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Olympiad Corner 
 
Below are the problems of the 20th 
Hong Kong (China) Mathematical 
Olympiad held on December 2, 2017. 
Time allowed is 3 hours. 

 
Problem 1. The sequence {xn} is 
defined by x1=5 and xk+1=xk

2-3xk+3 for 
k=1,2,3,…. Prove that 
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k

kx for all 
positive integer k. 
 
Problem 2. Suppose ABCD is a cyclic 
quadrilateral. Produce DA and DC to P 
and Q respectively such that AP=BC 
and CQ=AB. Let M be the midpoint of 
PQ. Show that MA⊥MC.  
  
Problem 3. Let k be a positive integer. 
Prove that there exists a positive 
integer ℓ with the following property: if 
m and n are positive integers relatively 
prime to ℓ such that mm≡nn (mod ℓ), 
then m≡n (mod k). 
 
Problem 4. Suppose 2017 points in a 
plane are given such that no three 
points are collinear. Among the 
triangles formed by any three of these 
2017 points, those triangles having the 
largest area are said to be good. Prove 
that there cannot be more than 2017 
good triangles. 

 
                                  

Functional Inequalities  
Kin Y. Li 

 
 
     In the volume 8, number 1 issue of 
Math Excalibur, we provided a number 
of examples of functional equation 
problems. In the volume 10, number 5 
issue of Math Excalibur, problem 243 in 
the problem corner section was the first 
functional inequality problem we posed. 
That one was from the 1998 Bulgarian 
Math Olympiad. In this article, we 
would like to look at some functional 
inequality problems that appeared in 
various math Olympiads. 
 
Example 1 (2016 Chinese Taipei Math 
Olympiad Training Camp. Let function 
f:[0,+∞)→ [0,+∞) satisfy 
 
(1) for arbitrary x,y≥0, we have 
 

;
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(2) for arbitrary 0≤x≤1, we have f(x) ≤ 
2016. 
 
Prove that for arbitrary x≥0 we have 
f(x) ≤ x2. 
 
Solution. In (1), let x=y=0, then f(0)=0. 
Assume there is x0> 0 such that f(x0) > 
x0

2. By (1), we see f(x0/2)> x0
2/2. By 

math induction, for all positive integer 
k, we have 
 

  .22/ 2
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As k gets large, eventually we have x0/2k 
is in [0,1], but f(x0/2k) > 2016. This 
contradicts (2). So for all x≥0, f(x) ≤ x2.
 
Example 2 (2005 Russian Math 
Olympiad). Does there exist a bounded 
function f:ℝ→ℝ such that f(1)> 0 and 
for all x, y ∈ ℝ, it satisfies the inequality 
 

f 2(x+y) ≥ f 2(x) + 2f (xy) + f 2(y) ? 
 
Solution. Assume such f exists. Let a = 
2f(1) > 0. For x1≠0, let y1=1/x1, then 
 

f 2(x1+y1) ≥ f 2(x1) + 2f (1) + f 2(y1) 
                ≥ f 2(x1) + a. 
 

 
For n>1, let xn=xn−1+yn−1, yn=1/xn. Then 
 
f 2(xn+yn) ≥ f 2(xn)+a= f 2(xn−1+yn−1)+a 
      ≥ f 2(xn−1)+2a ≥⋯≥ f 2(x1)+na. 
 
As n→∞, f becomes unbounded, which 
is a contradiction. 
 
Example 3 (2016 Ukranian Math 
Olympiad). Does there exist a function 
f:ℝ→ℝ such that for arbitrary real 
numbers x, y, we have 
 

f(x-f(y)) ≤ x -yf(x) ? 
 
Solution. Assume such function exists. 
Let y=0. Then f(x−f(0))≤x. Replacing x 
by x+f(0), we get f(x)≤x+f(0). Then 
setting x=f(y), we get  
 

f(0)≤f(y) –yf(f(y))≤y+f(0)−yf(f(y)), 
 
which implies yf(f(y))≤y. If y<0, then  
 

1≤f(f(y))≤f(y)+f(0)≤y+2f(0). 
 

