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Olympiad Corner 
 
Below are the problems of the 2016 
IMO Team Selection Contest I for 
Estonia. 

 
Problem 1. There are k heaps on the 
table, each containing a different 
positive number of stones. Jüri and 
Mari make moves alternatively; Jüri 
starts. On each move, the player 
making the move has to pick a heap 
and remove one or more stones in it 
from the table; in addition, the player is 
allowed to distribute any number of the 
remaining stones from that heap in any 
way between other non-empty heaps. 
The player to remove the last stone 
from the table wins. For which positive 
integers k does Jüri have a winning 
strategy for any initial state that 
satisfies the conditions? 
 
Problem 2. Let p be a prime number. 
Find all triples (a,b,c) of integers (not 
necessarily positive) such that  
 

abbcca = p.  
  
Problem 3. Find all functions f:ℝ→ℝ 
satisfying the equality f(2x+2y) = 
2yf( f(x) ) f(y) for every x,y∈ℝ. 
 

 
                                     (continued on page 4) 
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      This year Hong Kong served as the 
host of the International Mathematical 
Olympiad (IMO), which was held from 
July 6 to 16. Numerous records were 
set. Leaders, deputy leaders and 
contestants from 109 countries or 
regions participated in this annual event. 
A total of 602 contestants took part in 
this world class competition. Among the 
contestants, 71 were female and 531 
were male.  
 
      After the two days of competition on 
July 11 and 12, near 700 contestants and 
guides from more than 100 countries or 
regions went to visit Mickey Mouse at 
the Hong Kong Disneyland for an 
excursion. That was perhaps the 
happiest moment in the IMO. 
 
        For Hong Kong, due to the hard 
work of the 6 team members and the 
strong coaching by Dr. Leung Tat Wing, 
Dr. Law Ka Ho and our deputy leader 
Cesar Jose Alaban along with the 
support of the many trainers and former 
team members, the team received 3 
gold, 2 silver and 1 bronze medals, 
which was the best performance ever. 
Also, for the first time since Hong Kong 
participated in the IMO, we received a 
top 10 team ranking.   
 
    The Hong Kong IMO team members 
(in alphabetical order) are as follows: 
 
(HKG1) Cheung Wai Lam, Queen 
Elizabeth School, Silver Medalist, 
 
(HKG2)  Kwok Man Yi, Baptist Lui 
Ming Choi Secondary School, Bronze 
Medalist, 
 
(HKG3) Lee Shun Ming Samuel, CNEC 
Christian College, Gold Medalist, 
 
(HKG4) Leung Yui Hin Arvin, 
Diocesan Boys’ School, Silver 
Medalist, 
 

 
(HKG5)  Wu John Michael, Hong Kong 
International School, Gold Medalist and 
 
(HKG 6) Yu Hoi Wai, La Salle College, 
Gold Medalist. 
 
        The top 10 teams in IMO 2016 are 
(1) USA, (2) South Korea, (3) China, (4) 
Singapore, (5) Taiwan, (6) North Korea, 
(7) Russia and UK, (9) Hong Kong and 
(10) Japan.  
 
         The cutoffs for gold, silver and 
bronze medals were 29, 22 and 16 
marks respectively. There were 44 gold, 
101 silver, 135 bronze and 162 
honourable mentions awardees.   

  
         Next, we will look at the problems 
in IMO 2016. 
 
Problem 1. Triangle BCF has a right 
angle at B. Let A be the point on line CF 
such that FA=FB and F lies between A 
and C. Point D is chosen such that 
DA=DC and AC is the bisector of 
∠DAB. Point E is chosen such that 
EA=ED and AD is the bisector of 
∠EAC. Let M be the midpoint of CF. 
Let X be the point such that AMXE is a 
parallelogram (where AM||EX and 
AE||MX). Prove that lines BD, FX, and 
ME are concurrent. 
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From the statement of the problem, we 
get a whole bunch of equal angles as 
labeled in the figure. We have ΔABF∼
Δ ACD. Then AB/AC=AF/AD. With, 
∠BAC= θ =∠FAD, we get ΔABC ∼
ΔAFD.  
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Then ∠AFD =∠ABC = 90°+θ = 180°− 

