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Olympiad Corner 
 
Below are the problems of the 
IMO2015 Hong Kong Team Selection 
Test 2 held on 25th October, 2014. 

 
Problem 1.  Assume the dimensions of 
an answer sheet to be 297 mm by 210 
mm. Suppose that your pen  
leaks and makes some non-intersecting 
ink stains on the answer sheet. It turns 
out that the area of each ink stain does 
not exceed 1 mm2. Moreover, any line 
parallel to an edge of the answer sheet 
intersects at most one ink stain. Prove 
that the total area of the ink stains is at 
most 253.5 mm2. (You may assume a 
stain is a connected piece.) 
 
Problem 2. Let {an} be a sequence of 
positive integers.  It is given that a1=1, 
and for every n≥1, an+1 is the  
smallest positive integer greater than an 
which satisfies the following condition: 
for any integers i, j, k,  with 1 ≤ i, j, k ≤ 
n+1, ai+aj ≠ 3ak. Find a2015.  
 
Problem 3. Let ABC be an equilateral 
triangle, and let D be a point on AB 
between A and B. Next, let E be a point 
on AC with DE parallel to BC. Further, 
let F be the midpoint of CD and G the 
circumcentre of ΔADE. Determine the 
interior angles of ΔBFG. 

 
                                 (continued on page 4) 

Variations and Generalisations 
to the Rearrangement Inequality  

Law Ka Ho
    
 
A. The rearrangement inequality 
 
In Math Excalibur, vol. 4, no. 3, we can 
find the following  
 
Theorem 1  (Rearrangement inequality) 
Let a1 ≤ a2 ≤ ⋯ ≤ an and b1 ≤ b2 ≤ ⋯ ≤ bn  
be two increasing sequences of real 
numbers. Then amongst all random 
sums of the form 
 

1 21 2 nna b a b a b     , 
 
where (σ1,σ2,…,σn) is a permutation of  
(1,2,…,n),  
 the greatest is the direct sum 

a1b1+a2b2+⋯+anbn; 
 the smallest is the reverse sum 

a1bn+a2bn−1+⋯+anb1. 
 
A well-known corollary of the 
rearrangement inequality is the 
following 
 
Theorem 2  (Chebyshev’s inequality) 
With the same setting in Theorem 1, the 
quantity 
 

1 2 1 2( )( )n na a a b b b

n

      
 

 
lies between the direct sum and the 
reverse sum, again with equality if and 
only if at least one of the two sequences 
is constant. 
 
B. A variation --- from ‘sum’ to 

‘product’ 
 
The different ‘sums’ in the 
rearrangement inequality are in fact 
‘sums of products’. For this reason we 
shall from now on call them P-sums, to 
remind ourselves that we take products 
and then sum them up. Naturally, we ask 
what happens if we look at ‘product of 
sums’ (S-products) instead. 
 
A little trial suggests that, opposite to 
the case of P-sums, the direct S-product 
is minimum while the reverse S-product 
 

 
is maximum. For example we may take 
the sequences 1≤2≤3≤4 and 5≤6≤7≤8. 
The direct S-product of these sequences 
is (1+5)(2+6)(3+7)(4+8) = 5760 and the 
reverse S-product of the sequences is 
(1+8)(2+7)(3+6)(4+5) = 6561. We can 
also check some random S-products, e.g 
we have (1+6)(2+5)(3+8)(3+7) = 5929 
and (1+6)(2+7)(3+8)(4+5) = 6237.  
 
But then a little further thought shows 
that this is not quite right. For instance 
we may take 1≤2≤3≤4 and −5≤−2 ≤1≤ 2
and end up with a reverse S-product 
(1+2)(2+1)[3+(−2)][4+(−5)], which is 
negative. Yet, some random S-products, 
such as [1+(−2)](2+2)(3+1)[4+(−5)], 
can be positive. 
 
It turns out that we have to require the 
variables to be non-negative for the 
result to hold. 

