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Olympiad Corner 
 
Below were the problems of the 2017 
Serbian Mathematical Olympiad for 
high school students. The event was 
held in Belgrade on March 31 and 
April 1, 2017.  
 
Time allowed was 270 minutes. 

 
First Day  
 
Problem 1. (Nikola Petrović) Let a, b 
and c be positive real numbers with 
a+b+c=1. Prove the inequality 
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Problem 2. (Dušan Djukić) A convex 
quadrilateral ABCD is inscribed in a 
circle. The lines AD and BC meet at 
point E. Points M and N are taken on 
the sides AD, BC respectively, so that 
AM:MD=BN:NC. Let the circum- 
circles of triangle EMN and 
quadrilateral ABCD intersect at points 
X and Y. Prove that either the lines AB, 
CD and XY have a common point or 
they are all parallel. 
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Perfect Squares  
Kin Y. Li 

 
 
     In this article, we will be looking at 
one particular type of number theory 
problems, namely problems on integers 
that have to do with the set of perfect 
squares 1, 4, 9, 16, 25, 36, …. This kind 
of problems have appeared in many 
Mathematical Olympiads from different 
countries for over 50 years.  Here are 
some examples. 
 
Example 1 (1953 Kürschák Math 
Competition Problems). Let n be a 
positive integer and let d be a positive 
divisor of 2n2. Prove that n2+d is not a 
perfect square. 
 
Solution. We have 2n2=kd for some 
positive integer k. Suppose n2+d=m2 for 
some positive integer m. Then m2 = 
n2+2n2/k so that (mk)2=n2(k2+2k). Then 
k2+2k must also be the square of a 
positive integer, but k2<k2+2k<(k+1)2 
leads to a contradiction.  
 
Example 2 (1980 Leningrad Math 
Olympiad). Find all prime numbers p 
such that 2p4-p2+16 is a perfect square. 

 
Solution. For p=2, 2p4-p2+16=44 is not 
a perfect square. For p=3, 2p4-p2+16 
=169=132. For prime p>3, p ≡ 1 or 2 
(mod 3) and 2p4-p2+16≡ 2 (mod 3). 
Assume 2p4-p2+16=k2. Then k2 ≡ 02,12 
or 22 ≡ 0 or 1 (mod 3). So 2p4-p2+16 ≠ 
k2. Then p=3 is the only solution. 
 
Example 3 (2008 Singapore Math 
Olympiad). Find all prime numbers p 
satisfying 5p+4p4 is a perfect square.  
 
Solution. Suppose 5p+4p4=q2 for some 
integer q. Then  
 

5p = q2-4p4  = (q-2p2) (q+2p2). 
 

Since 5 is a prime number, we have 
 

q-2p2 = 5s and q+2p2 = 5t 
 
for some integers s, t with t > s ≥ 0 and 
s+t = p. Eliminating q, we have 
 

4p2 = 5s(5t−s-1). 
 

 
If s>0, then from 5 divides 4p2, we get 
p=5. So 5p+4p4=5625=752 and q=75 is a 
solution. If s=0, then t=p. So 5p=4p2+1. 
Now, for integer k≥2, we claim 
5k>4k2+1. The case k=2 is clear. 
Suppose the case k is true. Then 
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So 5k+1=5×5k

 > 5(4k2+1) > 4(k+1)2+1. 
By mathematical induction, the claim is 
true. Therefore, 5p = 4p2+1 has no prime 
solution p. 
 
Example 4 (2009 Croatian Math 
Olympiad). Find all positive integers m, 
n such that 6m+2n+2 is a perfect square.   
 
Solution. If 
 

6m+2n+2=2(3m×2m−1+2n−1+1) 
 

is a perfect square, then 3m×2m−1+2n−1+1 
is even. So one of the integers 3m×2m−1 
and 2n−1 is odd and the other is even.  
 
