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Olympiad Corner 
 
Below are the problems of the 32nd 
Balkan Mathematical Olympiad held 
in May 5, 2015. 

 
Problem 1. Let a, b and c be positive 
real numbers. Prove that 
    
       a3b6+b3c6+c3a6+3a3b3c3 

  ≥  abc(a3b3+b3c3+c3a3) 
                  +a2b2c2(a3+b3+c3). 

 
Problem 2. Let ABC be a scalene 
triangle with incenter I and circum- 
circle (ω). The lines AI, BI, CI intersect 
(ω) for the second time at the point D, 
E, F, respectively. The line through I 
parallel to the sides BC, AC, AB 
intersect the lines EF, DF, DE at the 
points K, L, M, respectively. Prove that 
the points K, L, M are collinear.  
 
Problem 3. A jury of 3366 film critics 
is judging the Oscars. Each critic 
makes a single vote for his favorite 
actor, and a single vote for his favorite 
actress. It turns out that for every 

integer n∈{1,2,…,100} there is an 
actor or actress who has been voted for 
exactly n times. Show that there are 
two critics who voted for the same 
actor and the same actress.   

                                 (continued on page 4) 

Divisibility Problems  
Kin Y. Li 

 
    
 
      Divisibility problems are common 
in many math competitions. Below we 
will look at some of these interesting 
problems. As usual, for integers a and b 

with a≠0, we will write a | b to denote b 
is divisible by a (or in short a divides b).  
 
       In dividing b by a, we get a quotient 
q and a remainder r, we get b/a=q+r/a. 
Notice that b/a is an integer if and only 
if r/a is an integer. The following 
examples exploit this observation.  
 
Example 1. (1999 AIME) Find the 
greatest positive integer n such that 
(n−2)2(n+1)/(2n−1) is an integer. 
 
Solution. The numerator is n3−3n2+4. 
So 
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Multiplying by 8, we get 

 

.
12

27
5104

12

)43(8 2
23







n
nn

n

nn  

 
Then 2n−1|27. The greatest such n is 14. 
 
Example 2. (1998 IMO) Determine all 
pairs (a,b) of positive integers such that 
ab2+b+7 divides a2b+a+b. 
 
Solution. We can think of a as a variable 
and b as a constant, then do division of 
polynomials to get 
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Multiplying by b(ab2+b+7), we get 
 

b(a2b+a+b)= (ab2+b+7)a−(7a−b2). 
 
If ab2+b+7 | a2b+a+b, then 
 
ab2+b+7 |  (ab2+b+7)a −b(a2b+a+b) 
                        =7a−b2.    (*) 
 
Case 1 (7a−b2=0). Then 7a=b2. So 7| b. 
Then for some positive integer k, b=7k 
and a=7k2. We can check (a,b)=(7k2,7k) 
are indeed solutions. 

 
Case 2 (7a−b2<0). Then 7a < b2 and 
 

ab2+b+7 ≤|7a−b2| = b2−7a. 
 

However, b2−7a < b2 < ab2+b+7, which 
leads to a contradiction. 
 

Case 3 (7a−b2>0). Then ab2+b+7 ≤ 
7a−b2. If b ≥ 3, then ab2+b+7 ≥ 9a > 
7a > 7a−b2, contradicting (*).  
 
So b = 1 or 2. If b = 1, then (*) yields 
a+8 | 7a−1 = 7(a+8)−57. Hence, a+8 | 
57, which leads to a = 11 or 49. Then we 
can check (a,b) = (11,1) and (49,1) are 
solutions. If b=2, then (*) yields 4a+9 | 
7a−4. Now  
 

4a+9 ≤7a−4 < 8a+18 = 2(4a+9). 
 
So 4a+9 = 7a−4, contradicting a is an 
integer. 
 
Example 3. (2003 IMO) Determine all 
pairs of positive integers (a,b) such that 
a2 /(2ab2−b3+1) is a positive integer. 
 
Solution. Suppose a2 /(2ab2−b3+1) =k is 
a positive integer. Then a2−2kb2a+kb3−k 
= 0. Multiplying by 4 and completing 
squares, we get 
 
(2a−2kb2)2 = (2kb2−b)2 + (4k−b2). (**) 

 
Let M = 2a−2kb2 and N = 2kb2−b.  
 