 
Theorem 3  (Rearrangement inequality 

for S-products) Let a1 ≤ a2 ≤ ⋯ ≤ an and 

b1 ≤ b2 ≤ ⋯ ≤ bn be two increasing 
sequences of non-negative real 
numbers. Then amongst all random 
S-products of the form 

1 21 2( )( ) ( )
nna b a b a b      

where (σ1,σ2,…,σn) is a permutation of 
(1,2,…,n), 
 the smallest is the direct S-product 

(a1+b1)(a2+b2)⋯(an+bn); 
 the greatest is the reverse S-product 

(a1+bn)(a2+bn−1)⋯(an+b1). 
 
Proof Take any random S-product   

1 21 2( )( ) ( )
nna b a b a b      

which is not the direct S-product. Then 
there exists i < j such that   

i j
b b  .  

Let’s see what happens if we swap σi 
and σj. In that case only two terms are 
changed. Consider the two products 

1 ( )( )
i ji jP a b a b     and 

2 ( )( )
j ii jP a b a b    . 

                                  (continued on page 2) 
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After expanding, cancelling and 
factoring, we have  
 

2 1 ( )( ),
j ii jP P a a b b      

which is non-positive since ai−aj ≤ 0 

and 
i j

b b  . So  P2 ≥ P1. This means  

swapping σi and σj leads to a larger (or 
equal) S-product. It follows that the 
direct S-product is the minimum 
amongst all random S-products. In a 
similar manner we can prove that the 
reverse S-product is the maximum. 
 
Example 4  (IMO 1966) In the interior 
of sides BC, CA, AB of ABC, points K, 
L, M respectively, are selected. Prove 
that the area of at least one of the 
triangles AML, BKM, CLK is less than 
or equal to one quarter of the area of 
ABC. 
 
Solution Let a, b, c denote the lengths 
of the sides opposite A, B, C 
respectively. Let also a1 and a2 denote 
the lengths of the two segments after 
the side with length a is cut into two 
parts by the point K (i.e. BK = a1 and 
KC = a2), and similarly for b1, b2, c1, c2. 
The six variables a1, a2, b1, b2, c1, c2 
can be ordered to form an increasing 
sequence. By the rearrangement 
inequality for S-products, the direct 
S-product  
 

1 1 2 2 1 1 2 2 1 1 2 2( )( )( )( )( )( )a a a a b b b b c c c c     

= 64a1a2b1b2c1c2 
 
is less than or equal to the random 
S-product 
 

1 2 2 1 1 2 2 1 1 2 2 1( )( )( )( )( )( )a a a a b b b b c c c c     

= a2b2c2. 
 
Let S denote the area of ABC. If 
triangles AML, BKM, CLK all have 
areas greater than S/4, then using the 
above result we have 

3

1 2 2 1 2 1

2 2 2

3

1 1 1
sin sin sin

4 2 2 2

sin sin sin
8 64
1 1 1 1

sin sin sin
64 2 2 2

4

S
c b A c a B a b C

a b c
A B C

ab C bc A ca B

S

          
     

 

       
   

   
 

which is a contradiction.  
 
Example 5  (IMO 1984) Prove that   

0 ≤ xy + yz + zx − 2xyz ≤ 7/27, 
 

where x, y and z are non-negative real 
numbers for which x+y+z=1. 

Solution The left-hand inequality is pretty 
easy. We have 

2

( ) ( ) ( )

(1 ) (1 ) (1 )

( ) ( ) ( ) 0.

xy yz zx xyz

xy xyz yz xyz zx xyz xyz

xy z yz x zx y xyz

xy x y yz y z zx z x xyz

  
      
      
       

 

For the right-hand inequality, it is 
well-known that  
 

2

2 2 2

1 ( )

3( )

x y z

x y z xy yz zx

xy yz zx

  

     
  

 

 
and so xy + yz + zx ≤ 1/3. By the 
rearrangement inequality for S-products, 
we have 

(1 2 )(1 2 )(1 2 )

1 2 1 2 1 2 1 2 1 2 1 2

2 2 2 2 2 2

.

x y z

x y y z z x

zxy

  

              
   



 

(The rearrangement inequality for 
S-products applies only if the three terms 
on the left hand side are non-negative. 
However, if this is not true then exactly 
one of them is negative and the result 
therefore still holds.) Expanding gives 
 
1 2( ) 4( ) 8x y z xy yz zx xyz xyz       

 

or 9 4( ) 1xyz xy yz zx    . From this, 

we have 
 

1
3

2

4( ) 1
2

9

2 2 7
.

