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Olympiad Corner

The following are five problems from
the 24th USA Mathematical Olympiad
held in April 27, 1995. The time limit for
this competition was three and a half
hours. ~Editors

Problem 1. Letp be an odd prime. The
sequence (a,),», is defined as follows:
a=0,a,=1,..,a,,=p-2and, for all
n > p-1, a,is the least positive integer
that does not form an arithmetic
sequence of length p with any of the
preceding terms. Prove that, for all n, a,
is the number obtained by writing » in
base p- 1 and reading the result in base p.

Problem 2. A calculator is broken so
that the only keys that still work are the
sin, cos, tan, sin’!, cos™!, and tan’'
buttons. The display initially shows 0.
Given any positive rational number ¢,
show that pressing some finite sequence
of buttons will yield g. Assume that the
calculator does real number calculations
with infinite precision. All functions are

in terms of radians.

(continued on page 4)
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Systems of Distinct Representatives
Kin-Yin Li

Suppose in a school, there are some
clubs. In the science club, the members
are Bob and Cathy. In the dance club, the
members are Bob, Mary, Joe and Emma.
In the bridge club, the members are Joe,
Emma, Paul and Cathy. In the debate
club, the members are Bob and Cathy.
Suppose a representative is to be elected
from each club and no two clubs are
allowed to have the same representative.
Is this possible?

In the example, one possibility is to
have Bob for science, Mary for dance,
Joe for bridge and Cathy for debate. We
say the collection Bob, Mary, Joe and
Cathy is a system of distinct
representatives (SDR) for the four clubs
because each represents a different club.

If a new drama club is formed with
only Bob and Cathy as members, then
there is not any SDR for these five clubs
because the science, debate and drama
clubs together have only two members.
So far, to decide whether there is a SDR
for clubs or not is simple because there
are not too many clubs. If the number of
clubs increases, then the problem will
become difficult. Naturally we would
like to know if there is a method for
knowing whether there exists any SDR
for clubs or not. Also, we would like to
know, when a SDR exists, how to find
such a SDR.

Suppose there are n clubs. From the
drama club situation above, we learned
that if these n clubs have a SDR, then
every set of m (< n) clubs together must
have at least m» members. This gives us a
necessary condition to check. In fact,
there is a famous theorem, due to Philip
Hall, that asserts the condition is also
sufficient.

Hall's Theorem. There exists a SDR for
n clubs if and only if every set of m (< n)
clubs together has at least m. members.

Briefly, here is how to get a SDR
inductively when the condition is met. If
we are lucky that every set of k (< »n)
clubs together has more than k members,
then pick a member as representative for
a club and remove this member from the
other n - 1 clubs. The condition for the
n - 1 clubs will still be met. Inductively,
we can find a SDR for these n - 1 clubs.

If we are unlucky that there are & (< n)
clubs together having exactly £ members.
Since k£ < n, inductively we can find a
SDR for these & clubs. Now remove
these £ members from the other n - &
clubs. After removal, we can check that
the condition for the remaining » - &
clubs will still be met. (This is because
any j of these remaining clubs together
will contain the members of the j + &
clubs together, minus the & removed
members. That is, every set of j (S n - k)
remaining clubs has at least (j + k) - k=
members.) So inductively we can find a
SDR for the remaining »n - £ clubs.

For another application of SDR,
consider the situation of »n boys and »
girls in a party. Each boy knows some of
the girls and vice versa. When is it
possible to match each boy with a unique
girl that he knows? This is simple if you
understand Hall's theorem. For each boy,
form a fan club consists of all the girls he
knows. There is a matching if and only if
there is a SDR for the » fan clubs, i.e.,
every set of m (< n) boys together must
know at least m girls.
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication consideration.  Solutions
should be preceded by the solver’s
name, address, school affiliation and
grade level. Please send submissions to
Dr. Kin-Yin Li, Dept of Mathematics,
Hong Kong University of Science and
Technology, Clear  Water Bay,
Kowloon. The deadline for submitting
solutions is December 30, 1995.

Problem 21. Show that if a polynomial
P(x) satisfies

_P@

PQ2x?* -1
(2x* -1) 5

1,

it must be constant.