Case 1 (4k−b2 = 0). Then b is even and 
M = ± N. If M =−N, then b=2a. If M=N, 
then 2a = 4kb2−b = b4−b. We get (a,b) = 
(b/2,b) or ((b4−b)/2,b) with b even. 
These are easily checked to be 
solutions. 
 
Case 2 (4k−b2 > 0).  Then M 2 > N2  and 
N = 2kb2−b = b(2kb−1) ≥ 1(2−1) = 1. So  
M 2 ≥ (N+1)2. Hence, by (**) 
 
          4k−b2= M 2 − N 2 

        ≥ (N+1)2−N2=2N+1 
                    = 4kb2−2b+1, 
 
which implies 4k(b2−1) + (b−1)2 ≤ 0. 
 
                                  (continued on page 2) 
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Then b = 1, k = a/2 and (a,b) = (2k,1) are 
easily checked to be solutions for all 
positive integer k.   
 
Case 3 (4k−b2 < 0). Then M 2 ≤ (N−1)2. 
By (**), 
 
           4k−b2 = M 2 − N 2 

          ≤ (N−1)2−N2=−2N+1 
  = −4kb2+2b+1. 

This implies 
 

,0
41

)12(8

41

1
)41(

)41(2)41(0
2

2



















k

kk

k
bk

kbbk
 

 
which is a contradiction.  
 
Exercise 1. Find all positive integers n, a, 
and b such that  
 

nb−1 | na+1. 
       ________________________ 

 
     For divisibility problems involving 
exponential terms, like 2n, often we will 
need to do modulo arithmetic and apply 
Fermat’s little theorem. A useful fact is 
if m>n≥0, then there exist integers s, t 
such that gcd(m,n) = ms+nt. (Proof. If 
n=0, then let s=1, t=0. Suppose it is true 
for all r with 0 ≤ r < n. Then m=qn+r, 
where q=[m/n]. We have  
         
         gcd(m,n) = gcd(m,r) = ms+rt  
      = ms+(m−qn)t = m(s+t)+n(−qt). ) 
 
So if d = gcd(m,n) and am, a n ≡1 (mod 
k), then a d ≡1 (mod k) by the fact. 
 
Example 4. (1972 Putnam Exam) Show 
that if n is an integer greater than 1, then 
2n−1 is not divisible by n. 
 
Solution. Assume there exists an integer 
n > 1 such that n | 2n−1. Since 2n−1 is 
odd, n must be odd. Let p be the least 
prime divisor of n. Then p | 2n−1, which 
is the same as 2n≡1 (mod p). By 
Fermat’s little theorem, 2p−1≡1 (mod p). 
Let d = gcd(n,p−1). Then 2d ≡1 (mod p). 
By the definition of p, since d | n and d 
≤ p−1 < p, we get d = 1. Then 2 = 2d ≡ 1 
(mod p) lead to a contradiction. 
 
       Having seen the last example, here 
comes a hard problem that one needs to 
know the last example to get a start. 
 
Example 5. (1990 IMO) Determine all 
integer n>1 such that (2n+1)/n2 is an 
integer. 
 
Solution. Since 2n+1 is odd, n must be 
odd. Let p be the least prime divisor of n. 
Then p|2n+1, which implies (2n)2≡(−1)2 

=1 (mod p). By Fermat’s little theorem, 
2p−1≡1 (mod p). Let d = gcd(2n,p−1)≥2. 
Then 2d≡1 (mod p). By the definition of p, 
we get gcd(n,p−1)=1. This gives d =2 and 
4=2d≡1 (mod p) gives p=3. Then n = 3km 
for some k ≥ 1 and m satisfying gcd(3,m)=1. 
 
      Using x3+1=(x+1)(x2−x+1) for x=2m, 
23m, 29m, …, we have 
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For odd c, 2c≡2,−1,−4 (mod 9) implies 
22c−2c+1≡3 (mod 9). From the binomial 
expansion, we see 2m+1 = (3−1)m+1 ≡ 3m 
≡ 3 or 6 (mod 9). So each of the factor on 
the right side of (*) is divisible by 3, but not 
by 9. So 2n+1=3k+1s for some integer s 
satisfying gcd(3,s)=1. Now n2 = 32km2 | 2n+1 
= 3k+1s, which implies k=1 and n=3m.  
 