      Suppose 3m×2m−1 is odd, then m = 1 
and 6m+2n+2 = 8+2n = 4(2n−2+2). So 
2n−2+2 is a perfect square. Since every 
perfect square dived by 4 has remainder 
0 or 1, so 2n−2+2 cannot be of the form 
4k+2. Hence, n-2=1, i.e. n=3. So 
(m,n)=(1,3) is a solution.   
 
        If 2n−1 is odd, then n=1 and 
 

6m+2n+2 = 6m+4 ≡ (-1)m+4 (mod 7). 
 
This means 6m+2n+2 divided by 7 has 
remainder 3 or 5. However,  
 
(7k)2 ≡ 0 (mod 7), (7k±1)2 ≡ 1 (mod 7), 
(7k±2)2≡ 4 (mod 7), (7k±3)2≡ 2 (mod 7).  
 
So every perfect square divided by 7 
cannot have remainder 3, 5 or 6.  
Therefore, (m,n) = (1,3) is the only 
solution. 
 
 
                                  (continued on page 2) 
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Example 5 (2008 German Math 
Olympiad). Determine all real numbers 
x such that 4x5-7 and 4x13-7 are 
perfect squares. 
 
Solution. Suppose there are positive 
integers a and b such that 
 

4x5-7=a2   and   4x13-7=b2. 
 
Then x5 = (a2+7)/4 > 1 is rational and  
x13 = (b2+7)/4 > 1 is rational. So x = 
(x5)8/(x13)3 is rational. Suppose x = p/q 
with p and q positive relatively prime 
integers. Then from (p/q)5 = (a2+7)/4 , 
it follows q5 divides 4p5 and so q=1. So 
x must be a positive integer and x≥2. 
 
In the case x is an odd integer, we have 
a2≡ 0, 1, 4 (mod 8), but a2 = 4x5-7 ≡ 5 
(mod 8), contradiction. So x is even. In 
the case x=2, we have 4x5-7=112 and 
4x13-7=1812. For an even x≥4, (ab)2 = 

(4x5-7)(4x13−7)=16x18-28x13-28x7+49. 
However, expanding (4x9-7x4/2-1)2 

and (4x9-7x4/2)2 and using x9 ≥ 4x8 ≥ 
42x7 ≥ 45x4, we see (ab)2 is strictly 
between them. Then x=2 is the only 
solution. 
 
Example 6 (2011 Iranian Math 
Olympiad). Integers a, b satisfy a>b. 
Also ab-1, a+b are relatively prime 
and ab+1, a-b are relatively prime. 
Prove that (a+b)2+(ab-1)2 is not a 
perfect square. 
 
Solution. Assume (a+b)2+(ab-1)2=c2 

for some integer c. Then 
 

c2=a2+b2+a2b2+1=(a2+1)(b2+1). 
 

Assume (*) there is a prime p such that 
p | a2+1 and p | b2+1, then p | a2+1–b2+1 
= a2-b2. So (**) p | a-b or p | a+b.  
 
Assume p | a-b. Then p | ab–b2. Since 
p | b2+1, so p | ab–b2+b2+1 = ab+1, 
which contradicts ab+1, a-b are 
relatively prime. Similarly, assume p | 
a+b. Then p | ab+b2. Since p | a2+1, so 
p | ab+b2+b2-1 = ab-1, which 
contradicts ab-1, a+b are relatively 
prime. So (**) as well as (*) are wrong.  
 
Then a2+1, b2+1 are relatively prime. 
Since a>b, not both of them are 0. So 
(a+b)2+(ab-1)2  equals  a2+1 (if b=0) 
or b2+1 (if a=0) or (a2+1)(b2+1). Then 
(a+b)2+(ab-1)2 is not a perfect square. 
 
Example 7 (2000 Polish Math 
Olympiad). Let m, n be positive 
integers such that m2+n2+m is divisible 
by mn. Prove that m is a perfect square. 

Solution. Since m2+n2+m is divisible by 
mn, so for some positive integer k, 
m2+n2+m=kmn. Then n2-kmn+(m2+m) = 
0, which can be viewed as a quadratic 
equation in n. Then the discriminant 
∆=k2m2-4m2-4m is a perfect square. 
Suppose d is gcd(m, k2m-4m-4)=1. If d=1, 
then m (and k2m-4m-4) are both perfect 
squares. If d > 1, then  
 
   d = gcd(m, k2m-4m-4) = gcd(m,4). 
 