½∠AED. Hence, F is on the circle with 
center E and radius EA. Then EF=EA 
=ED and ∠EFA =∠EAF = 2θ =∠BFC. 
So B, F, E are collinear. Also, ∠EDA= 
∠MAD implies ED||AM. Hence E,D,X 
are collinear. From M is midpoint of CF 
and ∠CBF=90°, we get MF=MB. Next 
the isosceles triangles EFA and MFB are 
congruent due to ∠EFA=∠MFB and 
AF=BF. Then BM=AE=XM and BE = 
BF+FE=AF+FM=AM=EX. SoΔEMB 
≅ΔEMX. As F and D lie on EB and EX 
respectively and EF=ED, we see lines 
BD and XF are symmetric respect to EM. 
Therefore, BD, XF, EM are concurrent. 
 
Problem 2. Find all positive integer n 
for which each cell of an n×n table can 
be filled with one of the letters I, M and 
O in such a way that: 
 
∙ in each row and each column, one 
third of the entries are I, one third are M 
and one third are O; and 
 
∙ in any diagonal, if the number of 
entries on the diagonal is a multiple of 
three, then one third of the entries are I, 
one third are M and one third are O. 
 
Note: The rows and columns of an n×n 
table are each labeled 1 to n in a natural 
order. Thus each cell corresponds to a 
pair of positive integers (i, j) with 1≤ i, 
j ≤ n. For n > 1, the table has 4n−2 
diagonals of two types. A diagonal of 
the first type consists of all cells (i, j) 
for which i+j is a constant, and a 
diagonal of the second type consists of 
all cells (i,j) for which i−j is a constant. 
 
For n=9, it is not difficult to get an 
example such as 
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For n=9m, we can divide the n×n table 
into m×m blocks, where in each block 
we use the 9×9 table above.  
 
Next suppose a n×n table satisfies the 
conditions. Then n is a multiple of 3, 
say n=3k. Divide the n×n into k×k 
blocks of 3×3 tables. Call the center 
entry of the 3×3 tables a vital entry and 
call any row, column or diagonal 
passing through a vital entry a vital line. 
The trick here is to do double counting 

on the number N of all ordered pairs (L,c), 
where L is a vital line and c is an entry on 
L that contains the letter M. On one hand, 
there are k occurrences of M in each vital 
row and each vital column. For vital 
diagonals, there are  
 

1+2+⋯+(k−1)+k+(k−1)+⋯+2+1=k2  
 

occurrences of M. So N=4k2. On the other 
hand, there are 3k2 occurrences of M in the 
whole table. Note each entry belongs to 
exactly 1 or 4 vital lines. Hence N ≡ 3k2 
(mod 3), making k a multiple of 3 and n a 
multiple of 9. 
 
Problem 3. Let P=A1A2…Ak be a convex 
polygon in the plane. The vertices A1, 
A2, …, Ak have integral coordinates and lie 
on a circle. Let S be the area of P. An odd 
positive integer n is given such that the 
squares of the side lengths of P are 
integers divisible by n. Prove that 2S is an 
integer divisible by n. 
 
        This is the hardest problem. 548 out 
of 602 contestants got 0 on this problem.  
 
         That 2S is an integer follows from 
the well-known Pick’s formula, which 
asserts S=I+B/2−1, where I and B are the 
numbers of interior and boundary points 
with integral coordinates respectively.  
 
Below we will outline the cleverest 
solution due to Dan Carmon, the leader of 
Israel. It suffices to consider the case n=pt 
with p prime, t≥1. By multiplying the 
denominator and translating, we may 
assume the center O is a point with 
integral coordinates, which we can move 
to the origin. We can further assume the x, 
y coordinates of the vertices are coprime 
and there exists i with xi, yi not both 
multiples of p. Then we make two claims: 
 
(1) For ΔABC with integral coordinates, 
suppose n | AB2, BC2 and let S be its area. 
Then n | 2S if and only if n | AC2. 
 