The last inequality is satisfied for all 
y<0, which is a contradiction. 
 
Example 4 (The Sixth IMAR Math 
Competition, 2008). Show that for any 
function f:(0,+∞)→(0,+∞) there exists 
real numbers x>0 and y>0 such that    
f (x+y) < yf (f (x)). 
 
Solution. Assume f (x+y) ≥ yf (f (x)) for 
all x, y > 0. Let a > 1, then t = f(f(a)) > 0. 
Now for b≥a(1+t−1+t−2)>a, we have 
 
 f(b)=f(a+(b-a))≥(b-a)f(f(a))=(b-a)t 
                           ≥ a(1+t−1) > a. 
Then   
 

f(f(b))=f(a+(f(b)−a))≥(f(b)−a)t≥a. 
 

If we take x≥(ab+2)/(a−1)>b, then 
 
    f(x)=f(b+(x−b))≥(x−b)f(f(b)) 
         ≥(x−b)a≥x+2. 
 
Hence, f(x) > x+1 (*). However, 

 
f(f(x))=f(x+(f(x)−x))≥(f(x)−x)f(f(x)). 

 
Cancelling f(f(x)) on both sides, we get 
f(x)≤x+1, which contradicts (*). 
 
                                  (continued on page 2) 
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Example 5 (2016 Romanian Math 
Olympiad). Determine all functions 
f:ℝ→ℝ satisfying for arbitrary a, b∈ℝ, 
we have  
 
      f(a2)-f(b2)≤(f(a)+b)(a-f(b)).     (1) 

 
Solution. Let a=b=0, then f 2(0)≤0, so 
f(0)=0. Let b=0, then f(a2)≤af(a). Let 
a=0, then f(b2)≥bf(b). So for all x, we 
have (2) f(x2)=xf(x). Using this on the 
left side of (1), we get (3) f(a)f(b)≤ab. 
Next, by (2), we have 
 

−xf(−x)=f((−x)2)=f(x2)=xf(x). 
 
So f is an odd function. This implies  
 
    f(a)f(b)= −f(a)f(−b)≥ −(−ab)=ab.  
 
Using (3), we have f(a)f(b)=ab. Then     
f 2(1) =1. So f(1)=±1. Hence, for all x, 
f(x)f(1)=x, i.e. either f(x)=x for all x       
or  f(x)= −x for all x. Simple checking 
shows both of these satisfy (1). 
 
Example 6 (1994 APMO). Let f: ℝ→ℝ 
be a function such that  
 
(i) for all x,y∈ℝ 
 
           f(x)+f(y)+1≥f(x+y)≥f(x)+f(y), 
 
(ii) for all x∈[0,1), f (0) ≥ f (x), 
 
(iii) -f(-1)=f(1)=1. 
 
Find all such functions.      
 
Solution. By (iii), f(−1)= −1,  f(1)=1. So 
f(0)=f(−1+1)≥f(1)+f(−1)=0. By (i), f(1) 
= f(1+0)≥f(1)+f(0). So f(0)≤0. Then 
f(0)=0. 
 
      Next we claim f(x)=0 for all x in 
(0,1). Since f(0) = 0, by (ii), f(x) ≤ 0  
for all x in (0,1). By (i) and (ii), 
f(x)+f(1−x)+1f(1)=1. So  f(x) ≥ −f(1−x).  
If x∈(0,1), then 1− x∈(0,1). So f(1 −x) 
≤0 and f(x)≥−f(1−x) ≥0.  Then f(x)=0. 
 
       Next by (i) and (iii), we have f(x+1) 
≥ f(x)+f(1) = f(x)+1 and f(x) ≥ f(x+1) + 
f(−1) = f(x+1)−1. These give  f(x+1) = 
f(x)+1. 
 
