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Olympiad Corner 
 
Below are the problems of the Team 
Selection Test 1 for the Dutch IMO 
team held in June, 2014. 

 
Problem 1.  Determine all pairs (a,b) 
of positive integers satisfying  
 

a2+b | a2b+a  and  b2−a | ab2+b. 
 
Problem 2. Let ΔABC be a triangle. 
Let M be the midpoint of BC and let D 
be a point on the interior of side AB. 
The intersection of AM and CD is 
called E. Suppose that |AD|=|DE|. 
Prove that |AB|=|CE|.  
 
Problem 3. Let a, b and c be rational 
numbers for which a+bc, b+ac and 
a+b are all non-zero and for which we 
have 
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Prove that )1)(3(  cc  is rational. 
 
Problem 4. Let ΔABC be a triangle 
with |AC|=2|AB| and let O be its 
circumcenter. Let D be the intersection 
of the angle bisector of ∠A and BC. Let 
E be the orthogonal projection of O on 
AD and let F≠D be a point on AD 
satisfying |CD|=|CF|. Prove that 
∠EBF=∠ECF. 
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Polygonal Problems  
Kin Yin Li 

 
    
 
    In geometry textbooks, we often 
come across problems about triangles 
and quadrilaterals. In this article we will 
present some problems about n-sided 
polygons with n > 4. This type of 
problem appears every few years in 
math olympiads of many countries. 
 
Example 1. Prove that if ABCDE is a 
convex pentagon with all sides equal 
and ∠A≥∠B≥∠C≥∠D≥∠E, then it is 
a regular pentagon. 
 
Solution.   
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we get ∠AEC≥∠EAC. Next, 
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Hence, ∠EAC=∠AEC. Then equality 
holds everywhere above so that ∠A=∠E 
and we are done. 
 
Example 2. (Bulgaria, 1979) In convex 
pentagon ABCDE, ΔABC and ΔCDE 
are equilateral. Prove that if O is the 
center of ΔABC and M, N are midpoints 
of BD, AE respectively, then ΔOME∼
ΔOND. 
 
Solution.  
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Let P, Q be the midpoints of BC, AC 
respectively. Observe that ∠COP=60°, 
OC=2OP, PM||CD, ∠DCE=60° and EC 
= DC = 2MP. Then rotating about O by 
60° clockwise and follow by doubling 
distance from O, we see ΔOPM goes to 
ΔOCE. Hence ∠EOM =∠COP =60° 
and OE=2OM.  Similarly we can rotate 
about O by 60° counterclockwise and 
double distance from O to bring ΔOQN 
to ΔOCD. Then ∠DON = 60°, OD = 
2ON and so ΔOME∼ΔOND. 
 
Example 3. (IMO 2005) Six points are 
chosen on the sides of an equilateral 
triangle ABC: A1, A2 on BC, B1, B2 on 
CA and C1, C2 on AB, so that they are the 
vertices of a convex hexagon 
A1A2B1B2C1C2 with equal side lengths. 
Prove that A1B2, B1C2 and C1A2 are 
concurrent. 
 
Solution.  
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Let P be the point inside ΔABC such 
that ΔA1A2P is equilateral. Observe that 
A1P||C1C2 and A1P=C1C2. So A1PC1C2 is 
a rhombus. Similarly, B1PB2B1 is a 
rhombus. So ΔC1B2P is equilateral. Let 
α = ∠B2B1A2, β = ∠B1A2A1 and γ = ∠ 
C1C2A1. Then α and β are external 
angles of ΔCB1A2 with ∠C=60°. So 
α+β=240°. Now∠B2PA2=α and ∠C1PA1 

= γ. So α+γ=360°−(∠C1PB2 +∠A1PA2) 
=240°. So β=γ. Similarly, ∠C1B2B1=β. 
Hence, Δ A1A2B1, Δ B1B2C1 and Δ
C1C2A1 are congruent, which implies Δ
A1B1C1 is equilateral. Since sides of 
A1A2B1B2C1C2 have equal lengths, lines 
A1B2, B1C2 and C1A2 are the 
perpendicular bisectors of the sides of 
ΔA1B1C1 and the result follows.  
 