 Since d >1 divides 4, so d is even. Then m 
is even. Also, n2 ≡ m2+n2+m (mod 2).  So n 
is even. Then mn, m2+n2 are divisible by 4.  
 
As m2+n2+m is given to be divisible by mn, 
so m2+n2+m is divisible by 4. Then m = 
m2+n2+m-(m2+n2) is divisible by 4. So we 
get d = 4. Then  
 

1 = gcd(m/4, k2(m/4)-m-1). 
 

Now ∆/16 = (m/4)(k2(m/4)-m-1) is a 
perfect square. So m/4 and k2(m/4)-m-1 
are perfect squares. Therefore, m is a 
perfect square. 
 
Example 8 (2006 British Math Olympiad). 
Let n be an integer If 212122 n is an 
integer, then it is a perfect square. 
 
Solution. If 212122 n is an integer, 
then 1+12n2 is a perfect square. Suppose 
1+12n2=m2 for some odd  positive integer 
m. Then 12n2 = (m+1)(m-1). Let t be the 
integer (m+1)/2 and we have (*) 
t(t−1)=3n2.  
 
Now we claim 212122 n  = 2 + 2m 
= 4t is a perfect square. By (*), we see t-1 
or t is divisible by 3. Now gcd(t-1, t)= 1. 
Assume t is divisible by 3, then (t 
/3)(t-1)= n2 and both t/3 and  t-1 are 
perfect squares. Let t/3=k2 for some 
integer k, Then t-1=3k2-1≡ 2 ≢ 02, 12 or 
22 (mod 3), contradiction. So t -1 is 
divisible by 3. Then we have gcd(t, 
(t-1)/3)=1. From t×(t-1)/3=n2, we see t is 
a perfect squares. So the claim is true. 
 
Example 9 (2002 Australian Math 
Olympiad). Find all prime numbers p, q, r 
such that pq+pr is a perfect square. 
 
Solution. If q=r, then pq+pr=2pq. So p=2 
and q is an odd prime at least 3. All prime 
triples (p,q,r)=(2,q,q) are solutions.  
 
If q≠r, then without loss of generality, let 
q<r and so  pq+pr = pq(1+ps), where s=r-q 
is at least 1. Since pq and 1+ps are 
relatively prime, so they are both perfect 
squares. Then, the prime q is 2. Also, 
since 1+ ps is a perfect square, 1+ ps=u2 

for some positive integer u. Then 
 

ps=u2-1=(u+1)(u-1). 
 

Since gcd(u+1,u-1)=1 or 2, so if it is 2, 
then u is odd and p is even. Hence, p=2 
and both u+1 and u-1 are powers of 2. 
Then u can only be 3 and 1+ ps=32 so 
that p=2, s=3, r=q+s=2+3=5. These 
lead to the  solutions (p,q,r)=(2,2,5) or 
(2,5,2). 
 
If gcd(u+1,u-1)=1, then u is even and 
u-1 must be 1 (otherwise u+1 and u-1 
have different odd prime factors and 
cannot be powers of the same prime). 
Then u=2, ps=(u-1)(u+1)=3, p=3, s=1, 
r=q+s=3. The only such prime triples 
are (p,q,r) = (3,2,3) or (3,3,2). 
 
Then all the solutions are (p,q,r) = 
(2,2,5), (2,5,2), (3,2,3), (3,3,2) and 
(2,q,q) with q being a prime at least 3. 
 
Example 10 (2008 USA Team Selection 
Test). Let n be a positive integer. Prove 
that n7+7 is not a perfect square. 
 
Solution. Assume n7+7=x2 for some 
positive integer x. Then  
 
(1) n is odd (for otherwise x2≡ 3 (mod 
4), which is false).  
(2) n≡ 1 (mod 4) (due to n odd and x2≢ 
2 (mod 4)). 
 
