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Olympiad Corner 
 
Below are the problems of the Final 
Round of the 65th Czech and Slovak 
Math Olympiad (April 4-5, 2016).  

 
Problem 1. Let p>3 be a prime. Find 
the number of ordered sextuples 
(a,b,c,d,e,f) of positive integers, whose 
sum is 3p, and all the fractions 
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are integers. 
 
Problem 2. Let r and ra be the radii of 
the inscribed circle and excircle 
opposite A of the triangle ABC. Show 
that if r+ra=|BC|, then the triangle is 
right-angled.  
  
Problem 3. Mathematics clubs are 
very popular in certain city. Any two of 
them have at least one common 
member. Prove that one can distribute 
rulers and compasses to the citizens in 
such a way that only one citizen get 
both (compass and ruler) and any club 
has to his disposal both, compass and 
ruler, from its members. 
 

 
                                     (continued on page 4) 

Miscellaneous Problems  
Kin Y. Li 

     
 
     There are many Math Olympiad 
problems. Some are standard problems 
in algebra or in geometry or in number 
theory or in combinatorics, where there 
are some techniques for solving them. 
Then, there are problems that are not so 
standard, which cross two or more 
categories. In math problem books, they 
go under the category of miscellaneous 
problems. Some of these may arise due 
to curiosity. Then one may need to 
combine different facts to explain them. 
Below are some such problems we hope 
the readers will enjoy.  
 
Example 1 (1995 USA Math Olympiad). 
A calculator is broken so that the only 
keys that still work are the sin, cos, tan, 
sin−1, cos−1, tan−1 buttons. The display 
initially shows 0. Given any positive 
rational numbers q, show that pressing 
some finite sequence of buttons will 
yield q. Assume that the calculator does 
real number calculation with infinite 
precision. All functions are in terms of 
radians. 
 
Solution. We will show that all numbers 
of the form nm / , where m, n are 
positive integers, can be displayed by 
doing induction on k=m+n. (Since r/s = 

,/ 22 sr  these include all positive 
rational numbers.) 
 
       For k=2, pressing cos will display 1. 
Suppose the statement is true for integer 
less than k. Observe that if x is 
displayed, then letting θ=tan−1x, we see 
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So we can display 1/x=tan(cos−1(sin x)). 
Therefore, to display nm /  with 
k=m+n, we may assume m<n. By the 
induction step, since (n-m)+m = n < k, 

mmn /)(   can be displayed. Then 
using  
 

,/cos/)(tan 1 nmandmmn     
 

we can display nm / . This completes 
the induction. 

 
Example 2 (1986 Brazilian Math 
Olympiad). A ball moves endlessly on a 
circular billiard table. When it hits the 
edge it is reflected. Show that if it passes 
through a point on the table three times, 
then it passes through it infinitely many 
times. 
 
Solution. Suppose AB and BC are two 
successive chords of the ball’s path. By 
the reflection law, ∠ABO = ∠OBC. 
Now ΔOAB and ΔOBC are isosceles. 
So ∠AOB = ∠BOC.  Hence, AB =BC. 
Then every chord of the path has the 
same length d.  
 
We now claim that through any given 
point P inside the circle there are at most 
two chords with length d. Let AB and 
CD be a chord containing P, with AP=a 
and CP=b. The power of P with respect 
to the circle is PA·PB=PC·PD, which is 
a(d-a)=b(d-b). Hence, a=b or a+b=d. 
This means that P always divides the 
chord containing it in two segments of 
fixed lengths a and d-a. Now if three 
chords passes through P, the circle with 
center P and radius a would cut the 
circle of the billiard table three times, a 
contradiction.  
 
Thus if the path passes through P more 
than twice, then on two occasions it 
must be moving along the same chord 
AB. That implies ∠AOB is a rational 
multiple of 2π and hence the path will 
traverse AB repeatedly. 
 
Example 3. Is there a way to pack 250 
1×1×4 bricks into a 10×10×10 box? 
 
