coin of value 2×1/(2k)=1/2, 
thus for every even number ,m  we may 
assume there is at most one coin of value 
1/m.  
 
(ii) For every odd number m, there are at 
most m 1 coins of such value, otherwise 
they can be merged to form a coin of value 
1 first.  
 

(iii) Coins of value 1 must form a group 
of itself. Thus if there are d coins of 
value 1 in a group of N coins, we might 
as well consider a group of N d coins 
of values less than 1.  
 
(iv) Now consider coins of values 
1/(2k 1) and 1/(2k), with k=1,2,…,N. 
We first place them into N groups 
according different values of k. In each 
group, the total value is at most  

1 1 1 1(2 2) 1 1.
2 1 2 2 1 2

k
k k k k

  

The total value of all N groups is at 
most N ½. By taking average, there 
exists a group of total value at most 

1 1 1( ) 1 .
2 2

N
N N

 

(v) All the remaining coins are of 
values less than 1/(2N). We may put 
them one by one into each group, as 
long as the value of each group does 
not exceed 1 1/(2N) and we are done! 
 
The problem is meant to be a number 
theory problem, but is really more like 
a combinatorial problem. Our members 
managed to give different proofs to this 
problem and it is very nice. But indeed 
it is natural to consider coins of larger 
values (greedy method) first then 
consider coins of small values (a lot of 
them). 
 
Problem 3. Convex quadrilateral 
ABCD has ABC = CDA = 90°.  
Point H is the foot of the perpendicular 
from A to BD. Points S and T lie on 
sides AB and AD, respectively, such 
that H lies inside triangle SCT and 

CHS  CSB = 90°,  THC  DTC 
= 90°.  Prove that line BD is tangent to 
the circumcircle of triangle TSH.   

 
In these few years, problems of this 
kind appear rather frequently. Proving 
a certain line is tangent to a certain 
(hidden) circle, or two (hidden) circles 
will touch each other, or the like, are 
generally not too easy. Still one should 
be able to handle them by first finding 
out some related geometric properties, 
and then obtain final results still by 
using only basic geometric properties 
and techniques.  
 
Let us look at this problem. It is not 
easy to draw an accurate and nice 
picture, let alone proving it. 
 

 
                                 (continued on page 4) 
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Problem Corner 

We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is November 20, 2014. 
 
Problem 451.  Let P be an n-sided 
convex polygon on a plane and n>3. 
Prove that there exists a circle passing 
through three consecutive vertices of P 
such that every point of P is inside or 
on the circle. 
 
Problem 452. Find the least positive 
real number r such that for all triangles 
with sides a,b,c, if a  (b+c)/3, then 
 
c(a+b c)  r ((a+b+c)2+2c(a+c b)). 
 
Problem 453. Prove that there exist 
infinitely many pairs of relatively 
prime positive integers a,b with a>b 
such that b2 5 is divisible by a and 
a2 5 is divisible by b. 
 
Problem 454. Let 1, 2 be two circles 
with centers O1, O2 respectively. Let P 
be a point of intersection of 1 and 2. 
Let line AB be an external common 
tangent to 1, 2 with A on 1, B on 2 
and A, B, P on the same side of line 
O1O2. There is a point C on segment 
O1O2 such that lines AC and BP are 
perpendicular. Prove that APC=90°. 
 
Problem 455. Let a1, a2, a3, … be a 
permutation of the positive integers. 
Prove that there exist infinitely many 
positive integer n such that the greatest 
common divisor of an and an+1 is at 
most 3n/4.  
 

***************** 
Solutions

**************** 
 
Problem 446. If real numbers a and b 
satisfy 3a+13b=17a and 5a+7b=11b, then 
prove that a < b. 
 