        So f(x)=0 for x∈[0,1) and f(x+1) = 
f(x)+1. Hence, f(x)=[x]. We can check 
directly [x] satisfies (i), (ii) and (iii). 
 
Example 7 (2007 Chinese IMO Team 
Training Test). Does there exist any 
function f:ℝ→ℝ satisfy f(0)> 0 and 
 
  f(x+y)≥f(x)+y f (f(x)) for all x,y∈ℝ? 
 
Solution. Assume such function exists. 
In that case, we claim there would exist 
real z such that f(f(z))>0. (Otherwise, 
for all x, f(f(x))≤0. So for all y≤0, we 
have f(x+y) ≥f(x)+yf(f(x))≥f(x). Then f 
is a decreasing function. So for all 

x∈ℝ, f(0)>0≥f(f(x)), which implies f(x)>0. 
This contradicts f(f(x))≤0.)  
 
        From the claim, we see as x→+∞, 
f(z+x)≥f(z)+xf(f(z))→+∞. So we get  
 

f(x) →+∞ as well as f(f(x)) →+∞.  
Then there are x, y > 0 such that f(x) ≥ 0, 
f(f(x))>1, f(x+y)>0, f(f(x+y+1))>0 and  (*)  
y≥(x+1)/(f(f(x))−1). Define A = x+y+1, B 
= f(x+y)−(x+y+1). Then f(f(A)) > 0 and 
  

f(x+y) ≥ f(x)+yf(f(x)) ≥ x+y+1  by (*). 
 
So B≥0. Next,  
 
   f(f(x+y)) =  f(A+B) ≥ f(A)+Bf(f(A)) 
                  ≥ f(A) = f((x+y)+1) 
                  =  f(x+y)+f(f(x+y)) 
                  > f(f(x+y)), 
 
which is a contradiction. 
 
Example 8 (2015 Greek IMO Team 
Selection Test). Determine all functions 
f:ℝ→ℝ such that for arbitrary x, y∈ℝ, we 
have  

                 f(xy)≤yf(x)+f(y).             (1) 
 
Solution. In (1), using −y to replace y, we 
get  
                  f(−xy)≤−yf(x)+f(−y).             (2) 
 
Adding (1) and (2), we get  
 

           f(xy)+f(−xy) ≤ f(y)+f(−y).       (3) 
 
Setting y=1, we get 
 

             f(x)+f(−x) ≤ f(1)+f(−1).          (4) 
 
In (3), using 1/y with y≠0 to replace x, we 
get  

              f(1)+f(−1) ≤ f(y)+f(−y).       (5) 
 
By (4) and (5), for y≠0, we have 
 

             f(y)+f(−y) = f(1)+f(−1).  
 
Let c = f(1)+f(−1). Then (2) becomes 
 

c −f(xy) ≤ −yf(x)+c −f(y). 
Then  

                    f(xy)≥yf(x)+f(y).             (6) 
 
By (1) and (6), for all x,y≠0, 
 
                      f(xy)=yf(x)+f(y).                  (7) 
 
Setting x=y=1, we get f(1)=0. In (7), 
interchanging x and y, we get 
 
                       f(yx)=xf(y)+f(x).              (8) 
 
Subtracting (7) and (8), we get 
 

     (y −1)f(x)=(x −1)f(y). 
 

Then for x, y ≠ 0,1, we get .
1

)(

1

)(
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       Since f(1)=0, we see there exists a 
such that f(x)=a(x−1) for all x≠0. Setting 
x=0 in (1), we get f(y)≥(1−y)f(0). Then for 

y≠0, we get a(y−1)≥(1−y)f(0), which is  
(y−1)(a+f(0)) ≥ 0. Then a = −f(0) and 
we get for all real x, f(x)=f(0)(1−x). 
Setting f(0) to be any real constant, we 
can check all such functions satisfy (1). 
 