(3) x2+112 = n7+128 =(n+2)N, where N 
 is n6-2n5+4n4-8n3+16n2-32n+64. 
 
(4) If 11 ∤ x, then every prime factor p 
of x2+112 must be odd and p≡1 (mod 4)      
(for if p = 4k+3, then x2  ≡ -112 (mod p) 
and by Fermat’s little theorem, xp−1  ≡ 
-11p−1 ≡ -1 (mod p), contradiction). 
 
From (3), we get n+2 | x2+112, n+2≡3 
(mod 4) implies x2+112 has a prime 
factor congruent 3 (mod 4), which   
contradicts (4).  
 
If x=11y for some integer y, then (3) 
becomes 121(y2 +1) = (n + 2)N, but 
checking n ≡ -5 to 5 (mod 11), we see 
N is not a multiple of 11. So n+2 is a 
multiple of 121, say M = (n+2)/121. 
Then y2+1 =MN. Similarly, it can be 
checked that every prime factor of y2+1 
is congruent to 1 (mod 4). Hence, every 
odd factor of y2+1 is congruent to 1 
(mod 4). However, M ≡ 3 (mod 4), so 
y2+1 =MN cannot be true. Therefore, 
n7+7 is not a perfect square. 
 
  
                                 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is April 21, 2018. 
  
Problem 511. Let x1,x2,…,x40 be 
positive integers with sum equal to 58. 
Find the maximum and minimum 
possible value of  x1

2+x2
2+⋯+x40

2. 
 
Problem 512. Let AD, BE, CF be the 
altitudes of acute ∆ABC. Points P and 
Q are on segments DF and EF 
respectively. If ∠PAQ=∠DAC, then 
prove that AP bisects ∠FPQ. 
 
Problem 513. Let a0,a1,a2,… be a 
sequence of nonnegative integers 
satisfying the conditions: 
 
(1) an+1=3an-3an−1+an−2 for n>1, 
(2) 2a1=a0+a2-2, 
(3) for every positive integer m, in the 
sequence a0,a1,a2,…, there exist m 
terms ak,ak+1,…,ak+m−1, which are 
perfect squares. 
 
Prove that every term in  a0,a1,a2,… is a 
perfect square. 
 
Problem 514. Let n be a positive 
integer and let p(x) be a polynomial 
with real coefficients on the interval 
[0,n] such that p(0)=p(n). Prove that 
there are n distinct ordered pairs (ai, bi) 
with i=1,2,…,n such that 0≤ai<bi≤n, 
bi-ai is an integer and p(ai)=p(bi). 
 
Problem 515. There are ten distinct 
nonzero real numbers. It is known that 
for every two of the numbers, either the 
sum or the product of them is rational. 
Prove that the square of each of the ten 
numbers is rational. 
  

***************** 
Solutions 

**************** 
 
Problem 506. Points A and B are on a 
circle Γ1. Line AB is tangent to another 
circle Γ2 at B and the center O of Γ2 is 
on Γ1. A line through A intersects Γ2 at 
points D and E (with D between A and 
E). Line BD intersects Γ1 at a point F, 

different from B. Prove that D is the 
midpoint of BF if and only if BE is tangent 
to Γ1. 
 
Solution. FONG Tsz Lo (SKH Lam Woo 
Memorial Secondary School) and George 
SHEN. 


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Let point K be the intersection of Γ1 with 
line DE. Then ∆KFD ~ ∆ABD. Since 
∠ABD = ∠AEB, so ∆ABD ~ ∆AEB. 
Then ∆KFD ~ ∆AEB. Hence, FD/DK = 
AB/BE.  
 
Let O be the center of Γ2. Since OB⊥AB, 
AO is a diameter of Γ1. So AK⊥OK. Then 
∠DKO =∠AKO = 90°. So DK=EK. Now 
BE is tangent to Γ1 ⇔ ∠EBK = ∠BAD ⇔ 
∆EBK ~ ∆BAD ⇔ AB/BE=DB/KE ⇔ 
FD/DK=DB/KE ⇔FD=DB (i.e. D is the 
midpoint of BF). 
 