Solution. Kaustav CHATTERJEE 
(MCKV Institute of Engineering College, 
India), Ioan Viorel CODREANU 
(Secondary School Satulung, Maramures, 
Romania), KWOK Man Yi (Baptist Lui 
Ming Choi Secondary School, S4), Elaine 
LAM (Tsuen Wan Secondary School), 
Corneliu M NESCU-AVRAM (Transportation 

High school, Ploie ti, Romania), NGUYÊN 
Viêt Hoàng (Hà Nôi, Viêt Nam), PANG Lok 
Wing, YAN Yin Wang (United Christian 
College (Kowloon East), Teaching Staff) and 
Simon YAU.  
If a  b, then 3a+13a   3a+13b=17a. (*) 
Since 3/17<13/17<1, the function f(x) 
=(3/17)x+(13/17)x is strictly decreasing. 
By (*), f(a)  1> f(1). So a < 1.  
 
    Next, 5b+7b  5a+7b = 11b. (**) Since 
5/11 < 7/11 < 1, the function g(x) = (5/11)x 

+ (7/11)x is strictly decreasing. By (**), 
g(b)  1 < g(1). So b>1>a, contradiction. 
 
Other commended solvers: Math Activity 
Center (Carmel Alison Lam Foundation 
Secondary School), Nicu or ZLOTA (“Traian 
Vuia” Technical College, Foc ani, Romania), 
Titu ZVONARU (Com ne ti, Romania) and 
Neculai STANCIU (“George Emil Palade’’ 
Secondary School, Buz u, Romania). 
 
Problem 447. For real numbers x, y, z, 
find all possible values of sin(x+y) + 
sin(y+z) + sin(z+x) if  
 

.
)sin(

sinsinsin
)cos(

coscoscos
zyx

zyx
zyx

zyx  

 
Solution. KWOK Man Yi (Baptist Lui Ming 
Choi Secondary School, S4), Corneliu 
M NESCU-AVRAM (Transportation High 
school, Ploie ti, Romania), YAN Yin Wang 
(United Christian College (Kowloon East), Teaching 
Staff), Titu ZVONARU (Com ne ti, Romania) 
and Neculai STANCIU (“George Emil 
Palade’’ Secondary School, Buz u, Romania). 
 
Let S=x+y+z. Cross multiply and transfer 
all terms to one side. We get  
0 = sin S cos x  cos S sin x + sin S cos y 
       cos S sin y + sin S cos z  cos S sin z 
   = sin(S x) + sin(S y) + sin(S z) 
   = sin(y+z) + sin(z+x) + sin(x+y). 

 
Other commended solvers: Kaustav 
CHATTERJEE (MCKV Institute of 
Engineering College, India), Ioan Viorel 
CODREANU (Secondary School Satulung, 
Maramures, Romania) and Math Activity 
Center (Carmel Alison Lam Foundation 
Secondary School). 
 

Problem 448. Prove that if s,t,u,v are 
integers such that s2 2t2+5u2 3v2=2tv, 
then s = t = u = v = 0. 

Solution. Ioan Viorel CODREANU 
(Secondary School Satulung, Maramures, 
Romania), KWOK Man Yi (Baptist Lui Ming 
Choi Secondary School, S4), Corneliu 
M NESCU-AVRAM (Transportation High 
school, Ploie ti, Romania), Math Activity 
Center (Carmel Alison Lam Foundation 
Secondary School), NGUYÊN Viêt Hoàng 
(Hà Nôi, Viêt Nam), YAN Yin Wang (United 
Christian College (Kowloon East), Teaching Staff), 
Titu ZVONARU (Com ne ti, Romania) and 

Neculai STANCIU (“George Emil Palade’’ 
Secondary School, Buz u, Romania). 
 
Assume s,t,u,v are not all zeros. By 
cancelling all common factors of s,t,u,v, 
we may assume they are relatively 
prime. We can rewrite the equation as  
 
        2(s2+5u2) = (2t+v)2+5v2.             (†) 

 
For 0  x, y  4, we have 2x2 y2 (mod 5) 
if and only if x  y  0 (mod 5).       (‡)  
So s2+5u2  2t+v  0 (mod 5), which 
implies s = 5m and 2t+v = 5n for some 
integers m,n. Substituting these into (†), 
we get 2(5m2+u2)=5n2+v2. By (‡), u, v 
are divisible by 5. Then s,t,u,v are 
divisible by 5, contradicting they are 
relatively prime. So s,t,u,v are all zeros. 
 