(2) For those i such that xi, yi not both 
multiples of p, let Δ be twice the area of 
triangle Ai−1AiAi+1. Then pt divides Δ. 
 
For (1), note that BCABS 2 , 
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
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and 22
22

BCABBCBABCAB   ≡ 0 

(mod n2).  
 
For (2), assume pt does not divide Δ . 
Note O is defined by the intersection of 
the perpendicular bisectors, which can be 
written as the following system of vectors: 
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Using the fact that pt does not divide Δ
=   |u1v2−u2v1|, one can conclude that xi, 
yi are divisible by p by Cramer’s rule. 
The rest of the solution follows by 
induction on the number of sides of the 
polygon and the two claims.  
 
Problem 4. A set of positive integers is 
called fragrant if it contains at least 
two elements and each of its elements 
has a prime factor in common with at 
least one of the other elements. Let 
P(n)=n2+n+1. What is the least 
possible value of the positive integer b 
such that there exists a non-negative 
integer a for which the set  
 

{P(a+1), P(a+2), …, P(a+b)} 
 
is fragrant? 
 
  One can begin by looking at facts like   
1. gcd(P(n),P(n+1))=1 for all n 
2. gcd(P(n),P(n+2))=1 for n≢2(mod 7)  
3. gcd(P(n),P(n+2))=7 for n≡2(mod 7) 
4. gcd(P(n),P(n+3))=1 for n≢1(mod 3) 
5. 3|gcd(P(n),P(n+3)) for n≡1(mod 3). 
 
Assume P(a), P(a+1), P(a+2), P(a+3), 
P(a+4) is fragrant. By 1, P(a+2) is 
coprime to P(a+1) and P(a+3). Next 
assume gcd(P(a),P(a+2)) > 1. By 3, a≡2 
(mod 7). By 2, gcd(P(a+1),P(a+3))=1. 
In order for the set to be fragrant, we 
must have both gcd(P(a),P(a+3)) and 
gcd(P(a+1),P(a+4)) be greater than 1. 
By 5, this holds only when a and a+1 ≡ 1 
(mod 3), which is a contradiction. 
 
For a fragrant set with 6 numbers, we 
can use the Chinese remainder theorem 
to solve the system a ≡ 7 (mod 19), 
a+1≡2 (mod 7) and a+2≡1 (mod 3). For 
example, a=197. By 3, P(a+1) and 
P(a+3) are divisible by 7. By 5, P(a+2) 
and P(a+5) are divisible by 3. Using 
19|P(7)=57 and 19|P(11)=133, we can 
check 19|P(a) and 19|P(a+4). Then P(a), 
P(a+1), P(a+2), P(a+3), P(a+4), P(a+5) 
is fragrant. 
 
Problem 5. The equation 

    (x−1)(x−2)⋯(x−2016) 

                       = (x−1)(x−2)⋯(x−2016)  
 
is written on the board, with 2016 
linear factors on each side. What is the 
least possible value of k for which it is 
possible to erase exactly k of these 
4032 linear factors so that at least one 
factor remains on each side and the 
resulting equation has no real 
solutions? 
                                 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is October 21, 2016. 
  
Problem 491. Is there a prime number 
p such that both p3+2008 and p3+2010 
are prime numbers? Provide a proof. 
 
Problem 492. In convex quadrilateral 
ADBE, there is a point C within ΔABE 
such that  
 
∠EAD+∠CAB=180°=∠EBD+∠CBA. 

 
Prove that ∠ADE=∠BDC. 
 
Problem 493. For n ≥4, prove that 
xn−xn−1−xn−2−⋯−x−1 cannot be 
factored into a product of two 
polynomials with rational coefficients, 
both with degree greater than 1. 
 
Problem 494.  In a regular n-sided 
polygon, either 0 or 1 is written at each 
vertex. By using non-intersecting 
diagonals, Bob divides this polygon 
into triangles. Then he writes the sum 
of the numbers at the vertices of each 
of these triangles inside the triangle. 
Prove that Bob can choose the 
diagonals in such a way that the 
maximal and minimal numbers written 
in the triangles differ by at most 1.  
 