                                  (continued on page 2) 
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Example 4. (Czechoslovakia, 1974) 
Prove that if a circumscribed hexagon 
ABCDEF satisfies  
 

AB=BC,  CD=DE  and  EF=FA, 
 
then the area of ΔACE is less than or 
equal to the area of ΔBDF. 
 
Solution. Let O be the circumcenter of 
hexagon ABCDEF and R be the radius 
of the circumcircle. Let 
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From the given conditions on the sides, 
we get 
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Let [XYZ] denote the area of ΔXYZ. 
We have 
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Similarly, 
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Now for positive α, β, γ satisfying 
α+β+γ = 180°, we have 
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Therefore, [ACE]≤[BDF]. 

 
Example 5.  (IMO 1996) Let ABCDEF 
be a convex hexagon such that AB is 
parallel to DE, BC is parallel to EF and 
CD is parallel to FA. Let RA, RC, RE be 
the circumradii of triangles FAB, BCD, 
DEF respectively, and let P denote the 
perimeter of the hexagon. Prove that 
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Solution. Let a, b, c, d, e, f denote the 
lengths of the sides AB, BC, CD, DE, 
EF, FA respectively. By the parallel 

conditions, we have ∠A=∠D, ∠B=∠E, 
∠C=∠F.  
 
Consider rectangle PQRS such that A is on 
PQ; F,E are on QR; D is on RS and B,C are 
on SP. 
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We have BF≥PQ=SR. So 2BF≥PQ+SR, 
which is the same as 
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Next, by the extended sine law, 
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Then using the inequalities and equations 
above, we have 
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Example 6. (Great Britain, 1988) Let four 
consecutive vertices A, B, C, D of a 
regular polygon satisfy 
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Determine the number of sides of the 
polygon. 
 
Solution. Let the circumcircle of the 
polygon have center O and radius R. Let α 
=∠AOB, then 0 < 3α =∠AOD < 360°. So 
0 < α < 120°. Also, from 
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Clearing denominators, we have 
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Then 7α/4=90°, that is α=360°/7. So the 
polygon has 7 sides. 
 
Example 7. (Austria, 1973)  Prove that 
if the angles of a convex octagon are all 
equal and the ratio of all pairs of 
adjacent sides is rational, then each 
pair of opposite sides has equal length.  
 
Solution. Without loss of generality, we 
may assume the sides of such a 
polygon A1A2…A8 are rational (since 
the conclusion is the same for octagons 
similar to such an octagon). Now the 
sum of all angles of the octagon is 
6×180°. Hence each angle is 45°.  
 
Let vn be the vector from An to An+1 for 
n=1,2,…,8 (with A9=A1). Then the 
angle between vn and vn+1 at the origin 
is 45°. Observe that the sum of these 
vectors is zero since we start at A1 and 
traverse the octagon once to return to 
A1.  
 
Let i and j be a pair of unit vectors 
perpendicular to each other at the 
origin. By rotation, we may assume v1 
is a vector in the i direction and v3 is in 
the j direction. Then v1+v5=xi and v3+v7 
= yj for some rational x and y. Also,  
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for some rational r. Then 
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Since, x and r are rational, we must 
have x = r = 0. That is, v5 = −v1. By 
rotating the i, j vectors by 45°, similarly 
we get v6= −v2. Then also v7= −v3 and 
v8= −v4. The result follows. 
 
 
 
                                 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is April 10, 2015. 
  
Problem 461.  Inside rectangle ABCD, 
there is a circle. Points W, X, Y, Z are on 
the circle such that lines AW, BX, CY, 
DZ are tangent to the circle. If AW=3, 
BX=4, CY=5, then find DZ with proof. 
 