Example 9 (2013 Croatian IMO Team 
Selection Test). Determine all functions 
f:ℝ→ℝ such that for all real numbers x, 
y, we have f(1)≥ 0  and   
 
             f(x)-f(y) ≥ (x-y) f(x-y).    (*) 

 
Solution. Setting y=x−1, we get f(x) 
−f(x−1) ≥ f(1) ≥ 0.  So  
 
                     f(x) ≥ f(x−1).              (1) 
 
Setting y=0, we get 
 
                   f(x)−f(0) ≥xf(x).            (2) 
 
Replacing y by x and x by 0, we get 

 
                f(0)−f(x) ≥ −xf(−x).         (3) 
 
Adding (2) and (3), we get 
 

0 ≥xf(x)−xf(−x). 
 

Then for every x>0, we get  
 
                      f(−x)≥f(x).                  (4) 
 
Setting x=1, y=0 in (0), we get  
 
                       f(0)≤0.                       (5) 
 
By (5), (1), (4), we get 0 ≥ f(0) ≥ f(−1) 
≥ f(1) ≥ 0. So f(0) = f(−1) = f(1) = 0.  
Using (1) repeatedly, we get  
 
      f(x) ≥ f(x −1) ≥ f(x −2) ≥⋯,    (6)  
i.e. f(x) ≥ f(x−k) for all real x, positive 
integer k. Using (6), (1) and replacing x 
by x −1 and y by −1 in (*), we get 
 

   f(x)≥f(x−1)=f(x−1)−f(−1)≥xf(x). 
 

Then f(x)(x −1) ≤0. So if x>1, then f(x) 
≤0. If x<1, then f(x) ≥0. 
 
For x>1, there is y<1 such that k=x−y 
is a positive integer. Then 
 

0 ≥ f(x) ≥ f(x −k) = f(y) ≥ 0. 
 

So for x>1, f(x)=0. Similarly, for x<1, 
there is y>1 such that k=y−x is a 
positive integer. Then as above, all 
f(x)=0. We can check directly f(x)=0 
satisfies (*). 
 
Example 10 (2011 IMO Problem 3 
proposed by Belarus). Let f:ℝ→ℝ be a 
real-valued function defined on the set 
of real numbers that satisfies 
  
               f(x+y)≤yf(x)+f(f(x))             (1) 
 
for all real numbers x and y. Prove that 
f(x)=0 for all x≤0.  
  
                                 (continued on page 4) 



Mathematical Excalibur, Vol. 21, No. 3, Oct. 17 – Jan. 18 Page 3

 
Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is February 10, 2018. 
  
Problem 506. Points A and B are on a 
circle Γ1. Line AB is tangent to another 
circle Γ2 at B and the center O of Γ2 is 
on Γ1. A line through A intersects Γ2 at 
points D and E (with D between A and 
E). Line BD intersects Γ1 at a point F, 
different from B. Prove that D is the 
midpoint of BF if and only if BE is 
tangent to Γ1. 
 
Problem 507. Determine all functions 
f:ℝ→ℝ such that for all x, y ∈ℝ, 
 

(x-2)f(y) + f(y+2f(x)) = f(x+yf(x)). 
 
Problem 508. Determine the largest 
integer k such that for all integers x,y, if 
xy+1 is divisible by k, then x+y is also 
divisibly by k. 
 
Problem 509. In ΔABC, the angle 
bisector of ∠CAB intersects BC at a 
point L. On sides AC, AB, there are 
points M, N respectively such that lines 
AL, BM, CN are concurrent and 
∠AMN=∠ALB. Prove that ∠NML= 
90°.  
 
Problem 510. Numbers 1 to 20 are 
written on a board. A person randomly 
chooses two of these numbers with a 
difference of at least 2. He adds 1 to the 
smaller one and subtracts 1 from the 
larger one. Then he performs an 
operation by replacing the original two 
chosen numbers on the board with the 
two new numbers. Determine the 
maximum number of times he can do 
this operation. 
  

***************** 
Solutions 

**************** 
 
Problem 501. Let x, y, s, m, n be 
positive integers such that x+y=sm and 
x2+y2=sn. Determine the number of 
digits s300 has in base 10.   
 