Solution. Assign coordinate (x,y,z) to 
each of the cells, where x,y,z= 0,1,…,9. 
Let the cell (x,y,z) be given color x+y+z 
(mod 4). Note each 1×1×4 brick contain 
all 4 colors exactly once. If the packing 
is possible, then there are exactly 250 
cells of each color. However, a direct 
counting shows there are 251 cells of 
color 1, a contradiction. So such 
packing is impossible. 
                                  (continued on page 2) 
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Example 4 (2013 Singapore Math 
Olympiad). Six musicians gathered at a 
chamber music festival. At each 
scheduled concert some of the 
musicians played while the others 
listened as members of the audience. 
What is the least number of such 
concerts which would need to be 
scheduled so that every two musicians 
each must play for the other in some 
concert? 
 
Solution. Let the musicians be A,B,C, 
D,E,F. We first show that four concerts 
are sufficient. The four concerts with 
the performing musicians: {A,B,C}, 
{A,D,E}, {B,D,F} and {C,E,F} satisfy 
the requirement. We shall now prove 
that three concerts are not sufficient. 
Suppose there are only three concerts. 
Since everyone must perform at least 
once, there is a concert where two of 
the musicians, say A, B, played. But 
they must also played for each other. 
Thus we have A played and B listened 
in the second concert and vice versa in 
the third. Now C,D,E,F must all 
perform in the second and third 
concerts since these are the only times 
when A and B are in the audience. It is 
not possible for them to perform for 
each other in the first concert. Thus the 
minimum is 4. 
 
Example 5 (1999 Brazilian Math 
Olympiad). Prove that there is at least 
one nonzero digit between the 
1,000,000th and the 3,000,000th 
decimal digits of 2 . 
 
Solution. Let us suppose that all digits 
between the 1,000,000th and the 
3,000,000th  decimal digits of  2  are 
zeros. Then  
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where n is a positive integer and ε > 0 
satisfy  
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By squaring (*), we can get 
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However, the left side is a positive 
integer and the right side is less than 1, 
which is a contradiction. 
   
Example 6 (1995 Russian Math 
Olympiad). Is it possible to fill in the 

cells of a 9×9 table with positive integers 
ranging from 1 to 81 in such a way that the 
sum of the elements of every 3×3 square is 
the same? 
 
Solution. Place 0,1,2,3,4,5,6,7,8 on the 
first, fourth and seventh rows. Place 
3,4,5,6,7,8,0,1,2 on the second, fifth and 
eigth rows. Place 6,7,8,0,1,2,3,4,5 on the 
third, sixth and ninth rows. Then every 
3×3 square contains 0 to 8. Consider this 
table and its 90° rotation. For each cell, fill 
it with the number 9a+b+1, where a is the 
number in the cell originally and b is the 
number in the cell after the table is rotated 
by 90°. By inspection, 1 to 81 appears 
exactly once and every 3×3 square has 
sum 9×36+36+9=369. 
 
Example 7. Can the positive integers be 
partitioned into infinitely many subsets 
such that each subset is obtained from any 
other subset by adding the same integer to 
each element of the other subset? 
 
Solution. Yes. Let A be the set of all 
positive integers whose odd digit 
positions (from the right) are zeros. Let B 
be the set of all positive integers whose 
even digit positions (from the right) are 
zeros. Then A and B are infinite set and the 
set of all positive integers is the union of 
a+B={a+b: b∈B} as a range over the 
element of A. (For example, 12345 = 
2040+10305 ∈ 2040+B.) 
  
Example 8 (2015 IMO Shortlisted 
Problem proposed by Estonia). In 
Lineland there are n≥1 towns, arranged 
along a road running from left to right. 
Each town has a left bulldozer (put to the 
left of the town and facing left) and a right 
bulldozer (put to the right of the town and 
facing right). The sizes of the 2n 
bulldozers are distinct. Every time when a 
right and left bulldozer confront each 
other, the larger bulldozer pushes the 
smaller one off the road. On the other 
hand, the bulldozers are quite unprotected 
at their rears; so if a bulldozers reaches the 
rear-end of another one, the first one 
pushes the second one off the road, 
regardless of their sizes.  
 