       Assume m>1. Let q be the least prime 
divisor of m.  Now q is odd and q>3. Then 
gcd(m,q−1)=1. Since q | m | n, we have q2 | 
n2 | 2n+1. Then 2q−1 and 22n≡1 (mod q) lead 
to 2w≡1 (mod q), where w = gcd(2n, q−1). 
Then w|2n=6m. Also, from w|q−1 and  
gcd(m,q−1) = 1, we get w|6. Now q>3, 
w=1,2,3,6 and 2w≡1 (mod q) imply q=7. 
Then 7=q | 2n+1, but 2n≡ 1, 2, 4≢−1 (mod 
7), contradiction. Therefore, m=1 and n=3. 
Indeed, 32=9 | 23+1. 
 
Exercise 2. (1999 IMO) Find all pairs of 
positive integers (x,p) such that p is prime, 
x≤2p, and xp−1 divides (p−1)x+1.   
         _________________________ 
 
         In the following examples, we will 
see there is a very clever trick in solving 
certain divisibility problems.  
 
Example 6. (1988 IMO) Let a and b positive 
integers such that ab+1 divides a2+b2. 
Show that (a2+b2)/(ab+1) is square of an 
integer. 
 
Solution. Let k = (a2+b2)/(ab+1). Assume 
there is a case k is an integer, but not a 
square. Among all such cases, consider the 
case when max{a,b} is least possible. Note 
a=b implies 0 < k = 2a2/(a2+1) < 2, which 
implies k=1=12. So in the least case, a≠b, 
say a>b. Now k = (a2+b2)/(ab+1)>0 and it 
can be rewritten as a2−kba+b2−k=0. Note 
k≠b2

 implies a≠0. 
 
      Other than a, let c be the second root of 
x2−kbx+b2−k=0. Then k = (c2+b2)/(cb+1), 
a+c=kb and ac=b2−k. So c=kb−a=(b2−k)/a 
is an integer. Now cb+1=(c2+b2)/k > 0 and 
c=(b2−k)/a≠0 imply c is a positive integer. 
Finally, c = (b2−k)/a < (a2−k)/a < a. Now k 

= (c2+b2)/(cb+1) is an integer, not a 
square and max{b,c} < a = max{a,b}. 
This contradicts max{a,b} is the least. 
 
Example 7. (2007 IMO) Let a and b be 
positive integers. Show that if 4ab−1 
divides (4a2−1)2, then a=b. 
 
Solution. We can consider a as variable 
and b as constant to do a division as in 
example 2, but a nicer way is as follows: 
from (4a2−1)b=a(4ab−1)+(a−b), we get 
 

,)()14()14( 2222 baabJba   
 

where J=a2(4ab−1)+2a(a−b). Observe 
that gcd(b2,4ab−1) =1 (otherwise prime 
p | gcd(b2,4ab−1) would imply p|b and 
p|4ab− (4ab−1)=1). Hence,  
 

4ab−1|(4a2−1)2 ⇔ 4ab−1| (a−b)2. 
 
Now k= (a−b)2/(4ab−1) > 0 and it can be 
rewritten as a2−(4k+2)ba+b2+k=0.  
 
      Assume there exists (a,b) such that k 
is an integer and a≠b, say a>b.  Among 
all such cases, consider the case when 
a+b is least possible.  
 
       Other than a, let c be the second 
root of x2−(4k+2)bx+b2+k=0. Then k = 
(c−b)2/(4cb−1), a+c = (4k+2)b and ac = 
b2+k. So c = (4k+2)b−a = (b2+k)/a is a 
positive integer. So (c,b) is another case 
k is an integer. Since a+b is least 
possible, we would have c ≥ a > b. Now 
c = (b2+k)/a ≥ a leads to k ≥ a2−b2. Then 
 

(a−b)2 = k(4ab−1) ≥ (a2−b2)(4ab−1). 
 
Canceling a−b on both sides, we get 
 

a−b ≥  (a+b)(4ab−1) > a, 
 
a contradiction. 
          _____________________ 
 
     The next example is short and cute. 
 