Other commended solvers: DBS Maths 
Solving Team (Diocesan Boys’ School), 
Jae Woo LEE (Hamyang High School, 
South Korea), LIN Meng Fei, Akash 
Singha ROY (West Bengal, India) and 
Toshihiro SHIMIZU (Kawasaki, Japan). 
 

Problem 507. Determine all functions 
f:ℝ→ℝ such that for all x, y ∈ℝ, 
 
    (x-2)f(y) + f(y+2f(x)) = f(x+yf(x)).    (*) 
 
Solution. DBS Maths Solving Team 
(Diocesan Boys’ School), FONG Tsz Lo 
(SKH Lam Woo Memorial Secondary 
School), Jae Woo LEE (Hamyang High 
School, South Korea) and Toshihiro 
SHIMIZU (Kawasaki, Japan). 
 
If f(0)=0, then setting x=0 in (*) yields 
f(y)=0 for all  y ∈ℝ, i.e. f is the zero 
function, which is a solution of (*). 
 
If f(0)≠0, then setting y=0 in (*) yields 
(x-2)f(0) + f(2f(x)) = f(x) for all x ∈ℝ. 
Now f(x) = f(y) implies (x-2)f(0) + f(2f(x)) 
= f(x) = f(y) = (y-2)f(0) + f(2f(y)) = 
(y-2)f(0) + f(2f(x)) yielding x=y. So f is 
injective.  
 
Setting x=2 in (*) yields f(y+2f(2)) = 
f(2+yf(2)) for all y∈ℝ. Since f is injective, 
y+2f(2)=2+yf(2) for all y∈ℝ. Setting y=0, 
we get f(2)=1. Since f is injective, f(3)≠1. 
Setting x=3, y=3/(1-f(3)) in (*), we get 
f(3/(1-f(3))+2f(3))=0. Thus, f has a root at 

a =3/(1-f(3))+2f(3). Setting y=a in (*), 
we get f(a+2f(x))=f(x+af(x)) for all 
x∈ℝ. Since f is injective, we get 
a+2f(x) = x+af(x). Now a≠2. So f(x) = 
(x-a)/(2-a). Putting this in (*), we get 
a=1. Then the function can only be (1) 
f(x)=0 for all x∈ℝ or (2) f(x)=x-1 for 
all x∈ℝ. Putting these in (*) show they 
are in fact solutions of (*). 
 
Other commended solvers: Yagub N. 
ALIYEV (Problem Solving Group of 
ADA University, Baku, Azerbaijan) 
and Akash Singha ROY (West Bengal, 
India). 
 
Problem 508. Determine the largest 
integer k such that for all integers x,y, if 
xy+1 is divisible by k, then x+y is also 
divisibly by k. 
 
Solution. George SHEN. 
  
Let k be such an integer. Let S be the 
set of all integers x such that gcd(x,k)=1. 
For x in S, choose integer m in [1,k−1] 
such that mx2 ≡-1 (mod k). Let y=mx, 
then k | xy+1. So k | x+y and k | (x+y)x − 
(xy+1) = x2−1.  Then for every x in S,  
every prime factor p of k satisfies x2≣1 
(mod p). If all prime factors p of k are 
at least 5, then x=2, 3 are in S, but x2≣1 
(mod p) fails due to p∤ 22−1, 32−1. So 
the prime factors of k can only be 2 or 3. 
So k is of the form 2r3s and S={x: 
gcd(x,2)=1=gcd(x,3)} Then for x=5 in 
S, x2≣1 (mod 2r) implies 2r | 24 and so 
r≤3. Also, for x=5 in S, x2≣1 (mod 3s) 
implies 3s | 24 and so s≤1. Then k ≤ 
233=24. 
 