Solution. CHUI Tsz Fung (Ma Tau 

Chung Government Primary School, P4), 
Soham GHOSH (RKMRC Narendrapur, 
Kalkata, India), Mark LAU, LEE Jae 
Woo (Hamyang High School, South 
Korea), Toshihiro SHIMIZU (Kawasaki, 
Japan). 

 
Since s2m = (x+y)2 > x2+y2 = sn, so 2m > n. 
Then  
           0 ≤ (x-y)2 = 2(x2+y2)-(x-y)2 

                       = 2sn-s2m = sn(2-s2m-n). 
 
If s≥3, then we have 2-s2m-n≤2-s<0, a 
contradiction. If s=1, then we have 
1+1≤x+y=sm=1, a contradiction. So s 
must be 2. Since log102300 = 300log102 = 
0.3010…×300= 90.3…, 2300 has 91 digits.  
 
Other commended solvers: DBS Maths 
Solving Team (Diocesan Boys’ School), 
Akash Singha ROY (Hariyana Vidya 
Mandir High School, India) and George 
SHEN. 
 

Problem 502. Let O be the center of the 
circumcircle of acute ΔABC. Let P be a 
point on arc BC so that A, P are on 
opposite sides of side BC. Point K is on 
chord AP such that BK bisects ∠ABC and 
∠AKB > 90°. The circle Ω passing 
through C, K, P intersect side AC at D. 
Line BD meets Ω at E and line PE meets 
side AB at F. Prove that ∠ABC = 2∠FCB. 
 
Solution. George SHEN and Toshihiro 
SHIMIZU (Kawasaki, Japan). 
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Take point M on line KB such that 
MB=MC. Then we have Δ BMC is 
isosceles and  
 
        ∠KPC = ∠APC=∠ABC 
                      = ∠MBC+∠MCB 
                      = 180°-∠BMC 
                      = 180°-∠KMC.  
 
This implies M is on the circle Ω. 
Applying Pascal’s theorem to the points P, 
E, D, C, M, K on Ω, we have PE∩CM, 
ED∩MK=B and DC∩KP=A are collinear. 
Since this line coincides with line AB, so 
PE∩CM=F. Then 
 

2∠FCB=2∠MCB=2∠MBC=∠ABC. 
 

Other commended solvers: LEE Jae 
Woo (Hamyang High School, South 
Korea), Vijaya Prasad NALLURI 
(Retd Principal APES, Rajahmundry, 
India) and Akash Singha ROY 
(Hariyana Vidya Mandir High School, 
India). 
 
Problem 503. Let S be a subset of 
{1,2,…,2015} with 68 elements. Prove 
that S has three pairwise disjoint 
subsets A, B, C such that they have the 
same number of elements and the sums 
of the elements in A, B, C are the same. 
 
Solution. Mark LAU and George 
SHEN. 
  
There are totally (68×67×66)/6=50116 
3-element subsets of S. The possible 
sums of the three elements in these 
subsets of S are from 1+2+3=6 to 
2013+2014+2015=6042. Now 50116 > 
8×(6042-6+1). So by the pigeonhole 
principle, there are 9 distinct 3-element 
subsets A1, A2,…, A9 of S with the same 
sum of elements. 
 
    Assume x∈S appears in A1, A2,…, A9 
at least 3 times, say in A1, A2, A3. Then 
no two of the sets U=A1\{x}, V=A2\{x}, 
W=A3\{x} are the same. Otherwise say 
U=V, then A1=A2, contradiction.  
 
     So every x∈S appear at most twice 
among A1, A2,…, A9. Then there can 
only be at most 3 of A2,…, A9 (say A2, 
A3, A4) having an element in common 
with A1 (as every element of A1 can 
only appear in at most one of A2,…, A9). 
Without loss of generality, say each of 
A5,…, A9 is disjoint with A1. Similarly, 
among A6,…, A9, there are at most 
three of them (say A6, A7, A8) have a 
common element with A5. Then A9 and 
A5 are disjoint. So the pairwise disjoint 
sets A=A1, B=A5, C=A9 have the same 
sum of elements.        
 