Example 8. (2005 IMO Shortlisted 
Problem) Let a and b be positive 
integers such that an+n divides bn+n for 
every positive integer n. Show that a=b. 
 
Solution. Assume a≠b. For n = 1, we 
have a+1|b+1 and so a < b. Let p be a 
prime greater than b. Then let n = 
(a+1)(p−1)+1. By Fermat’s little 
theorem, a n =(a p−1) a+1a≡a (mod p). 

 
    So an+n ≡ a+n = (a+1)p ≡ 0 (mod p). 
Then p | an+n | bn+n. By Fermat’s little 
theorem,  
 

0≡bn+n=(bp−1)a+1b+n≡b−a (mod p), 
 
which contradicts 0 < a < b < p. 
 
                                 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is January 7, 2016. 
  
Problem 476.  Let p be a prime number. 
Define sequence an by a0=0, a1=1 and 
ak+2=2ak+1−pak. If one of the terms of 
the sequence is −1, then determine all 
possible value of p. 
 
Problem 477. In ΔABC, points D, E 
are on sides AC, AB respectively. Lines 
BD, CE intersect at a point P on the 
bisector of ∠BAC.  
 
Prove that quadrilateral ADPE has an 
inscribed circle if and only if AB=AC.  
 
Problem 478. Let a and b be a pair of 
coprime positive integers of opposite 
parity. If a set S satisfies the following 
conditions: 
 
(1) a, b ∈S; 
(2) if x,y,z∈S, then x+y+z∈S, 
 
then prove that every positive integer 
greater than 2ab belongs to S. 
 
Problem 479. Prove that there exists 
infinitely many positive integers k such 
that for every positive integer n, the 
number k2n+1 is composite. 
 
Problem 480. Let m, n be integers with 
n > m > 0. Prove that if 0 < x < π/2, then    
 
        2|sinnx−cosnx| ≤ 3|sinmx−cosmx|. 
 
 

***************** 
Solutions 

**************** 
 
Problem 471. For n ≥ 2, let A1 , A2, …, 
An be positive integers such that Ak≤k 
for 1 ≤ k ≤ n. Prove that A1+A2+⋯+An is 
even if and only if there exists a way of 
selecting + or – signs such that 
 

A1 ± A2 ± ⋯ ± An = 0. 
 
Solution. Adithya BHASKAR 
(Atomic Energy School 2, Mumbai, 
India), Jon GLIMMS and Toshihiro 
SHIMIZU (Kawasaki, Japan). 

 
If A1 ± A2 ± ⋯ ± An = 0, then using Ai ≡ 

±Ai (mod 2), we get A1+A2+⋯+An ≡ 0 
(mod 2). Hence A1+A2+⋯+An is even. 
 
Conversely, we will prove by induction 
that for t from n to 1 that there exists a way 
of selecting signs so that 
 

0 ≤ St = ±At±At+1±⋯±An ≤ t. 
 

The case t=n is 0 < An ≤ n. Suppose the 
case t=k is true, that is  
 

0 ≤ Sk = ±Ak±Ak+1±⋯±An ≤ k. 
 
If Ak−1≤Sk, then let Sk−1= −Ak−1+Sk and we 
have 0≤ Sk−1 = Sk − Ak−1 ≤ k−1. If Ak−1>Sk, 
then let Sk−1=Ak−1−Sk (here −Sk means 
reversing all the signs of Sk) and we have 
0≤ Sk−1≤Ak−1≤k−1. This completes the 
induction. 
 
The case t=1 gives us 0 ≤ ±A1±A2±⋯±An 

≤ 1. As ±A1±A2±⋯±An is an even integer, 
±A1±A2±⋯±An =0. 
 

Problem 472. There are 2n distinct points 
marked on a line, n of them are colored 
red and the other n points are colored blue. 
Prove that the sum of the distances of all 
pairs of points with same color is less than 
or equal to the sum of the distances of all 
pairs of points with different color. 
 
 
Solution. Jon GLIMMS, Toshihiro 
SHIMIZU (Kawasaki, Japan) and Raul 
A. SIMON (Chile). 
 