Finally, for k=24, xy≣−1 (mod 24) 
implies gcd(x,24) = 1 = gcd(y,24). 
Then x,y ≣ 1, 5, 7, 11, 13, 17, 19 or 23 
(mod 24). The only possible cases for  
xy≣−1 (mod 24) are {x,y} = {1,23}, 
{5,19}, {7,17}, {11,23}. Then 24 | x+y. 
So k=24 is the required largest integer. 
 
Other commended solvers: CHUI Tsz 
Fung (Ma Tau Chung Government 
Primary School, P4) and DBS Maths 
Solving Team (Diocesan Boys’ 
School), Jae Woo LEE (Hamyang 
High School, South Korea), Akash 
Singha ROY (West Bengal, India) and   
Toshihiro SHIMIZU (Kawasaki, 
Japan). 
 
Problem 509.  In ΔABC, the angle 
bisector of ∠CAB intersects BC at a 
point L. On sides AC, AB, there are 
points M, N respectively such that lines 
AL, BM, CN are concurrent and ∠AMN 
=∠ALB. Prove that ∠NML= 90°.  
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Solution 1. Apostolis MANOLOUDIS 
and George SHEN. 
 
 
Let T=MN∩BC. From ∠AMT=∠AMN 
=∠ALB =∠ALT, we get A, M, L, T are 
concyclic. So ∠NML=∠TML=∠TAL.  
To get ∠TAL=90°, it suffices to show 
AT is the exterior bisector of ∠CAB.  
 
By Menelaos’ theorem, as M,N,T are   
collinear, (AM/MC)(CT/TB)(BN/NA) = 
1. By Ceva’s theorem, as AL, BM, CN 
concur, (AM/MC)(CL/LB)(BN/NA) =1. 
Then CL/LB=CT/TB. By the angle 
bisector theorem, CA/AB=CL/LB= 
CT/TB. So AT is the external bisector 
of ∠CAB.  
 
Solution 2. FONG Tsz Lo (SKH Lam 
Woo Memorial Secondary School), 
Akash Singha ROY (West Bengal, 
India) and Toshihiro SHIMIZU 
(Kawasaki, Japan). 
 
AL, BM, CN concurrent implies T, B, L, 
C is a harmonic range of points. Then 
∠AMT =∠AMN =∠ALB =∠ALT led 
to T, A, M, L concyclic. By Apollonius’ 
Theorem,  90° =∠TAL =∠NML. 
 
Other commended solvers: Jae Woo 
LEE (Hamyang High School, South 
Korea), LEUNG Hei Chun (SKH Tang 
Shiu Kin Secondary School), Titu 
ZVONARU (Comăneşti, Romania) and 
Neculai STANCIU (“George Emil 
Palade” School, Buzău, Romania). 
 
Problem 510. Numbers 1 to 20 are 
written on a board. A person randomly 
chooses two of these numbers with a 
difference of at least 2. He adds 1 to the 
smaller one and subtracts 1 from the 
larger one. Then he performs an 
operation by replacing the original two 
chosen numbers on the board with the 
two new numbers. Determine the 
maximum number of times he can do 
this operation. 
 
Solution. CHUI Tsz Fung (Ma Tau 
Chung Government Primary School, 
P4), FONG Tsz Lo (SKH Lam Woo 
Memorial Secondary School), Akash 
Singha ROY (West Bengal, India) and 
Toshihiro SHIMIZU (Kawasaki, 
Japan). 
 

Note after each operation, the sum of the 
numbers is always 210. Suppose the 
person chooses m,n with m-n≥2, then 
(m-1)2 + (n+1)2 = n2 + m2 + 2 - 2(m-n) ≤ 
n2+m2-2 with equality only for m-n=2. If 
the absolute value of the difference of the 
two numbers is 1, then the operation does 
not change anything. At the end, the board 
has ten 10’s and ten 11’s.  
 
In the beginning, the sum of the squares is 
12+22+⋯+202=2870 and at the end, it is 
10×(102+112)=2210. After each operation, 
the sum of squares reduces by at least 2, so 
the number of operation that can be done 
is at most (2870-2210)/2=330.  Below we 
will show the person can do 330 
operations with the absolute values of the 
difference of the two numbers is 2.  
 