Other commended solvers: Kaustav 
CHATTERJEE (MCKV Institute of 
Engineering College, India), 
 
Problem 449. Determine the smallest 
positive integer k such that no matter 
how {1,2,3,…,k} are partitioned into 
two sets, one of the two sets must 
contain two distinct elements m, n such 
that mn is divisible by m+n. 
 
Solution. Titu ZVONARU 
(Com ne ti, Romania) and Neculai 
STANCIU (“George Emil Palade’’ 
Secondary School, Buz u, Romania). 
 
Call distinct positive integers m,n a 
good pair if mn is divisible by m+n. 
Collect all good pairs with m,n 40. We 
will try to separate m,n first. Let A 
={1,2,3,5,8, 10, 12, 13, 14, 18, 19, 21, 
22, 23, 30, 31,32,33,34} and B = {4, 6, 
7, 9, 11, 15, 16, 17, 20, 24, 25, 26, 27, 
28, 29, 35, 36, 37, 38, 39}. Each of A 
and B do not contain any good pair. For 
1  k  39, we can remove integers 
greater than k from A and B to get 2 
disjoint subsets of {1, 2, …, k} with no 
good pair in each subset.  
 
For k=40, put 6, 12, 24, 40, 10, 15 and 
30 around a circle. Notice any two 
consecutive terms in this circle is a 
good pair. No matter how we divide 
{1,2,…,40} into 2 disjoint subsets, one 
of the subsets will contain at least 4 of 
7 numbers in the circle. So there will be 
a good pair in that subset. Therefore, 
40 is the desired least integer. 
  
Other commended solvers: NGUYÊN 
Viêt Hoàng (Hà Nôi, Viêt Nam). 
 
Problem 450. (Proposed by Michel 
BATAILLE) Let A1A2A3 be a triangle 
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with no right angle and O be its 
circumcenter. For i = 1,2,3, let the 
reflection of Ai with respect to O be Ai' 
and the reflection of O with respect to 
line Ai+1Ai+2 be Oi (subscripts are to be 
taken modulo 3). Prove that the 
circumcenters of the triangles OOiAi'   
(i = 1,2,3) are collinear. 

O

A3

A1

A2

A'1

H

M1

O1

J1 I1

 
Solution. KWOK Man Yi (Baptist 
Lui Ming Choi Secondary School, S4). 
 
Notice that O1 is the reflection of O 
with respect to the midpoint M1 of A2A3. 
By the nine point circle theorem (see 
Math Excalibur, vol.3, no 1, p,1), AH, 
OM1 are parallel and their lengths are 
2:1. Now A1O=OA1 . So, in A1A1 H, 
M1 is the midpoint of A1 H, i.e. H is the 
reflection of A1  with respect to M1.  
 
Let I1 be the circumcenter of OO1A1 . 
Then I1 lies on the perpendicular 
bisector A2A3 of OO1. Reflect I1 with 
respect to M1 to J1. Then J1 also lies on 
A2A3. With respect to M1, J1 is the 
circumcenter of the reflection of 
OO1A1 , i.e. OO1H. So, J1 also lies 
on the perpendicular bisector of OH.  
 
Define I2, I3, J2, J3 similarly. As J2, J3 
also lie on the perpendicular bisector of 
OH by a similar proof, J1, J2, J3 are 
collinear. Then by Menelaus’ theorem, 
 

.1
23

31

12

23

31

12

AJ
JA

AJ
JA

AJ
JA  

 
As A3I1/I1A2=A2J1/J1A3 (due to I1, J1 are 
reflection of the midpoint of A2A3) and 
similarly for I2, J2, I3, J3, we have 
 

.1
13

32

32

21

21

13

AI
IA

AI
IA

AI
IA  

 
By the converse of Menelaus’ Theorem, 
I1, I2, I3 are collinear as desired. 
 