Other commended solvers: LEE Jae 
Woo (Hamyang High School, South 
Korea), Akash Singha ROY 
(Hariyana Vidya Mandir High School, 
India), and Toshihiro SHIMIZU 
(Kawasaki, Japan). 
 
Problem 504.  Let p>3 be a prime 
number. Prove that there are infinitely 
many positive integers n such that the 
sum of kn for k=1,2,…,p-1 is divisible 
by p3. 
 
Solution. CHUI Tsz Fung (Ma Tau 
Chung Government Primary School, 
P4), DBS Maths Solving Team 
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(Diocesan Boys’ School), Mark LAU, 
LEE Jae Woo (Hamyang High School, 
South Korea), LEUNG Hei Chun 
(SKH Tang Shiu Kin Secondary School), 
Akash Singha ROY (Hariyana Vidya 
Mandir High School, India) and 
Toshihiro SHIMIZU (Kawasaki, 
Japan).  
 
As φ(p3)=p2(p-1), by Euler’s theorem, 
for all positive integers r,s, we have 
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In the case r=p2, we have 
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So all cases n=p2+p2(p-1)s works. 
 
Other commended solvers: Soham 
GHOSH (RKMRC Narendrapur, 
Kalkata, India) and George SHEN.  
 
Problem 505. Determine (with proof) 
the least positive real number r such 
that if z1, z2, z3 are complex numbers 
having absolute values less than 1 and 
sum 0, then  
 

|z1z2+z2z3+z3z1|2 + |z1z2z3|2  < r. 
 
Solution. Akash Singha ROY 
(Hariyana Vidya Mandir High School, 
India) and George SHEN. 
 
For i=1,2,3, let ai=|zi|2, then 0≤ai<1. 
Since z1+z2+z3=0, we have 

.
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Let b= z1z2+z2z3+z3z1 and c= z1z2z3. Let 
the notation ∑f(u,v,w) denote the sum 
of f(u,v,w), f(v,w,u) and f(w,u,v). We 
have  
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Next, for 0<x<1, consider z1=x, z2=−x and 
z3=0. Then |z1z2+z2z3+z3z1|2 + |z1z2z3|2 =x4 < 
r. Letting x tend to 1, we get 1≤r. 
Therefore, the least positive r is 1. 
  
Other commended solvers: DBS Maths 
Solving Team (Diocesan Boys’ School), 
LEE Jae Woo (Hamyang High School, 
South Korea) and Toshihiro SHIMIZU 
(Kawasaki, Japan). 
 

 
 
Functional Inequalities 
 
                      (Continued from page 2) 
 
Solution. In (1), let y=t−x, then 
 

             f(t)≤tf(x)−xf(x)+f(f(x)).        (2) 
 
Consider a,b∈ℝ. Using (2) to t=f(a), x=b 
and t=f(b), x=a, we get 
 

f(f(a))−f(f(b)) ≤ f(a)f(b) −bf(b), 
f(f(b))−f(f(a)) ≤ f(b)f(a) −af(a). 

 
Adding these, we get 
 

2f(a)f(b)≥af(a)+bf(b). 
 

Setting b=2f(a), we get  
 

2f(a)f(b)≥af(a)+2f(a)f(b) or af(a)≤0. 
 

Then for a < 0, f(a) ≥ 0.                      (3) 
 
Now suppose f(x)>0 for some x. By (2), 
we see for every t < (xf(x)−f(f(x)))/f(x), we 
have f(t)<0. This contradicts (3). So  
 
                 f(x) ≤ 0   for all real x.         (4) 
 
By (3) again, we get f(x)=0 for all x < 0. 
Finally setting t=x<0 in (2), we get f(x) 
≤f(f(x)). As f(x)=0, this implies 0≤f(0). 
This together with (4) give f(0)=0. 
 