Problem 495. The lengths of each side 
and diagonal of a convex polygon are 
rational. After all the diagonals are 
drawn, the interior of the polygon is 
partitioned into many smaller convex 
polygonal regions. Prove that the sides 
of each of these smaller convex 
polygons are rational numbers. 
 

***************** 
Solutions 

**************** 
 
Problem 486. Let a0=1 and  
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for n=1,2,3,…. Prove that 2n+2an > π for 
all positive integers n. 
 

Solution. Charles BURNETTE 
(Graduate Student, Drexel University, 
Philadelphia, PA, USA), Prithwijit DE 
(HBCSE, Mumbai, India), FONG Ho 
Leung (Hoi Ping Chamber Secondary 
School), Mustafa KHALIL (Instituto 
Superior Tecnico, Syria), Corneliu 
MĂNESCU-AVRAM (Transportation 
High School, Ploieşti, Romania), Toshihiro 
SHIMIZU (Kawasaki, Japan), WONG 
Yat and YE Jeff York, Nicuşor ZLOTA 
(“Traian Vuia” Technical College, 
Focşani, Romania). 

 
Let an=tan θn, where 0 ≤ θn < π/2. Then 
a0=1 implies θ0= π/4. By the recurrence 
relation of an, we get 
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which is the desired inequality.  
 

Problem 487. Let ABCD and PSQR be 
squares with point P on side AB and 
AP>PB.  Let point Q be outside square 
ABCD such that AB⊥PQ and AB=2PQ. 
Let DRME and CSNF be squares as shown 
below. Prove Q is the midpoint of line 
segment MN. 
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Solution. FONG Ho Leung (Hoi Ping 
Chamber Secondary School), Tran My 
LE (Sai Gon University, Ho Chi Minh 
City, Vietnam) and Duy Quan TRAN 
(University of Medicine and Pharmacy, 
Ho Chi Minh City, Vietnam), Corneliu 
MĂNESCU-AVRAM (Transportation 
High School, Ploieşti, Romania),  
Toshihiro SHIMIZU (Kawasaki, Japan) 
and Mihai STOENESCU (Bischwiller, 
France), WONG Yat and YE Jeff York. 
 
Let Q be the origin, P be (0,−2) and 
B=(x,−2).  Since AB⊥PQ and PSQR is a 
square, so S=(1,−1). Using AB = 2PQ = 4, 
we get C=(x,−6). Since CS=NS and 
∠CSN=90°, we get N = (6,2−x).  
 
      Similarly, R=(−1,−1), D=(x−4,−6) and 
∠DRM=90°, so M = (−6, x−2). Then the 
midpoint of MN is (0,0) = Q. 
 
Other commended solvers: Andrea 
FANCHINI (Cantù, Italy), Apostolos 
MANOLOUDIS (4 High School of 

Korydallos, Piraeus, Greece) and 
Vijaya Prasad NALLURI (Retired 
Principal, AP Educational Service, 
India). 
 
Problem 488. Let ℚ denote the set of 
all rational numbers. Let f: ℚ →{0,1} 
satisfy f(0)=0, f (1)=1 and the condition   
f (x) = f (y) implies f (x) = f ((x+y)/2). 
Prove that if x≥1, then f (x) = 1. 

 
Solution. Jon GLIMMS. 
  
We first show f(n)=1 for n=1,2,3,… by 
induction. The case n=1 is given. For 
n>1, suppose case n=k−1 is true. If f(k) 
= 0 = f(0), then f(k) = f((0+k)/2) = 
f((1+(k−1))/2) = f(k−1) = 1, which is a 
contradiction.  
 
    Assume there exists rational r > 1 
such that f(r)=0. Suppose r=s/t, where 
s, t are coprime positive integers. 
Define g:ℚ →{0,1} by g(x)=1−f(w(x)), 
where w(x)=(r−[r])x+[r]. Observe that 
the graph of w is a line. So w((x+y)/2) 
= (w(x)+w(y))/2.  
 