Problem 462. For all x1, x2, …, xn ≥ 0, 
let xn+1 = x1, then prove that 
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Problem 463. Let S be a set with 20 
elements. N 2-element subsets of S are 
chosen with no two of these subsets 
equal. Find the least number N such 
that among any 3 elements in S, there 
exist 2 of them belong to one of the N 
chosen subsets. 
 
Problem 464. Determine all positive 
integers n such that for n, there exists 
an integer m with 2n−1 divides m2+289. 
 
Problem 465. Points A, E, D, C, F, B 
lie on a circle Γ in clockwise order. 
Rays AD, BC, the tangents to Γ at E and 
at F pass through P. Chord EF meets 
chords AD and BC at M and N 
respectively.  Prove that lines AB, CD, 
EF are concurrent. 
 

***************** 
Solutions 

**************** 
 
Problem 456. Suppose x1, x2, …, xn are 
non-negative and their sum is 1. Prove 
that there exists a permutation σ of 
{1,2,⋯,n} such that  
 

xσ(1)xσ(2)+xσ(2) xσ(3)+⋯+xσ(n)xσ(1) ≤ 1/n. 
 
Solution. CHAN Long Tin (Cambridge 
University, Year 3), Ioan Viorel 
CODREANU (Secondary School 
Satulung, Maramures, Romania), 
KWOK Man Yi (Baptist Lui Ming 
Choi Secondary School, S4), Samiron 
SADHUKHAN (Kendriya Vidyalaya, 

India) and WONG Yat (G. T. (Ellen 
Yeung) College). 
  
Assume the contrary is true. Let σ(n+1) = 
σ(1) for all permutations σ. For 1≤i<j≤n, 
the terms xixj and xjxi appear a total of 
2n(n−2)! times in 
 

.
1

)1()(
 


nSn

n

k
kk xx   

So, we have 

.1)!2(

)!2(

)!2(2

!

1

2

1

2

2

1

1

1
)1()(



















































 


n

i
i

n

i
i

n

i
i

nji
ji

S

n

k
kk

xnn

xxnn

xxnn

xx
n

n

n


 

This simplifies to (*) .
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by the Cauchy-Schwarz inequality,  
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which contradicts (*). 

 

Problem 457. Prove that for each n = 
1,2,3,…, there exist integers a, b such  that 
if  integers x, y are relatively prime, then  

.)()( 22 nybxa   
  
Solution. Samiron SADHUKHAN 
(Kendriya Vidyalaya, India) and WONG 
Yat (G. T. (Ellen Yeung) College). 
 
There are (2n+1)2 ordered pairs (r,s) of 
integers satisfying |r|, |s| ≤ n. Assign a 
distinct prime number pr,s to each such 
(r,s). By the Chinese remainder theorem, 
there exist integers a,b such that for all 
integers r, s satisfying  |r|, |s| ≤ n, we have 
a≡r (mod pr,s) and b≡s (mod pr,s).  
 
Let integers x, y be relatively prime. 
Assume (x,y) has distance at most n from 
(a,b). Then |a−x|≤n and |b−y|≤n. Let 
a−x=r and b−y=s. Then x=a−r and 
y=b−s are multiples of pr,s , contradicting 
gcd(x,y) = 1. Therefore, 
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Problem 458. Nonempty sets A1, A2, A3 
form a partition of {1,2,…,n}. If x+y=z 
have no solution with x in Ai , y in Aj , z in 
Ak and {i,j,k}={1,2,3}, then prove that A1, 

A2, A3 cannot have the same number of 
elements.  

 
Solution. Oliver GEUPEL (Brühl, 
NRW, Germany) and John GLIMMS. 
 
Without loss of generality, say 1∈A1 and 
the smallest element in A2∪ A3 is b∈ A2. 
Let the elements in A3 be c1, c2, …, ck in 
increasing order.  
 