Problem 22. An acute-angled triangle
ABC is given in the plane. The circle
with diameter AB intersects altitude CE
and its extension at points M and N, and
the circle with diameter AC intersects
altitude BD and its extension at P and Q.
Prove that the points M, N, P, Q lie on a
common circle. (Source: 1990 USA
Mathematical Olympiad).

Problem 23. Determine all sequences
{a, a,, ...} such that @, = 1 and |a, — a,,|
< 2mn/(m* + n?) for all positive integers
m and n. (Source: Past IMO problem
proposed by Finland).

Problem 24. In a party, n boys and n
girls are paired. It is observed that in
each pair, the difference in height is less
than 10 cm. Show that the difference in
height of the k-th tallest boy and the k-th
tallest girl is also less than 10 cm for k=
1,2,...,n

Problem 25. Are there any positive
integers n such that the first four digits
from the left side of n! (in base 10
representation) is 19957

deded ek dedkdede kb ko

Solutions
dkhkhdhhhkhdkdhtk

Problem 16. Let a, b, ¢, p be real
numbers, with a, b, ¢ not all equal, such
that a+l=b+l=c+l=p.

b ¢ a
Determine all possible values of p and
prove that abc + p = 0. (Source: 1983
Dutch Mathematical Olympiad.)

Solution: Official Solution.

Since ca+ 1=ap and bc + 1 = cp, we get
ap*=cap+p=a(bc+1)+p=abc+a+
p- Hence a(p? — 1) = abc + p. Similarly,
b(p* — 1) = abc + p and c(p* - 1) = abc +
p. Since a, b, ¢ are not all equal, p = +1
and then abc + p = 0. Both values of p
are possible by considering (a,b,c) =
2,-1,172) and (-2,1,-1/2).

Comments: Most solvers use repeated
substitution to obtain the equation (p?
- 1)@ - ap + 1) = 0 (and similar
equations for b and c¢) and then show
that p = +1. (Otherwise, @’ - ap+ 1=0
and the other two similar equations will
lead to the contradiction a = b = ¢.)
Solvers then use different approaches to
find abc for the two possible values of p
to prove abc + p=0.

Other commended solvers: CHAN
Wing Sum (HKUST), William
CHEUNG Pok Man (S.T.F.A. Leung
Kau Kui College), Wallis LEUNG Ka-
Wo (HKUST) and LIU Wai Kwong
(Pui Tak Canossian College).

Problem 17. Find all sets of positive
integers x, y and z such that x <y <z and
¥ty =7

Solution: William CHEUNG Pok
Man (S.T.FA. Leung Kau Kui
College).

Since 3> 44> 55 > | we have y* 2
2’ if y > 3. Hence the equation has no
solution if y > 3. Since 1 < x <y, the
only possible values for (x,y) are (1,1),
(1,2) and (2,2). These lead to the
equations 1 + 1=z, 1+2°=zand 4 +2°
=72, The third equation has no solution
since 2° > 22 forz > 4 and (2,2,3) isnot a
solution to ¥’ + y* = z*, The second
equation has no solution either since 2°>
z. The first equation leads to the unique
solution (1,1,2).
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Other commended solvers: HO Wing
Yip (Clementi Secondary School), LIU
Wai Kwong (Pui Tak Canossian
College) and WONG Him Ting
(Salesian English School).

Problem 18. For real numbers a, b, c,
define

f@bo)=a+b-|a-4-|la+b +la-§ -24
Show that fla,b,c) > 0 if and only if

" fb,c,a) >0 if and only if Ac,a,b) > 0.

Solution: William CHEUNG Pok
Man (S.TF.A. Leung Kau Kui
College).

We have fla,b,c) > 0 if and only if |a + b
+|a-b| —2c]|<a+ b - |a-b|. Applying
the fact that |x] <y if and only if x <y and
-x < y to the last inequality and
simplifying, we see that fla,b,c) > 0 if
and only if [a — b <cand ¢ <a + b.
Applying the fact again to |a — b] < ¢ and
transposing terms, we see that fa,b,c) >
Oifandonly ifa<b+candb<c+a
and ¢ <a+ b. The assertion follows.

Comments: LIU Wai Kwong considers
the six possible orderingsazb>c,a2c
2 b, etc. to show that f{a,b,c) = fb,c,a) =
fe,ab) = 2(a + b + ¢ — 2max{a,b,c})
and thus the assertion follows.