Let A and B be two towns, with B being to 
the right of A. We say that town A can 
sweep town B away if the right bulldozer 
of A can move over to B pushing off all 
bulldozers it meets. Similarly, B can 
sweep A away if the left bulldozer of B can 
move to A pushing off all bulldozers of the 
towns on its way. 
 

Prove that there is exactly one town 
which cannot be swept away by any 
other one. 
 
Solution. Let T1, T2,…,Tn be the towns 
enumerated from left to right. Observe 
first that, if town Ta can sweep away 
town Tb, then Ta also can sweep away 
every town located between Ta and Tb. 
 
We prove by induction on n. The case 
n=1 is trivial.  For the induction step, 
we first observe that the left bulldozer 
in T1 and the right bulldozer in Tn are 
completely useless, so we may forget 
them forever. Among the other 2n-2 
bulldozers, we choose the largest one. 
Without loss of generality, it is the right 
bulldozer of some town Tk with k<n. 
 
Surely, with this right bulldozer Tk can 
sweep away all towns to the right of it. 
Moreover, none of these towns can 
sweep Tk away; so they also cannot 
sweep away any town to the left of Tk. 
Thus, if we remove the towns Tk+1, 
Tk+2,…,Tn, none of the remaining 
towns would change its status of being 
(un)sweepable away by the others.  
 
Applying the induction hypothesis to 
the remaining towns, we find a unique 
town among T1,T2,…,Tk which cannot 
be swept away. By the above reasons, it 
is also the unique such town in the 
initial situation. Thus the inductive step 
is established. 
 
Example 9 (1991 Brazilian Math 
Olympiad). At a party every woman 
dances with at least one man, and no 
man dances with every woman. Show 
that there are men M and M’ and 
women W and W’ such that M dances 
with W, M’ dances with W’, but M does 
not dance with W’, and M’ does not 
dance with W. 
 
Solution. Let M be one of the men who 
dance with the maximal number of 
women, W’ one of the women he 
doesn’t dance with, and M’ one of the 
men W’ dances with. If M’ were to 
dance with every woman that M dances 
with, then the maximality of the 
number of women that M dances with 
would be contradicted, so there is a 
woman W that dances with M but not 
with M’.  
 
                                 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is April 15, 2017. 
  
Problem 496. Let a,b,c,d be real 
numbers such that a+sin b > c+sin d, 
b+sin a > d+sin c. Prove that a+b>c+d. 
 
Problem 497. Let there be three line 
segments with lengths 1, 2, 3. Let the 
segment of length 3 be cut into n≥2 
line segments. Prove that among these 
n+2 segments, there exist three of them 
that can be put to form a triangle where 
each side is one of the three segments.  
 
Problem 498. Determine all integers 
n>2 with the property that there exists 
one of the numbers 1,2,…,n+1 such 
that after its removal,  the n numbers 
left can be arranged as  a1,a2,…,an with 
no two of |a1-a2|, |a2-a3|, …, |an−1-an|, 
|an-a1| being equal. 
 
Problem 499.  Let ABC be a triangle 
with circumcenter O and incenter I. Let 
Γ be the escribed circle of ΔABC 
meeting side BC at L. Let line AB meet 
Γ at M and line AC meet Γ at N.  If the 
midpoint of line segment MN lies on 
the circumcircle of ΔABC, then prove 
that points O, I, L are collinear. 
 
Problem 500. Determine all positive 
integers n such that there exist k≥2 
positive rational numbers such that the 
sum and the product of these k numbers 
are both equal to n. 
  

***************** 
Solutions 

**************** 
 
Problem 491. Is there a prime number 
p such that both p3+2008 and p3+2010 
are prime numbers? Provide a proof. 
 