9 9 27

xy yz zx xyz

xy yz zx
xy yz zx

xy yz zx

  

        
 

  
  

 

 
C. A generalisation — from two 

sequences to more 
 
Another natural direction of generalising 
the rearrangement inequality (for P-sums) 
is to consider the case in which there are 
more than two sequences. This time we 
need two subscripts to index the terms, 
one for the index of the sequence and one 
for the index of a particular term of a 
sequence. Again, we need to restrict 
ourselves to sequences of non-negative 
numbers (for both P-sums and S-products), 
otherwise one can easily construct 
counter- examples. Also, note that there is 
no such thing as ‘reverse 
P-sum/S-product’ when there are more 
than two sequences. 
 
Theorem 6  (Rearrangement inequality for 
multiple sequences) Suppose there are m 

increasing sequences (each with n 
terms) of non-negative numbers, say, 
ai1 ≤ ai2 ≤ ⋯ ≤ ain  , where 1i  , 2, …, m. 
Then 

 the direct P-sum 1 2
1

n

j j mj
j

a a a

   

is greater than or equal to any other 
random P-sum of the form 

1 21 2
1

j j mj

n

m
j

a a a  

  ; 

 the direct S-product 

1 2
1

( )
n

j j mj
j

a a a


     is smaller 

than or equal to any other random 
S-product of the form 

1 21 2
1

( ).
j j mj

n

m
j

a a a  


     

Here (σi1,σi2,…,σin) is a permutation of 
(1,2,…,n) for i = 1,2, …, m. 
 
Remarks.   
 
(1) Theorem 6 is sometimes known 

as ‘微微對偶不等式’ in Chinese. 
 
(2) A less clumsy way to express 

Theorem 6 is to use matrices. 
With the above m sequences we 
may form the matrices 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a

a a a
A

a a a

 
 
 
 
 
 





   



 and     

11 12 1

21 22 2

1 2

1 1 1

2 2 2

n

n

m m mnm m m

a a a

a a a
B

a a a

  

  

  

 
 
   
 
 
 





   



. 

Here each row of A is in ascending 
order (corresponding to one of the m 
increasing sequences) while each row 
of B is a permutation of the terms in the 
corresponding row of A (corresponding 
to a permutation of the corresponding 
sequence). Then Theorem 6 says 
 
 the sum of column products (P-sum) 

in A is greater than or equal to that in 
B; 

 
 the product of column sums (S- 

product) in A is less than or equal to 
that in B. 

 
(3) The proof of Theorem 6 is 

essentially the same as that of 
Theorem 3, and is therefore 
omitted. 

 
                                 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is January 31, 2015. 
  
Problem 456.  Suppose x1, x2, …, xn 
are non-negative and their sum is 1. 
Prove that there exists a permutation σ 
of {1,2,⋯,n} such that  
 
xσ(1)xσ(2)+xσ(2) xσ(3)+⋯+xσ(n)xσ(1) ≤ 1/n. 

 
Problem 457. Prove that for each n = 
1,2,3,…, there exist integers a, b such  
that if  integers x, y are relatively prime, 

then .)()( 22 nybxa   
 
Problem 458. Nonempty sets A1, A2, 
A3 form a partition of {1,2,…,n}. If 
x+y=z have no solution with x in Ai , y 
in Aj , z in Ak and {i,j,k}={1,2,3}, then 
prove that A1, A2, A3 cannot have the 
same number of elements.  
 
Problem 459. H is the orthocenter of 
acute ΔABC. D,E,F are midpoints of 
sides BC, CA, AB respectively. Inside 
ΔABC, a circle with center H meets 
DE at P,Q, EF at R,S, FD at T,U. Prove 
that CP=CQ=AR=AS=BT=BU.  
 