Let the points be on the real axis with red 
points having coordinates x1<x2<⋯<xn 
and the blue points having coordinates 
y1<y2<⋯<yn. Let Sn denote the sum of 
distances of all pairs of points with same 
color and Dn denote the sum of distances 
of all pairs of points with different color. 
We will prove Si≤Di for all i by induction. 
Now S1=0≤|x1−y1|=D1. Suppose Sn≤Dn. 
For case n+1,  
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Then Sn+1−Dn+1≤Sn−Dn≤0. So Sn+1≤Dn+1.  
 
Problem 473. Determine all functions f: 
ℝ → ℝ such that  for all x,y∈ℝ, 
 

f(x) f(y f(x) − 1) = x2f(y) − f(x). 
 

Solution. Coco YAU (Pui Ching Middle 
School). 
  
The zero function is a solution. Suppose f 
is a solution that is not the zero function. 
Then there exists a∈ℝ such that f(a)≠0. 

Denote the functional equation by (*). 
Setting x=0 in (*), we get  
 

f(0)( f (yf(0)−1) +1 )=0. 
 

If  f(0) ≠ 0, then f (yf(0)−1) = −1. Since 
{yf(0)−1: y∈ℝ}=ℝ, we can see f is the 
constant function −1. Then (*) with 
x=1 yields (−1)2 = −12+1, which is a 
contradiction. So f(0)=0. 
 
Now setting x=a, y=0 in (*), we can get  

 
f(−1) = −1. 

 
Also, if f(b)=0, then setting x=b and 
y=a, we get b=0. Hence,  
 

f(x) = 0 ⇔ x = 0. 
 

Next by setting x=y=1 in (*), we get 
f(1)f(f(1)−1)=0 ⇔ f(1)−1=0 ⇔ f(1)=1. 
 
Setting x=1 in (*), we get 
 
                   f(y−1)=f(y) −1.                (1) 
 
Applying (1) to f(yf(x)−1) in (*), we can 
simplify (*) to 
 
                f(x) f(yf(x)) = x2 f(y).                (2) 

 
Setting x=−1 in (2), we get −f(−y)=f(y). 
So f is an odd function. 
 
Applying induction to (1), we get for n 
= 1,2,3,…,   
                             
                f(y−n) =  f(y)−n.               (3) 
 
Setting y=0, this gives f(−n)= −n. As f 
is odd, we get f(n)=n for all integers n.  
Setting x=n in (2), we get  
 
                   f(ny) = nf(y).                  (4) 
 
Setting y=1/n and y=1/m we get 
1=nf(1/n) and f(n/m)=nf(1/m)=n/m. So 
f(x) = x for all rational x. 
 
Setting y=1 in (2), we get  
 
                   f(x) f( f(x)) = x2.             (5) 
 
Setting x,y to be f(x) in (2), we also get 

 
f(f(x)) f( f(x) f(f(x) ) = f(x)2 f(f(x)).  

 
Cancelling f(f(x)) on both sides, we get 

 
f(x)2 = f( f(x) f(f(x))) = f (x2), 

 
where the second equality follows 
from applying f to both sides of (5). 
Then we see w>0 implies f(w)>0. 
 
For irrational w > 0, assume f(w) > w. 
Take rational q=n/m such that m>0 and 
f(w) > q > w. We have m(q−w) > 0. So 
f(n−mw) = f(m(q−w)) > 0. As f is odd, 
using (4) and (3), we get 
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mf(w)−n = f(mw)−n = f(mw−n) < 0, 

 
which contradicts f(w) > q. Similarly, 
f(w) < w will lead to a contradiction. 
Therefore, f(w)=w for all w and we can 
check (*) holds in this case.  
 
Other commended solvers: Toshihiro 
SHIMIZU (Kawasaki, Japan). 
 
Problem 474. Quadrilateral ABCD is 
convex and lines AB, CD are not 
parallel. Circle Γ passes through A, B 
and side CD is tangent to Γ at P. Circle 
L passes through C, D and side AB is 
tangent to L at Q. Circles Γ and L 
intersect at E and F. Prove that line EF 
bisects line segment PQ if and only if 
lines AD, BC are parallel. 
 
Solution. Jon GLIMMS and 
Toshihiro SHIMIZU (Kawasaki, 
Japan). 