Solution. Adnan ALI (Atomic Energy 
Central School 4, Mumbai, India), 
Ioan Viorel CODREANU (Secondary 
School Satulung, Maramures, 
Romania), Prithwijit DE (HBCSE, 
Mumbai, India), EVGENIDIS 
Nikolaos (M. N. Raptou High School, 

Palaiokastrou 10, Agia, Greece), 
Karaganda (Nazarbaev iIntellectual 
School, Nurligenov Temirlan - 9 grade 
student), Koopa KOO, KWOK Man Yi 
(Baptist Lui Ming Choi Secondary School, 
S6), Mark LAU, Toshihiro SHIMIZU 
(Kawasaki, Japan), Anderson TORRES, 
Titu ZVONARU (Comăneşti, Romania) 
and Neculai STANCIU (“George Emil 
Palade’’ Secondary School, Buzău, 
Romania). 

 
Let p be a prime. If p≠7, then p3≡-1 or 1 
(mod 7). Since 2008 ≡ -1 (mod 7) and 
2010≡1 (mod 7), so either p3+2008 or 
p3+2010 is divisible by 7, hence 
composite. If p = 7, then p3+2010 = 2353 
= 13×181 is composite. Therefore, there is 
no such prime. 
 

Problem 492. In convex quadrilateral 
ADBE, there is a point C within ΔABE 
such that  
 
∠EAD+∠CAB=180°=∠EBD+∠CBA. 

 

Prove that ∠ADE=∠BDC. 
 
Solution. KWOK Man Yi (Baptist Lui 
Ming Choi Secondary School, S6). 
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Let F be the second intersection of the 
circumcircle of ΔEAD and line EB. Then 
∠DBF=180°-∠EBD=∠CBA. Moreover,  
 
∠BDF = 180°-∠AEB-∠ADB 
            = 180°-(360°-∠EAD-∠EBD) 
            = 180°-(∠CAB+∠CBA) =∠BCA.  
 
These two relations give ΔBDF∼ΔBCA. 
So BD/BF=BC/BA. Together with ∠DBF 
=∠CBA, we have ΔBDC∼ΔBFA. Then 
∠ADE=∠AFE=∠BFA=∠BDC. 
 
Other commended solvers: Toshihiro 
SHIMIZU (Kawasaki, Japan), Titu 
ZVONARU (Comăneşti, Romania) and 
Neculai STANCIU (“George Emil 
Palade’’ Secondary School, Buzău, 
Romania). 
 
Problem 493. For n ≥ 4, prove that 
xn−xn−1−xn−2−⋯−x−1 cannot be factored 
into a product of two polynomials with 
rational coefficients, both with degree 
greater than 1. 
 

Solution. Prithwijit DE (HBCSE, 
Mumbai, India) and Toshihiro 
SHIMIZU (Kawasaki, Japan). 
  
Let Pn(x) = xn−xn−1−xn−2−⋯−x−1 and 
Qn(x)= (x−1)Pn(x)= xn+1−2xn+1. The 
cases n = 2 or 3 follow directly from 
the rational root theorem. For n≥4, the 
Descartes’ rule of signs shows there is 
a positive root r. It is easy to check 
Pn( 3 ) < 0. So r > 3 .  
 
If Pn(s)=0 with |s|>1, then Qn(s)=0, 
which implies |s|n |s−2|=1. We get 
2≤|s−2|+|s| = |s|−n+|s|. So Qn(|s|) ≥ 0. 
Since Qn(x)<0 for 1<x<r, we must have 
|s|≥r. On the other hand, if Pn(t)=0 and 
|t|<1, then 1=|t-2||t|n ≤ 3|t|n. It follows 
that the absolute value of the product of 
all roots t of Pn(x) with |t|<1 is at least 
1/3. So r is the only root of Pn(x) with 
absolute value greater than 1.  
 