Example 11 (2009 IMO Shortlisted 
Problem proposed by Belarus). Let f be 
any function that maps the set of real 
numbers into the set of real numbers. 
Prove that there exist real numbers x and y 
such that  
                     f(x-f(y)) > yf(x)+x.           (1) 
 
Solution. Assume the contrary, i.e. f(x-f(y)) 
≤ yf(x)+x for all real x and y. Let a=f(0). 
Setting y=0 in (1) gives f(x−a)≤x for all 
real x. This is equivalent to 
 
             f(y)≤y+a  for all real y.           (2) 
 
 Setting x=f(y) in (1) and using (2), we get 
 

a=f(0)≤yf(f(y))+f(y)≤yf(f(y))+y+a. 
 

This implies 0≤y(f(f(y))+1) and so 
 
               f(f(y))≥−1 for all y>0.            (3) 
 
By (2) and (3), we get −1≤f(f(y))≤f(y)+a 
for all y>0. So 
 
              f(y)≥−a−1 for all y > 0.           (4) 

Next, we claim  f(x)≤0 for all real x. (5) 
Assume the contrary, i.e. there is some 
f(x)>0. Now take y such that y<x−a and 

                  
               y < (−a−x−1)/f(x).              (6) 
 
By (2), we get x−f(y) ≥ x−(y+a) > 0. 
By (1) and (4), we get  
 

   yf(x)+x ≥ f(x−f(y)) ≥ −a−1. 
 
Then y ≥ (−a−x−1)/f(x), contradicting 
(6). So (5) is true. 
 
       Now setting y=0 in (5) leads to 
a=f(0)≤0 and using (2), we get  
 
               f(x)≤x  for all real x.             (7) 
 
Now choose y > 0,  y > −f(−1)−1 and 
set x=f(y)−1. By (1),(5) and (7), we get 
 
     f(−1) = f(x−f(y)) 
             ≤ yf(x)+x = yf(f(y)−1)+f(y)−1 
             ≤ y(f(y)−1)−1 ≤ −y −1. 
 
Then y≤−f(−1)−1, which contradicts 
the choice of y. 
 
Example 12 (64th Bulgarian Math 
Olympiad in 2015). Determine all 
functions f:(0,+∞)→ (0,+∞) such that 
for arbitrary positive real numbers x, y, 
we have  
 
   (1)   f(x+y)≥f(x)+y ; 
   (2)   f(f(x))≤x. 
 
Solution. As y>0, (1) implies f is 
strictly increasing on (0,+∞). By (2) 
and (1), we have  
 
            x+y≥f(f(x+y))≥f(f(x)+y).     (*) 
 
Using (*) and in (1), replacing x by y 
and y by f(x), we get  
 
       x+y ≥ f(f(x)+y) ≥ f(x)+f(y).     (**) 
 
Since f is strictly increasing and f(x)>0, 
so the limit of f(x) as x→0+ is a 
nonnegative number c. By (2), the limit 
of f(f(x)) as x→0+ is 0. 
 
     If c>0, then since f is strictly 
increasing, f(f(x)) ≥ f(c) > 0. Taking 
the limit of f(f(x)) as x→0+ leads to 0 ≥ 
f(c) > 0, contradiction. So c=0. 
 
     Now taking limit as y→0+ in (**), 
we get x≥f(x) for all x>0. This and (1) 
lead to  
              x+y≥f(x+y)≥f(x)+y.       (***) 
 
Subtracting f(x)+y in (***), we get  
x−f(x) ≥ f(x+y)−f(x)− y ≥ 0. Letting 
w=x+y in (***) and taking limit of 
w≥f(w)≥f(x)+w−x as x→0+, we get 
w=f(w). So f(x+y)=f(w)=w=x+y. Then 
f is the identity function on (0,+∞), 
which certainly satisfy (1) and (2). 
 

 


