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Olympiad Corner 
 
Below are the problems of the 2015 
Canadian Mathematical Olympiad 
held in January 28, 2015. 

 
Notation: If V and W are two points, 
then VW denotes the line segment with 
endpoints V and W as well as the length 
of this segment. 
 
Problem 1. Let ℕ = {1,2,3,…} denote 
the set of positive integers. Find all 
functions f, defined on ℕ and taking 
values in ℕ, such that (n−1)2 < 
f(n)f(f(n)) < n2+n for every positive 
integer n. 
 
Problem 2. Let ABC be an 
acute-angled triangle with altitudes 
AD, BE and CF. Let H be the 
orthocenter, that is, the point where the 
altitudes meet. Prove that 
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Problem 3. On a (4n+2)×(4n+2) 
square grid, a turtle can move between 
squares sharing a side. The turtle 
begins in a corner square of the grid 
and enters each square exactly once, 
ending in the square where she started.  
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Tournament of the Towns  
Kin Yin Li 

 
    
 
        In 1980, Kiev, Moscow and Riga 
participated in a mathematical problem 
solving contest for high school students, 
later called the Tournament of the 
Towns.  At present thousands of high 
school students from dozens of cities all 
over the world participate in this 
contest. In this article, we present some 
very interesting math problems from 
this contest. At the end of the article, 
there are some information on where 
interested readers can find past 
problems and solutions of this contest. 
 
        Here are some examples we enjoy. 
 
Example 1. (Junior Questions, Spring 
1981, proposed by A. Andjans) Each of 
64 friends simultaneously learns one 
different item of news. They begin to 
phone one another to tell them their 
news. Each conversation last exactly 
one hour, during which time it is 
possible for two friends to tell each 
other all of their news. What is the 
minimum number of hours needed in 
order for all of the friends to know all 
the news? 
 
Solution. More generally, suppose there 
are 2n friends. After n rounds, the most 
anyone can learn are 2n

 pieces of gossip. 
Hence n rounds are necessary. We now 
prove by induction on n that n rounds 
are also sufficient. For n=1, the result is 
trivial. Suppose the result holds up to 
n−1 for some n≥2. Consider the next 
case with 2n friends. Have them call 
each other impairs in the first round. 
After this, divide them into two groups, 
each containing one member from each 
pair who had exchanged gossip. Each 
group has 2n−1 friends who know all the 
gossip among them. By the induction 
hypothesis, n−1 rounds are sufficient for 
everyone within each group to learn 
everything. This completes the 
induction argument. In particular, with 
64 friends, 6 rounds are both necessary 
and sufficient. 
  

 
Example 2. (Senior Questions, Spring 
1983, proposed by A. Andjans) There 
are K boys placed around a circle. Each 
of them has an even number of sweets. 
At a command each boy gives half of his 
sweets to the boy on his right. If, after 
that, any boy has an odd number of 
sweets, someone outside the circle gives 
him one more sweet to make the number 
even. This procedure can be repeated 
indefinitely. Prove that there will be a 
time at which all boys have the same 
number of sweets. 
 
Solution. Suppose initially the 
maximum number of sweets a boy has is 
2m, and the minimum is 2n. We may as 
well assume that m>n. After a round of 
exchange and possible augmentation, 
we claim that the most any boy can have 
is 2m sweets. This is because he could 
have kept at most m sweets, and 
received m more in the exchange, but 
will not be augmented if he already has 
2m sweets.  
 
On the other hand, at least one boy who 
had 2n sweets will have more than that, 
because as long as m>n, one of these 
boys will get more than he gives away. 
It follows that while the maximum 
cannot increase, the minimum must 
increase until all have the same number 
of sweets.  

 
Example 3. (Junior Questions, Autumn 
1984) Six musicians gathered at a 
chamber music festival. At each 
scheduled concert some of these 
musicians played while the others 
listened as members of the audience. 
What is the least number of such 
concerts which would need to be 
scheduled in order to enable each 
musician to listen, as a member of the 
audience, to all the other musicians?  
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Solution. Let the musicians be A, B, C, D, 
E and F. Suppose there are only three 
concerts. Since each of the six must 
perform at least once, at least one 
concert must feature two or more 
musicians. Say both A and B perform in 
the first concert. They must still perform 
for each other. Say A performs in the 
second concert for B and B in the third 
for A. Now C, D, E and F must all 
perform in the second concert, since it is 
the only time B is in the audience. 
Similarly, they must all perform in the 
third. The first concert alone is not 
enough to allow C, D, E and F to 
perform for one another. Hence we need 
at least four concerts. This is sufficient, 
as we may have A, B and C in the first, A, 
D and E in the second, B, D and F in the 
third and C, E and F in the fourth.  
 