Problem 460. If x,y,z > 0 and x+y+z+2 
= xyz, then prove that  
 
      .26 xyzxyzzyx    

 
***************** 

Solutions 
**************** 

 
Problem 451. Let P be an n-sided 
convex polygon on a plane and n>3. 
Prove that there exists a circle passing 
through three consecutive vertices of P 
such that every point of P is inside or 
on the circle. 
 
Solution. Adnan ALI (Atomic Energy 
Central School 4, Mumbai, India) and T.W. 
LEE (Alumni of New Method College).   
 
Let RXYZ denote the radius of the circle 
through vertices X,Y,Z of P. Let circle Γ 
through vertices A,B,C of P be one 
with maximal radius. Without loss of 
generality, we may assume ∠ABC and 

∠ACB < 90°. If there is a vertex D of P 
outside Γ, let AD meet Γ at E. Then ∠ADC 
<∠AEC=∠ABC. By the extended sine law 

,
sin2sin2 ABCADC R

ABC

AC

ADC

AC
R 





  

contradicting maximality of Γ. So all 
vertices of P is on or inside Γ.   
 
Let F be the vertex of P next to A (toward 
C). If F is inside Γ, then AFCB is convex 
and ∠AFC+∠ABC > 180°. Hence 0° < 
180°−∠AFC <∠ABC < 90°. Then 

,
sin2sin2 ABCAFC R

ABC

AC

AFC

AC
R 





  

contradiction. So F is on Γ. Similarly, the 
vertex of P next to A (toward B) is on Γ. 
 

Problem 452. Find the least positive real 
number r such that for all triangles with 
sides a,b,c, if a ≥ (b+c)/3, then  
  c(a+b−c) ≤ r ((a+b+c)2+2c(a+c−b)). 
  
Solution. Jon GLIMMS and Samiron 
SADHUKHAN (Kendriya Vidyalaya, India). 
 
Let I = a+b−c. Then a ≥ (b+c)/3 implies 
a−b ≥ −(a+b−c)/2 = −I/2   (*) 
 
Using a+b+c=I+2c, (*) and the AM-GM 
inequality, we have 

.
2

3
2

2

33

22

3

3
2

2

2

44

)(2

)(2)(

22

2

















I

c

c

I

I

ba

I

c

c

I
I

bca

cI

ccII

cbac

bcaccba
J

 

Equality hold if a = (b+c)/3 and I2=6c2, i.e. 
.4:632:62:: cba The least r 

such that 1/(2J)≤ r is 15/)324(  . 
 
Problem 453. Prove that there exist 
infinitely many pairs of relatively prime 
positive integers a,b with a>b such that 
b2−5 is divisible by a and a2−5 is divisible 
by b. 

 
Solution. Adnan ALI (Atomic Energy Central 
School 4, Mumbai, India), LKL Excalibur 
(Madam Lau Kam Lung Secondary School of 
MFBM) and Samiron SADHUKHAN 
(Kendriya Vidyalaya, India). 
 
Note (a,b) = (11,4) is a solution. From any 
solution (a,b) with a>b≥4, we get a2−5=bc 
and b2−5=ad for some positive integers c 
and d. Now we show (c,a) is another such 
solution. First bc = a2−5 > a2−a = a(a−1) 
≥ ab implies c>a. If a prime p divides 
gcd(a,c), then a2−5=bc and b2−5=ad 
imply b2=ad+5=ad+a2−bc is divisible by 
p. Since gcd(a,b)=1, we get gcd(c,a)=1. 

Using gcd(a,b)=1 and a(a+d)=a2+b2−5 
= b(b+c), we see a divides b+c. Then a 
divides (b+c)(c−b) + (b2−5) = c2−5. So 
there are infinitely many solutions. 
 
Other commended solvers: Corneliu 
MĂNESCU-AVRAM (Transportation 
High school, Ploieşti, Romania), O Kin 
Chit (G. T. (Ellen Yeung College), WONG 
Yat (G. T. (Ellen Yeung) College), Titu 
ZVONARU (Comăneşti, Romania) and 
Neculai STANCIU (“George Emil Palade’’ 
Secondary School, Buzău, Romania). 
 