Assume ci+1−ci=1 for some i. Then take i 
to be the smallest possible. Since b∈A2, 
the equations (ci−b)+b=ci and 
(ci−b+1)+b=ci+1 imply ci−b and ci−b+1 
are both not in A1. 
 
Since 1∈A1 and (ci−b)+1= ci−b+1, so 
either ci−b+1 and ci−b both are in A2 or 
both are in A3. Since i is smallest such 
that ci+1−ci=1, so ci−b+1 and ci−b cannot 
be in A3. However, ci−b+1 and ci−b in 
A2, b−1 in A1 (by property of b) and 
(b−1)+(ci−b+1)=ci  lead to contradiction. 
So ci+1−ci ≥ 2 for all i. 
 
Finally, since 1+(ci−1)=ci , we get 
ci−1∉B. Hence ci−1∈A. Then A1 
contains 1, c1−1, c2−1, … , ck−1. 
Therefore, A1 has more elements than A3. 
 
Problem 459. H is the orthocenter of 
acute ΔABC. D,E,F are midpoints of 
sides BC, CA, AB respectively. Inside 
ΔABC, a circle with center H meets 
DE at P,Q, EF at R,S, FD at T,U. Prove 
that CP=CQ=AR=AS=BT=BU.  
 
Solution. John GLIMMS. 
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Let lines AH and FE meet at J. From 
AH⊥BC and BC||FE, we get FE is 
perpendicular to AJ and HJ. By folding 
along DE, EF and FD, we can make a 
tetrahedron having ΔDEF as the base 
and points A, B, C meet at a point I. 
Then FE is perpendicular to IJ and HJ. 
So FE is perpendicular to the plane 
through I,J,H. Then FE⊥IH. Similarly, 
DE⊥IH. Then the plane through D,E,F 
is perpendicular to IH. By Pythagoras’ 
theorem, IH2+r2 = CP2 = CQ2 = AR2 = 
AS2 = BT2= BV2, where r is the radius of 
the circle. 
 
Other commended solvers: Adnan 
ALI (Atomic Energy Central School 4, 
Mumbai, India), Andrea FANCHINI 
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(Cantú, Italy), William FUNG, Oliver 
GEUPEL (Brühl, NRW, Germany), 
MANOLOUDIS Apostolis (4 High 
School of Korydallos, Piraeus, Greece), 
Samiron SADHUKHAN (Kendriya 
Vidyalaya, India), Titu ZVONARU 
(Comăneşti, Romania) and Neculai 
STANCIU (“George Emil Palade’’ 
Secondary School, Buzău, Romania). 
 
Problem 460. If x,y,z > 0 and x+y+z+2 
= xyz, then prove that  
 

  .26 xyzxyzzyx   

 
Solution. Adnan ALI (Atomic Energy 
Central School 4, Mumbai, India), 
CHAN Long Tin (Cambridge 
University, Year 3), Ioan Viorel 
CODREANU (Secondary School 
Satulung, Maramures, Romania), 
Oliver GEUPEL (Brühl, NRW, 
Germany), KWOK Man Yi (Baptist 
Lui Ming Choi Secondary School, S4), 
Vijaya Prasad NULLARI (Retired 
Principal, AP Educational Service, India), 
Nicuşor ZLOTA (“Traian Vuia” 
Technical College,Focşani, Romania) 
and Titu ZVONARU (Comăneşti, 
Romania). 
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Using x+y+z+2 = xyz, we get a+b+c = 
1. Then x = (1−a)/a = (b+c)/a and 
similarly y=(c+a)/b and z=(a+b)/c. By 
the AM-GM inequality, we have 
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Other commended solvers: Paolo 
PERFETTI (Dipartimento di 
Matematica, Università degli studi di 
Tor Vergata Roma, via della ricerca 
scientifica, Roma, Italy), WONG Yat 
(G. T. (Ellen Yeung) College). 
 