Example 4. (Junior Questions, Autumn 
1984, proposed by V. G. Ilichev) On the 
Island of Camelot live 13 grey, 15 
brown and 17 crimson chameleons. If 
two different chameleons of different 
colours meet, they both simultaneously 
change colour to the third colour (eg. If 
a grey and a brown chameleon meet 
each other they both change to 
crimson). Is it possible that they will 
eventually all be the same colour? 
 
Solution. In this case the numbers of 
chameleons of each colour at the start 
have remainders of 0, 1 and 2 when 
divided by three. Each “meeting” 
maintains such a situation (not 
necessarily in any order) as two of 
these remainders must either be 
reduced by 1 (or increased by 2) while 
the other must be increased by 2 (or 
reduced by 1). Thus at least two 
colours are present at any stage, 
guaranteeing the possibility of 
obtaining all of the three colours in fact 
by future meetings.  
 
Note. The only way of getting 
chameleons to be of the same colour 
would be getting an equal number of 
two colours first. This would mean 
getting two with the same remainder on 
division by three. This would have 
been possible if we had started with, 
say 15 of each colour. From this 
position we can obtain sets with 
remainders equal to {0,0,0}, {1,1,1} 
and {2,2,2}. 
 
Example 5.  (Junior Questions, Spring 
1985, proposed by S. Fomin) There are 
68 coins, each coin having a different 

weight that that of each other. Show how 
to find the heaviest and lightest coin in 
100 weighings on a balance beam. 
 
Solution 1. First divide into 34 pairs and 
perform 34 weighings, each time 
identifying the heavier and lighter coins. 
Put all the heavier coins into one group 
and the lighter coins into another. Divide 
the group with heavier coins into 17 pairs, 
and perform 17 weighings on these to 
identify the 17 heavier coins. Continue 
this process with the group of heavier 
coins each time. If there is an odd number 
of coins at any stage, the odd coin out 
must be carried over to the following stage. 
There will be a total of 17+8+4+2+1+1=3 
such weighings required for identifying 
the heaviest coin. 
 
A similar 33 weighings of the lighter 
group will identify the lightest coin. The 
total number of weighing is thus 
34+33+33=100, as required.  
 
Solution 2. More generally, we show that 
3n−2 weighings are sufficient for 2n coins. 
We first divide the coins into n pairs, and 
use n weighings to sort them out into a 
“heavy” pile and a “light” pile. The 
heaviest coin is among the n coins in the 
“heavy” pile. Each weighing eliminates 1 
coin. Since there are n coins, n−1 
weighings are necessary and sufficient. 
Similarly, n−1 weighings will locate the 
lightest coin in the “light” pile. Thus the 
task can be accomplished in 3n−2 
weighings. 
 
Example 6. (Junior Questions, Spring 
1987, proposed by D. Fomin) A certain 
number of cubes are painted in six colours, 
each cube having six faces of different 
colours (the colours in different cubes 
may be arranged differently). The cubes 
are placed on a table so as to form a 
rectangle. We are allowed to take out any 
column of cubes, rotate it (as a whole) 
along its long axis and place it in a 
rectangle. A similar operation with rows is 
also allowed. Can we always make the 
rectangle monochromatic (i.e. such that 
the top faces of all the cubes are the same 
colour) by means of such operations?  
 
Solution. The task can always be 
accomplished, and we can select the top 
colour in advance, say red. By fixing a 
cube, we mean bringing its red face to the 
top. Given a rectangular block, we fix one 
cube at a time, from left to right, and from 
front to back. 
 

Suppose that the cube in the i-th row 
and the j-th column is the next to be 
fixed. Suppose that we need to rotate 
the i-th row. In order not to unfix the 
first j−1 cubes of this row, we rotate 
each of the first j−1 columns so that all 
red faces are to the left. They remain to 
the left when the i-th row is rotated. We 
can now refix the first j−1 columns.  
 