Problem 454. Let Γ1, Γ2 be two circles 
with centers O1, O2 respectively. Let P 
be a point of intersection of Γ1 and Γ2. 
Let line AB be an external common 
tangent to Γ1, Γ2 with A on Γ1, B on Γ2 
and A, B, P on the same side of line 
O1O2. There is a point C on segment 
O1O2 such that lines AC and BP are 
perpendicular. Prove that ∠APC=90°. 
 
Solution. Serik JUMAGULOV 
(Karaganda State University, 
Qaragandy City, Kazakhstan). 
 
Other than P, let the circles also meet at 
Q. If PQ ∩ AB = M, then M is the 
midpoint of AB as MA2 = MP×MQ = 
MB2. Let PQ ∩ O1O2 = K, BP∩AC=N 
and AL be a diameter of the circle with 
center O1. Since PQ ⊥ O1O2 and 
BN⊥AC, PNCK is cyclic. Now ∠PBM 
= 90°−∠NAB = ∠CAO1 and ∠BPM 
=∠KPN=∠ACO1. So ΔACO1∼ΔBPM. 
Then AC/BP = AO1/BM = AL/BA. So 
ΔACL∼ΔBPA. Then ∠ALP = ∠BAP 
=∠ALC. So L,C,P are collinear. As AL 
is a diameter, ∠APC = 90°. 
  
Other commended solvers: Andrea 
FANCHINI (Cantú, Italy), Titu 
ZVONARU (Comăneşti, Romania) and 
Neculai STANCIU (“George Emil Palade’’ 
Secondary School, Buzău, Romania). 
 
Problem 455. Let a1, a2, a3, … be a 
permutation of the positive integers. 
Prove that there exist infinitely many 
positive integer n such that the greatest 
common divisor of an and an+1 is at 
most 3n/4.  
 
Solution. Jon GLIMMS and Samiron 
SADHUKHAN (Kendriya Vidyalaya, 
India). 
 
Assume that there exists N such that for 
all n≥N, gcd(an,an+1)>3n/4. Then for all 
n ≥ 4N, an≥ gcd(an,an+1) > 3n/4 ≥ 3N. 
Since a1, a2, a3, … is a permutation of 
the positive integers, we see {1,2,⋯,3N} 
is a subset of {a1, a2,⋯, a4N−1}. Now the 
intersection of {1,2,⋯,3N} and {a2N, 
a2N+1,⋯,a4N−1} has at least 3N−(2N−1) 
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= N+1 elements. By the pigeonhole 
principle, there exists k such that 2N ≤ 
k < 4N−1 and ak, ak+1 ≤ 3N. Then 
gcd(ak,ak+1) ≤ ½max{ak, ak+1} ≤ 3N/2 ≤ 
3k/4, contradiction. 
 

 
 
Olympiad Corner 
 
                       (Continued from page 1) 

 
Problem 4. A 11×11 grid is to be 
covered completely without 
overlapping by some 2×2 squares and 
L-shapes each composed of three unit 
cells. Determine the smallest number 
of L-shapes used. (Each shape must 
cover some grids entirely and cannot 
be placed outside the 11×11 grid. The 
L-shapes may be reflected or rotated 
when placed on the grid. )  

 
 

 

Variations and Generalisations  
 
                       (Continued from page 2) 

 
Example 7 Let x1, x2, …, xn be 
non-negative real numbers whose sum 
is at most 1/2. Show that (1−x1) 
(1−x2)⋯(1−xn) ≥ 1/2. 
 
Solution Form the n×n matrix 

1

2

1 1 1

1 1 1

1 1 1n

x

x
A

x

 
  
 
 
 





   



 

whose rows are in ascending order. 
Consider the matrix 

1

2

1 1 1

1 1 1

1 1 1 n

x

x
B

x

 
  
 
 

 





   



 

in which each row is a permutation of 
the terms in the corresponding row of A. 
By the rearrangement inequality for 
multiple sequences, the P-sum in A is 
greater than the P-sum in B, i.e. 
 