      If g(x)=g(y), then f(w(x))=f(w(y)), 
which implies  
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So g(x)=g((x+y)/2). Then g(n)=1 by 
induction as f above. Finally, s > t 
implies w(t)= (r−[r])t+[r]=s−[r]t+[r] is 
a positive integer. Then g(t) = 1−f(w(t)) 
= 0, contradiction. 
 
Other commended solvers: Toshihiro 
SHIMIZU (Kawasaki, Japan), 
WONG Yat and YE Jeff York, 
 
Problem 489. Determine all prime 
numbers p such that there exist positive 
integers m and n satisfying p=m2+n2 
and m3+n3−4 is divisible by p. 
 
Solution. Prithwijit DE (HBCSE, 
Mumbai, India), Jon GLIMMS, 
WONG Yat and YE Jeff York. 
 
Clearly, the case p=2 works. For such 
prime p > 2, we get m>1 or n>1. Now 
we have 
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Observe that p < p+2((m−1)(n−1)+1)  
< p+2mn ≤ p+m2+n2 = 2p. Then p 
divides m+n+2. So m2+n2 ≤ m+n+2, 
i.e. (m−1/2)2+(n−1/2)2≤(3/2)2. Then 



Mathematical Excalibur, Vol. 20, No. 5, Aug. 16 – Sep. 16 Page 4

 
(m,n)=(1,2) or (2,1) and  m3+n3−4 = 5 = 
p. So p = 2 and 5 are the solutions. 
 
Other commended solvers: Corneliu 
MĂNESCU-AVRAM (Transportation 
High School, Ploieşti, Romania) and 
Toshihiro SHIMIZU (Kawasaki, 
Japan). 
 
Problem 490. For a parallelogram 
ABCD, it is known that ΔABD is acute 
and AD=1. Prove that the unit circles 
with centers A, B, C, D cover ABCD if 
and only if  

.sin3cos BADBADAB   
 
Solution. Corneliu MĂNESCU- 
AVRAM (Transportation High School, 
Ploieşti, Romania) and Toshihiro 
SHIMIZU (Kawasaki, Japan). 
 
We first show that the unit circles with 
centers A, B, C, D cover ABCD if and 
only if the circumradius R of ΔABD is 
not greater than 1. Since ΔABD is 
acute, its circumcenter O is inside the 
triangle. Then at least one of B or D is 
closer than (or equal to) C to O, since 
the region in ΔCDB that is closer to C 
than both B and D is the quadrilateral 
CMO’N, where M is the midpoint of 
CD, O’ is the circumcenter of ΔCDB 
and N is the midpoint of BC. So for any 
point P in ΔABD, min{PA,PB,PD} 
≤PC and the maximal value of 
min{PA,PB,PD} is attained when P=O. 
So the unit circles with centers A, B, C, 
D cover ABCD is equivalent to they 
cover O, which is equivalent to R≤1.  
 
Let α = ∠BAD, β = ∠ADB and γ = 
∠DBA. By sine law, AB/sin β=1/sin γ = 
2R. Then, we have  
 

.sincotcos

sin

sincoscossin

sin

)sin(

sin

sin

















AB

 

 
Moreover, R≤1 is equivalent to 1 ≥ 
1/(2sin γ) or sin γ≥1/2=sin 30° or γ≥ 
30° or cot γ ≤ .3  Therefore, it is 
equivalent to AB ≤ cos α + 3 sin α. 

 
Other commended solvers: WONG 
Yat and YE Jeff York. 
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Problem 4. Prove that for any positive 
integer n, .432 13 nnn    
 

Problem 5. Let O be the circumcenter of 
the acute triangle ABC. Let c1 and c2 be 
the circumcircles of triangles ABO and 
ACO. Let P and Q be points on c1 and c2 
respectively, such that OP is a diameter of 
c1 and OQ is a diameter of c2. Let T be the 
intersection of the tangent to c1 at P and 
the tangent to c2 at Q. Let D be the second 
intersection of the line AC and the circle c1. 
Prove that points D, O and T are collinear. 