The plan is to eliminate the minimum and 
the maximum of the remaining numbers 
until we get only 10’s and 11’s. In round 1, 
we eliminate 1’s and 20’s by operating on 
pairs (1,3), (2,4), …, (18,20) one time for 
every pair. In round 2, we eliminate 2’s 
and 19’s by operating on pairs (2,4), 
(3,5), …, (17,19) two times for every pair.  
Keep on eliminating in this way until we 
have only 9’s, 10’s, 11’s and 12’s. In round 
9, we eliminate 9’s and 12’s by operating 
on pairs (9,11) and (10,12) nine times. The 
total number of operations is 18×1+16×2+ 
⋯ +2×9=330.  
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Problem 3. (Dušan Djukić) There are 
2n-1 bulbs in a line. Initially, the central 
(n-th) bulb is on, whereas all others are off. 
A step consists of choosing a string of at 
least three (consecutive) bulbs, the 
leftmost and rightmost ones being off and 
all between them being on, and changing 
the states of all bulbs in the string (for 
instance, the configuration ●○○○● will 
turn into ○●●●○). At most how many 
steps can be performed? 
 
Second Day  
 
Problem 4. (Dušan Djukić) Suppose that 
a positive integer a is such that, for any 
positive integer n, the number n2a-1 has a 
divisor greater than 1 and congruent to 1 
modulo n. Prove that a is a perfect square. 
 
Problem 5. (Bojan Bašić and PSC) 
Determine the maximum number of 
queens that can be placed on a 2017×2017 

chessboard so that each queen attacks 
at most one of the others. 
 
Problem 6. (Dušan Djukić) Let k be 
the circumcircle of triangle ABC, and 
let ka be its excircle opposite to A. The 
two common tangents of k and ka meet 
the line BC at points P and Q. Prove 
that ∠PAB=∠QAC. 
 

 

Perfect Squares 
 
                   (Continued from page 2) 
 
 
Example 11 (2006 Thai Math 
Olympiad).  Determine all prime 
numbers p such that (2p−1-1)/p are 
perfect squares. 

 
Solution. For every prime number p, let 
f(p)= (2p−1-1)/p. We will show for p>7, 
f(p) is not a perfect square.  
 
Assume there is a prime p>7 such that  
2p−1-1=pm2 for some positive integer 
m. Then m must be odd. Now there are 
two cases, (1) p is of the form 4k+1 
with k>1 or (2) p is of the form 4k+3 
with k>1. 
 
In case (1), we have 2p−1 -1 = pm2 = 
(4k+1)m2 ≡ 1 (mod 4), but also 2p−1 -1 
= 24k -1 ≡ 3 (mod 4), which is a 
contradiction.  
 
In case (2), we have  2p−1-1= 24k+2-1 = 
(22k+1-1)(22k+1+1) = pm2. 
 
Since gcd(22k+1-1,22k+1+1)=1, again 
we have two subcases: 
 
(a) 22k+1-1=u2, 22k+1+1=pv2 for some 
positive integers u, v; 
 
(b) 22k+1-1=pu2, 22k+1+1=v2 for some 
positive integers u, v. 
 
In subcase (a), since k > 1, 22k+1+1≡1 
(mod 4), but pv2≡3×1=4 (mod 4), 
which is a contradiction. 
 
In subcase (b), we have 22k+1 = v2-1 = 
(v-1)(v+1). Then v-1=2s, v+1=2t for 
some positive integers s<t. Observe 
that 2t−s =(v+1)/(v-1)=2/(v-1)+1. Then 
v=2 or 3. If v=2, then 22k+1+1=v2=4, 
which is a contradiction. If v=3, then  
22k+1=v2-1=8 leads to k=1, which is a 
contradiction as  k>1.  
  
Finally, checking the cases p=2,3,5,7, 
we see only cases p=3 and 7 have 
solutions (23−1-1)/3=12 and  (27−1-1)/7 
= 32. 
 

 