Assume Pn(x)=f(x)g(x), where f(x), g(x) 
are monic polynomials with integer 
coefficients and f(r)=0. Then if g(x) has 
positive degree, its roots would have 
absolute value less than 1 and so 
|g(0)|<1. This contradicts the constant 
term of g(x), being g(0), must be ±1.  
 
Other commended solvers: Anderson 
TORRES. 
 
Problem 494. In a regular n-sided 
polygon, either 0 or 1 is written at each 
vertex. By using non-intersecting 
diagonals, Bob divides this polygon 
into triangles. Then he writes the sum 
of the numbers at the vertices of each 
of these triangles inside the triangle. 
Prove that Bob can choose the 
diagonals in such a way that the 
maximal and minimal numbers written 
in the triangles differ by at most 1.  
 
Solution. Adnan ALI (Atomic Energy 
Central School 4, Mumbai, India) and 
Toshihiro SHIMIZU (Kawasaki, 
Japan). 
 
If all numbers written at the vertices of 
the polygon are equal, then the claim 
holds trivially. Hence assume that there 
are both zeros and ones among the 
numbers at the vertices. We prove by 
induction that, for every convex 
polygon, the partition into triangles can 
be chosen in such a way that Bob 
writes either 1 or 2 to each triangle. 
 
If n=3, then this claim holds since the 
sum of the numbers at the vertices of a 
triangle can be neither 0 nor 3. If n=4, 
then draw the diagonal that connects 



Mathematical Excalibur, Vol. 21, No. 1, Oct. 16 – Mar. 17 Page 4

 
the vertices where 0 and 1 are written, 
respectively, or, if such a diagonal does 
not exist, then an arbitrary diagonal. In 
both cases, only sums 1 and 2 can arise. 
If n≥5, then choose two consecutive 
vertices with different labels and a 
third vertex P that is not neighbor to 
either of them. Irrespective of whether 
the label of P is 0 or 1, we can draw the 
diagonal from it to one of the two 
consecutive vertices chosen before so 
that the labels of its endpoints are 
different. Now the polygon is divided 
into two convex polygons with smaller 
number of vertices so that both 0 and 1 
occur among their vertex labels. By the 
induction hypothesis, both polygons 
can be partitioned into triangles with 
sum of labels of vertices either 1 or 2. 
 
Other commended solvers: William 
FUNG. 
 
Problem 495. The lengths of each side 
and diagonal of a convex polygon are 
rational. After all the diagonals are 
drawn, the interior of the polygon is 
partitioned into many smaller convex 
polygonal regions. Prove that the sides 
of each of these smaller convex 
polygons are rational numbers. 
 
Solution. Adnan ALI (Atomic Energy 
Central School 4, Mumbai, India), 
Toshihiro SHIMIZU (Kawasaki, 
Japan) and Anderson TORRES. 
 
We only need to show the quadrilateral 
case, since if this is showed, then the 
length of any segment of a diagonal 
connecting a vertex to an intersection 
point with other diagonal would be 
rational. Let ABCD be a quadrilateral 
with all sides and diagonals have 
rational lengths. Let α =∠ABD and β 
=∠DBC. Let P be the intersection of 
AC and BD. Since  

,
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cos α is rational. Similarly, cos β and 
cos (α+β)=cos ∠ABC are rational. 
Then, since cos (α+β)= cos α cos β- 
sin α sin β, so sin α sin β is also rational. 
Also, sin2β=1-cos2β is rational. Thus, 
sin α/ sin β= sin α sin β/sin2β is rational. 
Then, AP/PC = area(ABD)/area(DBC) 
= (AB·BD sin α)/(BD·BC sin β) is 
rational. Therefore, AP and PC are 
rational. Similarly, PB and PD are 
rational. 

 
Other commended solvers: Corneliu 
MĂNESCU-AVRAM (Transportation 
High School, Ploieşti, Romania). 

Olympiad Corner 
 
                           (Continued from page 1) 
 
Problem 4. For positive a, b, c, it holds 
(a+c)(b2+ac)=4a. Find the maximal 
possible value of b+c and find all triples 
(a,b,c), for which the value is attained. 
 