 
 
Olympiad Corner 
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Problem 5. On each of the 20142 
squares of a 2014×2014-board a light 

bulb is put. Light bulbs can be either on or 
off. In the starting situation a number of 
light bulbs are on. A move consists of 
choosing a row or column in which at 
least 1007 light bulbs are on and changing 
the state of all 2014 light bulbs in this row 
or column (from on to off or from off to 
on). Find the smallest non-negative 
integer k such that from each starting 
situation there is a finite sequence of 
moves to a situation in which at most k 
light bulbs are on. 
  
 

 
 
 
Polygonal Problems  
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Example 8. (IMO 1997) Equilateral 
triangles ABK, BCL, CDM, DAN are 
constructed inside the square ABCD. 
Prove that the midpoints of the four 
segments KL, LM, MN, NK and the 
midpints of the eight segments AK, BK,  
BL, CL, CM,  DM,  DN,  AN are the twelve 
vertices of a regular dodecagon. 
 
Solution.  

D

A B
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M

NL

P2

O

P1

 
Let us denote the midpoints of segments 
LM, AN, BL, MN, BK, CM, NK, CL, DN, 
KL, DM, AK by P1, P2, P3, P4, P5, P6, P7, 
P8, P9, P10, P11, P12, respectively. To prove 
the dodecagon 
  

P1P2P3P4P5P6P7P8P9P10P11P12 
 
is regular, we observe that BL=BA and 
∠ABL=30°. Then ∠BAL=75°. Similarly 
∠DAM =75°. So  
 
∠LAM =∠BAL+∠DAM −∠BAD=60°. 

 
Along with AL=AM, we see triangle ALM 
is equilateral.  
 
Looking at triangles OLM and ALN, we 
get OP1=½LM, OP2=½AL and OP2|| AL. 
Hence, OP1=OP2, ∠P1OP2=∠P1AL = 30°, 
∠P2OM =∠DAL=15° and ∠P2OP3 = 
2∠P2OM = 30°. By symmetry, we can 
conclude that the dodecagon is regular. 

Example 9. (IMO 1992, Shortlisted 
Problem from India) Show that in the 
plane there exists a convex polygon of 
1992 sides satisfying the following 
conditions: 
 
(i) its sides lengths are 1,2,3,…,1992 in 
some order; 
 
(ii) the polygon is circumscribable 
about a circle. 
 
Solution. For a positive number r, let us 
draw a circle of radius r and let us draw 
a polygonal path A1A2…A1993 such that 
for i=1 to 1992, side AiAi+1 is tangent to 
the circle at a point Ti and T1992A1993 = 
A1T1, T1A2 = A2T2, … , T1991A1992 = 
A1992T1992.  
 

O

T1A1

A2

A1992

A1993

T1992

T1991

T2

 

To achieve condition (i), we need A1A2, 
A2A3, …, A1992A1993 to be a permutation 
of 1, 2, …, 1992. This can be done as 
follow:  
 
   If i≡1 (mod 4), then let AiTi=1/2. 
   If i≡3 (mod 4), then let AiTi=3/2. 
   If i≡0,2 (mod 4), then let AiTi=i−3/2. 
 
We can check that the lengths of AiAi+1 
for i=1 to 1992 are 1, 2, 4, 3, 5, 6, 8, 
7,…, 1989,1990,1992,1991. 
 
To achieve condition (ii), we define a 
function 

.arctan2

)(

1992

1

1992

1
1














i

ii

i
ii

r

TA

OAArf
 

Observe that f (r) is a continuous 
function on (0,∞). As r tends to 0, f (r) 
tends to infinity and as r tends to 
infinity, f (r) tends to 0. By the 
intermediate value theorem, there 
exists r such that f (r) = 2π. Then 
A1993=A1 and A1A2…A1992 is a desired 
polygon. 
 
We remark that if 1992 is replaced by 
other positive integers of the form 4k, 
then there are such 4k-sided polygon.  
 
 

 