Other commended solvers. Wallis
LEUNG Ka-Wo (HKUST) and LIU
Wai Kwong (Pui Tak Canossian
College).

Problem 19. Suppose 4 is a point inside
a given circle and is different from the
center. Consider all chords (excluding
the diameter) passing through 4. What
is the locus of the intersection of the
tangent lines at the endpoints of these
chords?

Solution: WONG Him Ting (Salesian
English School).

Let O be the center and r be the radius.
Let A’ be the point on OA extended
beyond 4 such that O4 x OA4’ = .
suppose BC is one such chord passing
through A4 and the tangents at B and C
intersect at D’. By symmetry, D’ is on
the line OD, where D is the midpoint of
BC. Since ZLOBD’ =90°, OD x OD’ =
OB (= OA x OA’.) So AOAD is similar
to AOD’A’. Since £0ODA =90°, D’ is
on the line L perpendicular to O4 at 4.
(continued on page 4)
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Conversely, for D’ on L, let the chord
through A perpendicular to OD’
intersect the circle at B and C. Let D be
the intersection of the chord with OD’.
Now AOAD and AOD’A’are similar
right triangles. So OD x OD’ = OA4 x
OA> = OB* = OC* which implies
ZLOBD’ = LOCD’ =90°, Therefore, D’
is on the locus. This shows the locus is
the line L.

Other commended solvers: William
CHEUNG Pok Man (S.T.F.A. Leung
Kau Kui College), Wallis LEUNG Ka-
Wo (HKUST), LIU Wai Kwong (Pui
Tak Canossian College) and Bobby
POON Wai Hoi (St Paul’s College).

Problem 20. For n > 1, let 2n chess
pieces be placed on any 2n squares of an
n x n chessboard. Show that there are 4
pieces among them that formed the
vertices of a parallelogram. (Note that if
2n — 1 pieces are placed on the squares
of the first column and the first row, then
there is no parallelogram. So 2n is the
best possible.)

Solution: Edmond MOK Tze Tao
(Queen’s College).

Let m be the number of rows that have at-

least 2 pieces. (Then each of the
remaining n - m rows contains at most 1
piece.) For each of these m rows, locate
the leftmost square that contains a piece.
Record the distances (i.e., number of
squares) between this piece and the
other pieces on the same row. The
distances can only be 1, 2, ..., n-1
because there are » columns.

Since the number of pieces in these m
rows altogether is at least 2n— (n— m) =
n+ m, there are at least (n+m) —-m=n
distances recorded altogether for these
m rows. By the pigeonhole principle, at
least two of these distances are the same.
This implies there are at least two rows
each containing 2 pieces that are of the
same distance apart. These four pieces
yield a parallelogram.

Other commended -solvers: William
CHEUNG Pok Man (S.T.F.A. Leung
Kau Kui College), HO Wing Yip
(Clementi Secondary School) and
WONG Him Ting (Salesian English
School).
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Problem 3. Given a nonisosceles,
nonright triangle ABC, let O denote the
center of its circumscribed circle, and let
A,, B, and C, be the midpoints of sides
BC, CA, and AB, respectively. Point 4,
is located on the ray OA, so that AOAA,
is similar to AOA,A. Points B, and C, on
rays OB, and OC,, respectively, are
defined similarly. Prove that lines A4,,
BB,, and CC, are concurrent, i.e., these
three lines intersect at a point.

Problem 4. Suppose gy, ¢, g5, ... is am
infinite sequence of integers satisfying
the following two conditions:

(i) m—ndivides q,,—q,form>n=0,
(ii) there is a polynomial P such that
|g,4 < P(n) for all n.

Prove that there is a polynomial Q such
that g, = Q(n) for all n.

Problem 5. Suppose that in a certain
society, each pair of persons can be
classified as either amicable or hostile.
We shall say that each member of an
amicable pair is a friend of the other, and
each member of a hostile pair is a foe of
the other. Suppose that the society has »
persons and ¢ amicable pairs, and that
for every set of three persons, at least
one pair is hostile. Prove that there is at
least one member of the society whose
foes include ¢(1 - 4¢/r*) or fewer
amicable pairs.