Other commended solvers: Andrea 
FANCHINI (Cantú, Italy), Corneliu 
M nescu-Avram (Transportation High 
school, Ploie ti, Romania), NGUYÊN Viêt 
Hoàng (Hà Nôi, Viêt Nam), Samiron 
SADHUKHAN (Kendriya Vidyalaya, 
Barrackpore, Kolkata, India), Titu 

ZVONARU (Com ne ti, Romania) and 
Neculai STANCIU (“George Emil Palade’’ 
Secondary School, Buz u, Romania).  
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                       (Continued from page 1) 
 
Problem 5. (Nikolay Nikolov) Find all 
functions f : +  + such that    
 f(xy) = f(x+y)(f(x)+f(y)) for any x,y +. 
 
Problem 6. (Nikolay Beluhov) The 
quadrilateral ABCD is inscribed in the 
circle k. The lines AC and BD meet in E 
and the lines AD and BC meet in F. Show 
that the line through the incenters of 

ABE and ABF and the line through the 
incenters of CDE and CDF meet on k.  
 

 
 
IMO2014 and Beyond (II) 
 
                           (Continued from page 2) 
 
First, let the line passing through C and is 
perpendicular to SC meets AB at Q. Then 

SQC=90° BSC=180° SHC. So C, H, 
S, Q are concyclic. Moreover SQ is a 
diameter of this circle, thus the 
circumcenter K of SHC lies on AB. 
Likewise, circumcenter L of the circle 
CHT lies on AD. To show the circumcircle 
of the triangle SHT is tangent to BD, it 
suffices to show the perpendicular 
bisectors of HS and HT meet at AH. But 
the two perpendicular bisectors coincide 
with the angle bisectors of AKH and ALH, 
thus by the bisector theorem, it suffices to 
show AK/KH=AL/LH. Let M be the 
midpoint of CH, then B,C,M,K are 
concyclic, L,C,M,D are concyclic. By the 
sine law, AK/AL= sin ALK / sin AKL = 
(DM/CL)/(BM/CK) = CK/CL = KH/LH. 
 
Problem 6. A set of lines in the plane is in 
general position if no two are parallel and 
no three pass through the same point. A set 
of lines in general position cuts the plane 
into regions, some of which have finite 
areas; we call these its finite regions. 
Prove that for all sufficiently large n, in 
any set of n lines in general position it is 
possible to color at least n of the lines 
blue in such a way that none of its finite 
regions has a completely blue boundary. 
 
Notes: Results with n replaced by c n 
will be awarded points depending on the 
value of the constant c. 
 
I have to admit that I don’t like this 

problem at all. Indeed it was meant to 
be an “open end” problem, that 
students may produce different results 
with different degrees of difficulty. But 
when I first saw the problem, I thought 
we should give an algorithm, say a 
greedy algorithm, or other heuristic 
that gives good pattern (with as many 
blue colored lines as possible), and 
then analyze the pattern and give an 
estimate. Not so. (I guess I have 
become kind of intuitionist.) I doubt if 
there was any algorithmic solution 
anyway. Indeed in the official solution, 
a best possible solution is assumed, 
surely it exists, but we were not told 
how to get there.  
 
Let me reproduce a part of the proof as 
follows. Given a set of n lines colored 
blue and red, and the lines colored blue 
is as large as possible (maximality 
argument), so that every finite region 
still has at least one boundary line 
colored red. Assume k lines are colored 
blue. Call a vertex which is the 
intersection of two blue lines blue as 
well, so there are kC2 blue vertices.  
 
Now take any red line l, using the 
maximality argument, there exists at 
least one region with this red line l as 
the only red side, (for if all regions 
have two or more red lines, surely we 
can change one more red line to blue). 
In this region there is at least one blue 
vertex v since any finite region has at 
least three lines. We then associate the 
blue vertex with the red line. Now 
finally every blue vertex v belongs to 
four regions, (some may be 
unbounded), hence it may be 
associated with at most four red lines. 
Therefore the total number of red lines 
is at most   4kC2=2k(k 1).  
 
On the other hand, there are n k red 
lines, thus, n k  2k(k 1). Solving for 
n, we get n  2k2 k  2k2. Hence, k  

2/n  and we get an estimate on 
the number of blue lines! 

l

IV II
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By putting some weights on the blue 
vertices, or by refining local analysis, 
one may get the stronger result k n.  
 
  

 