          (1−x1) (1−x2)⋯(1−xn) + n − 1 
       ≥ (1−x1) + (1−x2) + ⋯ + (1−xn).  
It follows that 
 
        (1−x1) (1−x2)⋯(1−xn)  
     ≥ 1 − (x1 + x2 + ⋯ + xn)  

     ≥ 1−1/2 = 1/2. 
 
Example 8 Let x1, x2, …, xn be positive 
real numbers with sum 1. Show that 

1 2

1 2

1

(1 )(1 ) (1 ) ( 1)
n

n
n

x x x

x x x n


   



. 

 
Solution Without loss of generality 
assume x1 ≤ x2 ≤ ⋯ ≤ xn. Form the (n−1)×n 
matrix 

1 2

1 2

1 2

n

n

n

x x x

x x x
A

x x x

 
 
 
 
 
 





   



 

 
whose rows are in ascending order. The 
S-product of A is thus (n−1)nx1x2⋯xn. Now 
the matrix B given by 
 

1 2

2 3 1

1 2

n

n n n

x x x

x x x
B

x x x 

 
 
 
 
 
 





   



 

 
has the property that each of its rows is a 
permutation of the terms in the 
corresponding row of A. Furthermore, 
since x1, x2, …, xn have sum 1, the 
S-product of B is equal to (1−x1)(1−x2) 
⋯(1−xn). By the rearrangement inequality 
for multiple sequences, we have 
(n−1)nx1x2⋯xn≤ (1−x1)(1−x2) ⋯(1−xn). 
 
D.  Proofs of some classic inequalities 
 
The rearrangement inequality for multiple 
sequences can be used to prove a number 
of classic inequalities. We look at some 
such examples in this final section. 
 
 
Theorem 9  (Bernoulli inequality) 
For real numbers x1, x2, …, xn , where 
either all are non-negative or all are 
negative but not less than –1, we have 

11

(1 ) 1 .
n n

i i
ii

x x


    

 
Proof Without loss of generality assume x1 

≤ x2 ≤ ⋯ ≤ xn. Suppose x1, x2, …, xn are all 
non-negative.  Consider the n×n matrices 
 

    

1

2

1 1 1

1 1 1

1 1 1 n

x

x
A

x

 
  
 
 

 





   



     and   

1

2

1 1 1

1 1 1

1 1 1 n

x

x
B

x

 
  
 
 

 





   



. 

Then A and B satisfy the properties 
stated in Theorem 6. Thus the P-sum in 
A is greater than or equal to that in B,  

i.e. 
11

1 (1 ) (1 ).
n n

i i
ii

n x x


      

This gives 
11

(1 ) 1 .
n n

i i
ii

x x


    

The proof in the latter case (in which x1, 
x2, …, xn are negative but not less 
than –1) is essentially the same; just 
move the rightmost column of A to the 
leftmost. 
 
Theorem 10 (Generalised Chebyshev’s 
inequality) For m increasing sequences 
(each with n terms) of non-negative 
real numbers, say, ai1 ≤ ai2 ≤ ⋯ ≤ ain , 
where i=1,2,…, m,  

the direct P-sum 1 2
1

n

j j mj
j

a a a

  is 

greater than or equal to 

 1 21
1

1
.

m

i i inm
i

a a a
n 



     

 
Proof Let 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a

a a a
A

a a a

 
 
 
 
 
 





   



. 

Now we can randomly form a matrix B 
as follows. The first row of B is the 
same as that of A. Each other row of B 
is obtained by shifting the 
corresponding row of A to the right by 
k places, where k is randomly chosen 
from 0, 1, 2, …,n−1. (For instance, if 
k=1, then the second row of B will be 
(a2 n, a2 1, ⋯, a2 n−1.) Thus a total of nm−1 
different possible B’s can be formed. 
Each of them has a P-sum less than or 
equal to that of A, according to 
Theorem 6. The sum of all the P-sums 
for these nm−1 is precisely  
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which should therefore be less than or 
equal to nm−1 times the P-sum of A, i.e. 
nm−1 times the direct P-sum. This gives 
us the desired result. 
 