Similarly, if we need to rotate the j-th 
column, we can go through an 
analogous three-step process. 
 
Example 7. (Senior Questions, Autumn 
1987, proposed by A. Andjans)  A 
certain town is represented as an 
infinite plane, which is divided by 
straight lines into squares. The lines are 
streets, while the squares are blocks. 
Along a certain street there stands a 
policeman on each 100th intersection. 
Somewhere in the town there is a 
bandit, whose position and speed are 
unknown, but he can move only along 
the streets. The aim of the police is to 
see the bandit. Does there exist an 
algorithm available to the police to 
enable them to achieve their aim?    
 
Solution. We assume that (a) there is no 
limit to how far a policeman can see 
along the street he is on; (b) there is no 
overall time limit, and (c) if the bandit 
is ever on the same street as a 
policeman he will be seen. 
 
Let i, j and k denote integers, let the 
North-South streets be x=i for all i, the 
East-West streets y=j for all j and 
suppose the k-th policeman is at 
(100k,0). 
 
For all even k the k-th policeman 
remains stationary throughout. This 
traps the bandit in the infinite strip 
between x=200k and x=200(k+1) for 
some k, say k*. 
 
All other policemen first travel along 
y=0 towards (0,0) until they reach the 
first cross street x=s for which there is 
a policeman on every street x=i for i 
between 0 and s. Police are to travel at 
regulation speed, say one block per 
minute, but nevertheless there will 
come a time, dependent only on k*,  
when every street x=i on the k* strip 
will be policed.  
 
 
                                 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is August 27, 2015. 
  
Problem 466.  Let k be an integer 
greater than 1. If k+2 integers are 
chosen among 1,2,3,…,3k, then there 
exist two of these integers m,n such 
that k<|m−n|<2k. 
 
Problem 467. Let p be a prime number 
and q be a positive integer. Take any pq 
consecutive integers. Among these 
integers, remove all multiples of p. Let 
M be the product of the remaining 
integers. Determine the remainder 
when M is divided by p in terms of q. 
 
Problem 468. Let ABCD be a cyclic 
quadrilateral satisfying BC>AD and 
CD>AB.  E, F are points on chords BC, 
CD respectively and M is the midpoint 
of EF. If BE=AD and DF=AB, then 
prove that BM⊥DM. 
 
Problem 469. Let m be an integer 
greater than 4. On the plane, if m points 
satisfy no three of them are collinear 
and every four of them are the vertices 
of a convex quadrilateral, then prove 
that all m of the points are the vertices 
of a m-sided convex polygon. 
 
Problem 470. If a, b, c>0, then prove 
that 
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***************** 

Solutions 
**************** 

 
Problem 461. Inside rectangle ABCD, 
there is a circle. Points W, X, Y, Z are on 
the circle such that lines AW, BX, CY, 
DZ are tangent to the circle. If AW=3, 
BX=4, CY=5, then find DZ with proof. 
 
Solution. Adnan ALI (Atomic Energy 
Central School 4, Mumbai, India), 
Adithya BHASKAR (Atomic Energy 
School 2, Mumbai, India), Andrea 

FANCHINI (Cantú, Italy), William 
FUNG, KWOK Man Yi (Baptist Lui 
Ming Choi Secondary School, S4), Jon 
GLIMMS, LKL Excalibur (Madam Lau 
Kam Lung Secondary School of MFBM), 
Corneliu MĂNESCU-AVRAM (“Henri 
Mathias Berthelot” Secondary School, 
Ploieşti, Romania), MANOLOUDIS 
Apostolos (4 High School of Korydallos, 
Piraeus, Greece), Vijaya Prasad 
NALLURI (Retired Principal, AP 
Educational Service, India), Alex 
Kin-Chit O (G.T. (Ellen Yeung) College), 
Toshihiro SHIMIZU (Kawasaki, Japan), 
Titu ZVONARU (Comăneşti, Romania) 
and Neculai STANCIU (“George Emil 
Palade’’ Secondary School, Buzău, 
Romania). 
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Let r be the radius of the circle. By 
Pythagoras’ theorem, we have  
 

r2 = AW2−AO2 =BX2−BO2 = CY2−CO2 

        = DZ2−DO2.    (*) 
 
Let P,Q be the feet of perpendiculars from 
O to AB, CD respectively. Then  
 
    AO2−BO2 = (AP2 +PO2) − (BP2+PO2) 

 = (DQ2+QO2) − (CQ2+QO2) = DO2−CO2.  
 