Problem 5. There is |BC|=1 in a triangle 
ABC and there is a unique point D on BC 
such that |DA|2=|DB|·|DC|. Find all 
possible values of the perimeter of ABC. 

 
Problem 6. There is a figure of a prince 
on a field of a 6×6 square chessboard. The 
prince can in one move jump either 
horizontally or vertically. The lengths of 
the jumps are alternately either one or two 
fields, and the jump on the next field is the 
first one. Decide whether one can choose 
the initial field for the prince, so that the 
prince visits in an appropriate sequence of 
35 jumps every field of the chessboard.  
 

 
 
Miscellaneous Problems 
 
                      (Continued from page 2) 

 
Example 10. Two triangles have the same 
incircle. If a circle passes through five of 
the six vertices of the two triangles, then 
must it also pass the sixth vertex? 
 
Solution. Let ABC and DEF be the 
triangles. Let A, B, C, D, E be on the same 
circle Γ, with radius R and center O. 
Suppose that F does not belong to Γ. Let 
G≠D be the intersection of DF with Γ. Let 
θ =∠EDF=∠EDG. Let I and r be the 
common incenter and the inradius of Δ
ABC and ΔDEF. Let J and s be the 
incenter and the inradius of ΔDEG. 



s
r
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C
F

 

We will prove that the incircle of ΔABC 
and ΔDEG coincide. First, we prove that 
I=J by showing IM=JM. It is well known 
that IM = 2R sin(θ/2) = EM. From Euler’s 
formula, OI2 = R2-2Rr, which implies that 
the power of I with respect to Γ is IM·ID = 
2Rr. Since ID = r/sin(θ/2), we have IM = 
2Rsin(θ/2) = JM. So I =J. This also proves 
r = s. Hence, the incircle of ΔABC and Δ
DEG are the same. Then F=G follows. 

Example 11 (1988 Brazilian Math 
Olympiad). A figure on a computer 
screen shows n points on a sphere, no 
four coplanar. Some pairs of points are 
joined by segments. Each segment is 
colored red or blue. For each point 
there is a key that switches the colors of 
all segments with that point as endpoint. 
For every three points there is a 
sequence of key presses that make all 
three segments between them red. 
Show that it is possible to make all the 
segments on the screen red. Find the 
smallest number of key presses that can 
turn all the segments red, starting from 
the worst case. 
 
Solution. Consider three of the points. 
The parity of the number of blue 
segments of the triangle with these 
points as vertices doesn’t change while 
switching the keys. Since it is possible 
to make all three segments red, the 
number of blue segments in each 
triangle is even. 
 
Let P be one of the n points. Let A be 
the set of points connected to P by red 
points and B be the set of points 
connected to P by blue segments. Let 
A1, A2∈A. So PA1 and PA2 are both red 
and thus A1A2 is red. Now consider 
B1B2∈B. Then PB1 and PB2 are both 
blue and B1B2 is red. Finally consider 
A∈A and B∈B. PA is red and PB is 
blue, so AB is blue. Put P in A. All this 
reasoning shows that segments in the 
same set are red and segments connect- 
ing points in different sets are blue. 
 
Switching all points in set A will make 
all segments red. Indeed, all segments 
in A will change twice, one time from 
each of its edges, all segments 
connecting points from A and B will 
change once, turning from blue to red 
and segments in B won’t change. This 
proves the first part. 
 
For the second part, notice first that one 
needs to switch each point at most once. 
Let |A|=k and |B|=n-k. If we switch a 
point from A and b points from B, we 
change at most a(n-k)+bk blue 
segments. Suppose without loss of 
generality that k≤n-k, hence k≤[n/2]. 
Then k(n-k) ≤ a(n-k) + bk ≤ a(n-k) + 
b(n-k), hence k≤a+b. So the number 
of key presses is at most k and in the 
worst case, [n/2]. This number is 
needed to make all segments red if 
|A|=[n/2]. 
 

 