 
Problem 6. A circle is divided into arcs of 
equal size by n points (n≥1). For any 
positive integer x, let Pn(x) denote the 
number of possibilities for coloring all 
those points, using colors from x given 
colors, so that any rotation of the coloring 
by i·360°/n, where i is a positive integer 
less than n, gives a coloring that differs 
from the original in at least one point. 
Prove that the function Pn(x) is a 
polynomial with respect to x. 
 

 
 
IMO 2016 
 
                      (Continued from page 2) 
 
For this problem, observe we need to 
erase at least 2016 factors. Consider 
erasing all factors x−k with k≡2,3 (mod 4) 
on the left and x−k with k≡0,1 (mod 4) on 
the right to get the equation 
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 
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      There are 4 cases we have to check. 
 
(1) For x=1,2,⋯,2016, one side is 0 and 
the other nonzero.  
 
(2) For x∈(4k+1,4k+2)∪(4k+3,4k+4) 
where k=0,1,…,503, if j=0,1,…,503 and 
j≠k, then (x−4j−1)(x−4j−4) >0, but if j=k, 
then (x−4k−1)(x−4k−4) < 0 so that the left 
side is negative. However, on the right 
side, each product (x−4j−2)(x−4j−3) is 
positive, which is a contradiction.  
 
(3) For x<1 or x>2016 or x∈(4k,4k+1), 
where k=0,1,…,503, dividing the left side 
by the right, we get 
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Note (x−4j−2)(x−4j−3)>2 for j=0,1,…, 
503. Then the right side is less than 1, 
contradiction. 
 
(4) For x∈(4k+2,4k+3), where k = 0, 1, …, 
503, dividing the left side by the right, we 
get 
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The first two factors on the right are 
greater than 1 and the factor in the 
parenthesis is greater than 1, which is a 
contradiction. 
 
Problem 6. There are n>2 line segments 
in the plane such that every two 
segments cross, and no three segments 
meet at a point. Geoff has to choose an 
endpoint of each segment and place a 
frog on it, facing the other endpoint. 
Then he will clap his hand n−1 times. 
Every time he claps, each frog will 
immediately jump forward to the next 
intersection point on its segment. Frogs 
never change the direction of their 
jumps. Geoff wishes to place the frogs 
in such a way that no two of them will 
ever occupy the same intersection point 
at the same time.   
(a) Prove that Geoff can always fulfill 
his wish if n is odd. 
 
(b) Prove that Geoff can never fulfill his 
wish if n is even. 
 
Unlike previous years, this problem 6 
was not as hard as problem 3. There 
were 474 out of 602 contestants, who 
got 0 on this problem. 
 
Take a disk containing all segments. 
Extend each segment to cut the 
boundary of the disk at points Ai, Bi.  
 
(a) For odd n, go along the boundary and 
mark all these points ‘in’ and ‘out’ 
alternately. For each AiBi rename the ‘in’ 
point as Ai and ‘out’ point as Bi.  Geoff 
can put a frog on each of the ‘in’ points. 
Let AiBi∩AkBk=P. There are n−1 points 
on the open segment AiBi for every i. On 
the open arc AiAk, there is an odd 
number of points due to the alternate 
naming of the boundary points. Each of 
the points on open arc AiAk is a vertex of 
some AxBx, which intersects a unique 
point on either open segment AiP or AkP. 
So the number of points on open 
segments AiP and AkP are of opposite 
parity. Then the frogs started at Ai and Ak 
cannot meet at P. 
 
(b) For even n, let Geoff put a frog on a 
vertex of a AiBi segment, say the frog is 
at Ai, which is the ‘in’ point and Bi is the 
‘out’ point. As n is even, there will be 
two neighboring points labeled Ai and Ak. 
Let AiBi∩AkBk=P. Then any other 
segment AmBm intersecting one of the 
open segments AiP or AkP must intersect 
the other as well. So the number of 
intersection points by the other 
segments on open segments AiP and AkP 

are the same. Then the frogs started at Ai 
and Ak will meet at P. 