Using (*), we get AW2−BX2 =AO2−BO2 = 
DO2−CO2 =DZ2−CY2. Then 
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Problem 462. For all x1, x2, …, xn ≥ 0, let 
xn+1 = x1, then prove that 
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Solution. Adnan ALI (Atomic Energy 
Central School 4, Mumbai, India), 
Adithya BHASKAR (Atomic Energy 
School 2, Mumbai, India), Ioan Viorel 
CODREANU (Secondary School 
Satulung, Maramures, Romania), 
DHRUV Nevatia (10th Standard, 
Ramanujan Academy, Nashik, India), 
KWOK Man Yi (Baptist Lui Ming Choi 
Secondary School, S4), LKL Excalibur 
(Madam Lau Kam Lung Secondary School 

of MFBM), MAMEDOV Shatlyk 
(School of Young Physics and Maths N 
21, Dashogus, Turkmenistan), Corneliu 
MĂNESCU- AVRAM (“Henri Mathias 
Berthelot” Secondary School, Ploieşti, 
Romania), Paolo PERFETTI (Math 
Dept, Università degli studi di Tor 
Vergata Roma, via della ricerca 
scientifica, Roma, Italy), Ángel 
PLAZA (Universidad de Las Palmas 
de Gran Canaria, Spain), Toshihiro 
SHIMIZU (Kawasaki, Japan), 
WADAH Ali (Ben Badis College, 
Algeria), Nicuşor ZLOTA (“Traian 
Vuia” Technical College, Focşani, 
Romania), Titu ZVONARU 
(Comăneşti, Romania) and Neculai 
STANCIU (“George Emil Palade’’ 
Secondary School, Buzău, Romania). 
 
By squaring both sides or RMS-AM 
inequality, we have for all a,b ≥ 0,  
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Applying this, we get 
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Problem 463. Let S be a set with 20 
elements. N 2-element subsets of S are 
chosen with no two of these subsets 
equal. Find the least number N such 
that among any 3 elements in S, there 
exist 2 of them belong to one of the N 
chosen subsets. 

 
Solution. Jon GLIMMS, KWOK 
Man Yi (Baptist Lui Ming Choi 
Secondary School, S4), LKL 
Excalibur (Madam Lau Kam Lung 
Secondary School of MFBM) and 
Toshihiro SHIMIZU (Kawasaki, 
Japan). 
 
Let x∈S be contained in k of the N 
2-elements subsets of S, where k is least 
among the elements of S.  
 
Let x1, x2, …, xk be the other elements in 
k of the N 2-element subsets with x. As k 
is least, so each of the xi’s is also 
contained in at least k of the N 2-element 
subsets of S.  
 
Also, there are m=19−k elements w1, 
w2, …, wm∈S not in any of the N 
2-element subsets of S with x. For 



Mathematical Excalibur, Vol. 19, No. 5, Apr. 15 – Jun. 15 Page 4

 
every pair wr, ws of these, {wr, ws} is 
one of these N 2-element subsets of S 
(otherwise, no two of x, wr, ws form one 
of the N 2-element subsets). Then 
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To get the least case of N=90, we 
divide the 20 elements into two groups 
of 10 elements. Then take all 2-element 
subsets of each of the two groups to get 
45+45=90 2-element subsets of S. 
 
Problem 464. Determine all positive 
integers n such that for n, there exists 
an integer m with 2n−1 divides m2+289. 
 
Solution. Adnan ALI (Atomic Energy 
Central School 4, Mumbai, India), 
Adithya BHASKAR (Atomic Energy 
School 2, Mumbai, India), KWOK 
Man Yi (Baptist Lui Ming Choi 
Secondary School, S4), LKL 
Excalibur (Madam Lau Kam Lung 
Secondary School of MFBM), Corneliu 
MĂNESCU-AVRAM (“Henri Mathias 
Berthelot” Secondary School, Ploieşti, 
Romania), PANG Lok Wing and 
Toshihiro SHIMIZU (Kawasaki, 
Japan). 
 