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Let EF meet PQ at K. Extend PQ to 
meet Γ and L at S and T respectively. 
Let lines AB, CD meet at R. We have   
    
     RP2=RA·RB and RQ2=RC·RD.  (*) 
 
By the intersecting chord theorem, we 
have KP·KS=KE·KF=KQ·KT. Then 
KP(KQ+QS) = KQ(KP+PT). Cancel 
KP·KQ. We have 
                   KP·QS= KQ·PT. 
Then  
              KP=KQ  
        ⇔ QS=PT  
       ⇔ PQ·QS=QP·PT 
       ⇔ AQ·QB=DP·PC. 
 
Using AQ=RQ−RA, QB=RB−RQ, 
DP=RP−RD, PC=RC−RP and (*), we 
get 
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Problem 475. Let a, b, n be integers 
greater than 1. If bn−1 is a divisor of a, 
then prove that in base b, a has at least 
n digits not equal to zero.  
 

Solution. Jon GLIMMS and Toshihiro 
SHIMIZU (Kawasaki, Japan). 
 
Among all numbers that are multiples of 
bn−1, suppose the least number of nonzero 
digits in base b of these numbers is s. Let 
A be one of these numbers with least digit 
sum, say 
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where n1 > n2 > ⋯ > ns ≥ 0 and 1 ≤ ai < b 
for i=1,2,⋯,s.  
 
Assume there are i,j such that 1≤i<j≤s 
and ni≡nj≡r (mod n) with 0≤ r≤ n−1. 
Then consider  
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From bn ≡ 1 (mod bn−1), we get B ≡ 0 
(mod bn−1). If ai+aj<b, then the number 
of nonzero digits of B in base b is s−1, 
contradicting the choice of A. So we must 
have b ≤ ai+aj < 2b.  Let ai+aj = b+q, 
where 0≤q<b. Then  
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Then the digit sum of B is  
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which is the digit sum of A. This 
contradicts the choice of A. So n1, n2, …, 
ns(mod n) are pairwise distinct. Then s≤n. 
 
Assume s<n. Then let ni≡ri (mod n) with 
0≤ri<n and consider 
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Since ),1(mod  nrn bbb ii so C is a 
multiple of bn−1. Now s<n implies 
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contradiction. Therefore, s = n. 
 
Other commended solvers: Mark LAU 
Tin Wai (Pui Ching Middle School) and 
LEUNG Kit Yat (St. Paul’s College, 
Hong Kong). 
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Problem 4. Prove that among any 20 
consecutive positive integers there 
exists an integer d such that for each 
positive integer n we have the 
inequality 

2

5
}{ dndn  

where {x} denotes the fractional part of 
the real number x. The fractional part 
of a real number x is x minus the 
greatest integer less than or equal to x. 
 
 

 
 
Divisibility Problems 
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Solution of Exercise 1. Let a=qb+r with 
0 ≤r ≤ b−1. Then  
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So we need to find when n b−1 | nr+1. If 
b=1, then r=0 and we get n=2,3. If b>1, 
then n>1 and nb ≥ 4. For nb>4, we have 
0<nr+1≤nb−1+1≤nb/2 +1<nb−1, hence 
no solution. For nb≤4, we have three 
cases, namely (n,b,a) = (2,2,2k−1),  
(3,1,k) and (2,1,k), where k=1,2,3,…. 
 
Solution of Exercise 2. For x<3 or p<3, 
the solutions are (x,p)=(2,2) and 
(1,prime). For x and p ≥3, since p is odd, 
(p−1)x+1 is odd, so x is odd. Let q be 
the least prime divisor of x, which must 
be odd. We have q | x | xp−1 | (p−1)x+1. 
So (p−1)x≡−1 (mod q). By Fermat’s 
little theorem, (p−1)q−1≡1 (mod q). By 
the definition of q, we have gcd(x,q−1) 
=1. Then there are integers a,b such 
that ax=b(q−1)+1 is odd. Then a is odd. 
Now 
 
p−1≡(p−1)b(q−1)+1=(p−1)ax≡−1(mod q) 
 
implies q|p. So q=p. Since x is odd, p = 
q | x and the problem require the 
condition x≤2p , we must have x=p for 
the cases x,p ≥ 3. Observe that 
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for some m. Then p−1≤2. So x=p=3 
is the only solution. 
 

 