The case n=1 is a solution. For n>1, we 
first show if a prime q of the form 4k+3 
divides a2+b2, then q divides a and b. 
Assume gcd(q,a)=1. Let c=aq−2. Then 
by Fermat’s little theorem, ac=aq−1≡1 
(mod q). As q|a2+b2, so b2≡−a2 (mod 
q). Then (bc)2≡−(ac)2≡ −1 (mod q) 
and (bc)q−1 = (bc)2(2k+1) ≡ = −1 (mod q), 
contradicting Fermat’s little theorem. 
So q divides a (and b similarly). 
 
If n>1, then 2n−1≡3 (mod 4). Hence 
2n−1 has a prime divisor q≡3 (mod 4). 
By the fact above, q divides m2+289 
implies q divides m and 17. Then q=17 
≢3 (mod 4), contradiction. 
 
Problem 465. Points A, E, D, C, F, B 
lie on a circle Γ in clockwise order. 
Rays AD, BC, the tangents to Γ at E and 
at F pass through P. Chord EF meets 
chords AD and BC at M and N 
respectively.  Prove that lines AB, CD, 
EF are concurrent. 
 
Comments. A number of solvers 
pointed out if lines AB, CD are parallel, 
then by symmetry lines AB, CD, EF are 
all parallel. So below, we present 
solutions for the case when lines AB 
and CD intersect at a point. 
 

Solution 1. Jon GLIMMS.  
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Let lines AB, CD meet at Q. We have  
 

(1) ∠AFE =∠ADE=180°−∠PDE,  
(2) ∠EFD =∠PED,  
(3) ∠FDQ =∠PFC,  
(4) ∠QAF =∠FCB=180°−∠PCF. 
(5) ∠DAQ =∠DCP,  
(6) ∠QDA =180°−∠PDC. 

 
Then 
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Multiplying these and using PE=PF, we 
have 
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Applying the converse of the 
trigonometric form of Ceva’s theorem to 
ΔADF and point Q, we get lines AB, CD, 
EF are concurrent at Q. 
 
Solution 2. Adnan ALI (Atomic Energy 
Central School 4, Mumbai, India), 
Adithya BHASKAR (Atomic Energy 
School 2, Mumbai, India) and William 
FUNG. 
 
Since the tangents to Γ at E and at F 
intersect at P, line EF is the polar of P. 
Since lines AD, BC intersect at P, the 
polar of P (that is, line EF) passes through 
the intersection of lines AB and CD.  

 
Other commended solvers: KWOK Man 
Yi (Baptist Lui Ming Choi Secondary 
School, S4), MANOLOUDIS Apostolos 
(4 High School of Korydallos, Piraeus, 
Greece) and Toshihiro SHIMIZU 
(Kawasaki, Japan). 
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Problem 3 (Cont’d). In terms of n, 
what is the largest positive integer k 
such that there must be a row or a 
column that the turtle has entered at 
least k distinct times? 
 
Problem 4. Let ABC be an 
acute-angled triangle with circum- 
center O. Let Γ be a circle with centre 
on the altitude from A in ABC, passing 
through vertex A and points P and Q on 
sides AB and AC. Assume that 
BP·CQ=AP·AQ. Prove that Γ is 
tangent to the circumcircle of triangle 
BOC. 
 
Problem 5. Let p be a prime number 
for which (p−1)/2 is also prime, and let 
a, b, c be integers not divisible by p. 
Prove that there are at most p21  
positive integers n such that n<p and p 
divides an+bn+cn. 
  
 

 
 
 
Tournament of the Towns  
 
                       (Continued from page 2) 

 
When this happens the bandit will be 
trapped on some street y=j*, on a single 
block between x=i* and x=i*+1 for 
some i*. 
 
For each k, as soon as all streets on the 
k-th strip are policed, one of the 
policemen travels north and another 
travels south. For k=k* this will 
inevitably reveal the bandit. 
 
After reading these examples, should 
anyone want to read more, below are 
websites, which books on this contest 
can be ordered or problems and 
solutions of the recent Tournament of 
the Towns can be found. 
 
www.amtt.com.au/ProductList.php?pa
ger=1&startpage=1 
 
www.artofproblemsolving.com/comm
unity/c3239_tournament_of_towns 
 
www.math.toronto.edu/oz/turgor/archi
ves.php 


